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1 Introduction

Quantization of gravity is likely to require some form of quantum spacetime, which may
be effectively described by a noncommutative geometry. This, in turn, can be defined by
noncommutativity between the spacetime coordinates, similar to what happens with the
coordinates of phase space in quantum mechanics. Such nontrivial commutation relations
are generally not covariant under the action of classical relativity groups. Consequently,
quantum spacetimes require the introduction of quantum symmetries, which are realized by
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quantum groups of isometries. In the present work we shall refer in particular to Poincaré
symmetries.

The latter can be approached either in terms of the noncommutative algebra of contin-
uous functions over the Poincaré group, the quantum Hopf algebra C?(P ), or in terms of the
quantum Hopf algebra U?(p) obtained from the universal enveloping algebra of the Poincaré
Lie algebra (the subscript indicating the specific deformation under analysis). From the
general theory of Hopf algebras, it is possible to show that these two structures are Hopf-
dual. The first one, owing to its group-like properties, may be regarded as a “quantum
symmetry group”, while the second one can be regarded as a “quantum symmetry algebra”.

Quantum Hopf algebras can be built in different ways. Two of the most commonly
used structures are the bicrossproduct and twist. The bicrossproduct structure [1] can be
regarded as a quantum generalization of the usual semidirect product of classical groups.
According to [1] its mathematical structure is that of a Hopf algebra extension. It may
concern both the algebra of functions on the group C?(P ) and the universal enveloping
of the Lie algebra U?(p). Therefore, as in the classical case, it is possible to derive the
associated noncommutative spacetime in two ways.

One approach involves taking the quotient of C?(P ) with respect to the Lorentz Hopf
algebra C(SO(1, 3)) (which we shall see to be undeformed), so to obtain the (deformed)
translations sector that is isomorphic to the spacetime, as in the classical case. The second
method entails identifying the space on which U?(p) acts covariantly, as the spacetime.

The twist approach [2] relies on an operator-valued map defined in terms of the gen-
erators of some Lie algebra of symmetries. It may deform any bilinear map of a given
theory which carries a representation of the Lie algebra. It affects both the algebra and
the coalgebra structure of the associated Hopf algebra of symmetries and, when applied to
the product of functions on the spacetime, it generates noncommutativity.

The bicrossproduct and the twist structures are usually considered as alternative op-
tions for characterizing the quantum symmetries of noncommutative spacetimes. Available
examples generally deal exclusively with one of these two approaches.1 It is nevertheless
interesting to look for quantum isometries in both frameworks, as associated with the same
noncommutative spacetime.

The κ-Poincaré quantum group in the so-called “Majid-Ruegg basis” (sometimes called
“bicrossproduct basis”) is the most famous quantum group with a bicrossproduct struc-
ture [1]. It describes the symmetries of the κ-Minkowski spacetime algebra [4]. While the
κ-Poincaré algebra was first obtained in [5, 6] by contraction [7], it was also obtained later
within a twist approach [8–14]. However this requires to enlarge the symmetry algebra, so
to include at least the generator of Weyl transformations.

On the other hand, the Moyal algebra is an example of a noncommutative spacetime
with deformed Poincaré symmetries which can only be obtained by a twist. Indeed, it
is possible to check that it is not the quotient of a bicrossproduct structure [15, 16]. Its
quantum symmetry group, the so-called θ-Poincaré, was first discussed in [17–20].

1See however [3] where the light-like κ-Minkowski is associated with two quantum groups of symmetries,
one is a bicrossproduct, the other is obtained with a twist.
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In this paper we explore the relation between the twist and bicrossproduct construc-
tions. We provide an example of a noncommutative spacetime, dubbed %-Minkowski, whose
quantum symmetries can be defined in terms of both structures. While this spacetime was
originally proposed in the context of twist deformations of the Poincaré group [16], we show
that its symmetries can be naturally described also in terms of a bicrossproduct quantum
group. The deformed Poincaré symmetries obtained following the two approaches are iso-
morphic quantum groups related one to the other by a nonlinear change of generators. We
shall indicate them with U%(p) and U%(p). They give rise to different ?-products, which
are both cyclic with respect to the standard integration measure, an important property
towards formulating gauge invariant theories. This particular model can therefore serve as
a bridge between the two approaches, facilitating a comparison of the relevant structures
and their physical interpretation.

The paper is organised as follows. In section 2 we introduce the %-Minkowski spacetime
and shortly describe the κ-Minkowski one, which will serve as a guiding example all over
the paper. In section 3 we review the quantum enveloping algebra U%(p) [21] describing
the twisted quantum symmetries of the %-Minkowski spacetime, and recall the related
?-product.

Sections 4 and 5 contain the main original results of the paper. In section 4.1 we
describe C%(P ), previously introduced in [22, 23] via a classical r-matrix, and we show by
direct calculation that it has a standard bicrossproduct structure. We thus analyse the Hopf
algebras U%(p) and U%(p) which are both Hopf dual to C%(P ). In section 4.2 we prove that
U%(p) is not of the bicrossproduct kind. We thus introduce a suitable non-linear change of
generators of the Hopf algebra to obtain the quantum enveloping algebra U(p), which has a
bicrossproduct structure. We apply both a constructive method, as well as a more abstract
one, proposed by Majid and Ruegg in the κ-Poincaré context in [1]. The quantum envelop-
ing algebras U%(p) and U%(p) are shown in section 4.3 to be isomorphic. They are both
Hopf dual to C%(P ), but only the second one is bicrossproduct dual. In analogy with the
classical and κ-Minkowski spacetime, we finally re-derive the %-Minkowski spacetime as an
appropriate quotient of the dual U∗% (p) with respect to the action of the Lorentz sub-algebra.

In section 5 we realise the algebra of noncommuting coordinate functions as finite-
dimensional operators and construct operator-valued plane waves in terms of which we
define a ?-product. Depending on the ordering prescription (time-to-the-right or time-
symmetric) we obtain compatible coproducts which are either the bicrossproduct or the
twisted one. The time-to-the-right ordering is related with the bicrossproduct structure, in
analogy with the κ-Minkowski case. The time-symmetric ordering, related with the twist,
does not have a direct analogue in the κ-Poincaré case, where the same ordering yields the
‘standard’ κ-Poincaré basis, not descending from a twist.

Finally, we retrieve the twisted star product already found in [24] as the one associated
with the time-symmetric ordering, and find a novel ?-product, related with the bicrossprod-
uct basis. We show that, similarly to the twisted one, it is cyclic. However, differently from
the latter, it is not closed. This fact could have interesting consequences to be compared
with the results of [21, 24] where the twisted product has been employed in scalar field
theory models.
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A section dedicated to summary and discussion and five appendices containing tech-
nical details and review material conclude the paper.

2 The %-Minkowski spacetime

In this section we introduce the %-Minkowski spacetime, after reviewing the more popular
and well studied κ-Minkowski one, which we shall use as a guiding example all over the
paper. We work here with a Lorentzian metric gµν with signature (+,−,−,−).

The κ-Minkowski spacetime. The κ-Minkowski spacetime is defined by the commu-
tators

[xµ, xν ] = i`(vµxν − xµvν), (2.1)

where we use a length (rather than energy) deformation parameter ` = 1/κ, for homo-
geneity with the notation used for %-Minkowski. The 4-vector vµ characterizes physically
different models, based on whether it is timelike, null or spacelike with respect to the metric
gµν [25]. The timelike κ-Minkowski with commutation relations

[x0, xi] = i`xi, [xi, xj ] = 0, (2.2)

has been under the spotlight of theoretical investigations for several decades (see for exam-
ple [26–33]), given its relevance in phenomenological approaches to the quantum gravity
problem [34]. The symmetry group of the noncommutative spacetime (2.2) is known as κ-
Poincaré [5, 6, 35] and was studied in several works regarding quantum deformations of the
Poincaré algebra (see for example [36–38]). As we will show, in the context of the bicross-
product structure of the deformed Poincaré symmetries the commutation relations (2.2)
were derived as the dual algebra with respect to the deformed translations generators [1].
This accounts for one of the most interesting properties of the bicrossproduct construc-
tion: the possibility of defining a procedure similar to that of the classical case, in which
the Minkowski spacetime can be viewed as the dual space to the translation sector of the
Poincaré algebra.

The %-Minkowski spacetime. The %-Minkowski spacetime is defined by the commu-
tation relations

[x1, x0] = i%x2 ,

[x2, x0] = −i%x1 , (2.3)

all other commutators being zero.
This is a sort of angular noncommutativity, in that the time variable acts as the

generator of rotations in the (x1, x2) plane. From the measurement point of view, when
the coordinates are represented as operators on a Hilbert space, its spectrum will therefore
be discrete [22].

The noncommutative spacetime (2.3), which has the structure of the Euclidean al-
gebra in 2+1 dimensions (the coordinate x3 being central), was first considered in [39]
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(also see [40]). It has been analyzed within the twist approach in [16]. This kind of
noncommutative spacetime might be physically interesting, as argued in [21, 41–43] and
phenomenologically relevant in relation with relative locality [44]. Noncommutative field
models with such underlying spacetime have been studied in [24, 45] and, in the semiclas-
sical approach, by [46] in the context of Poisson gauge theory. The properties of observers
and localization problems in this spacetime were studied in [23].

A similar type of angular noncommutativity, when time is a commutative variable
while x3 plays the role of a proper spatial rotation, is considered in [47] in the context of a
double quantization of both spacetime and phase space. In order to distinguish it from the
previous one, the latter has been dubbed λ-Minkowski spacetime and is characterized by
commutation relations analogous to (2.3), with the roles of x3 and x0 exchanged. Keeping
this difference in mind, the analysis carried out for %-Minkowski in the subsequent sections
can be repeated also for the case of λ-Minkowski, with minor changes.

3 The twisted Hopf algebra U%(p)

Given a Lie algebra, g, its universal enveloping algebra, U(g), may be deformed to a
quantum Hopf algebra if a twist operator is available. This is an invertible map F ∈ U(g)⊗
U(g) (called Drinfel’d twist), which satisfies cocycle and normalization conditions. We
shortly review in appendix A some of its properties. When an admissible twist is available,
it is possible to define both a quantum spacetime and its quantum symmetry group.

The Drinfel’d twist for the %-Minkowski case was first introduced in [16]:

F = e
i%
2 [P0∧M12] , (3.1)

with Pµ, Mµν translations and Lorentz generators of the Poincaré algebra p, respectively.
The corresponding quantum Hopf algebra, U(p), was first introduced in [42]. The twisted
coproducts of the Lie algebra generators, which we shall need in the forthcoming sections,
read

∆FP0 = P0 ⊗ 1 + 1⊗ P0 ,

∆FP1 = P1 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗ P1 + P2 ⊗ sin

(
%

2P0

)
− sin

(
%

2P0

)
⊗ P2 ,

∆FP2 = P2 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗ P2 − P1 ⊗ sin

(
%

2P0

)
+ sin

(
%

2P0

)
⊗ P1 ,

∆FP3 = P3 ⊗ 1 + 1⊗ P3 ,

∆FM12 = M12 ⊗ 1 + 1⊗M12 ,

∆FM13 = M13 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗M13 −M32 ⊗ sin

(
%

2P0

)
+ sin

(
%

2P0

)
⊗M32 ,

∆FM32 = M32 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗M32 +M13 ⊗ sin

(
%

2P0

)
− sin

(
%

2P0

)
⊗M13 ,
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∆FM10 = M10 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗M10 +M20 ⊗ sin

(
%

2P0

)
− sin

(
%

2P0

)
⊗M20

+ P1 ⊗
%

2M12 cos
(
%

2P0

)
− %

2M12 cos
(
%

2P0

)
⊗ P1

+ P2 ⊗
%

2M12 sin
(
%

2P0

)
+ %

2M12 sin
(
%

2P0

)
⊗ P2 ,

∆FM20 = M20 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗M20 −M10 ⊗ sin

(
%

2P0

)
+ sin

(
%

2P0

)
⊗M10

+ P2 ⊗
%

2M12 cos
(
%

2P0

)
− %

2M12 cos
(
%

2P0

)
⊗ P2

− P1 ⊗
%

2M12 sin
(
%

2P0

)
− %

2M12 sin
(
%

2P0

)
⊗ P1 ,

∆FM30 = M30 ⊗ 1 + 1⊗M30 + %

2P3 ⊗M12 −
%

2M12 ⊗ P3 , (3.2)

whereas the Lie algebra sector, the antipode and the counit are left undeformed.
The homogeneous space on which the deformed symmetries act is characterised by a

noncommutative ?-product constructed with the inverse twist element F−1. Following [42],
we can express the twist in coordinate representation

by realising Pµ as −i ∂
∂xµ , and Mµν as i(xµ∂ν − xν∂µ), to obtain

F = exp
{
− i%2

[
∂0 ⊗ (x1∂2 − x2∂1)− (x1∂2 − x2∂1)⊗ ∂0

]}
. (3.3)

The ?-product between two functions of the coordinates is defined as

(f ? g)(x) := µ0 ◦ F−1(f ⊗ g)(x) , (3.4)

where µ0 is the ordinary product map. From the twisted ?-product, the star-commutators
between coordinate functions are immediately obtained,

[x1, x0]? = i%x2 ,

[x2, x0]? = −i%x1 ,
(3.5)

all the others being zero. They reproduce, as expected, the commutators (2.3). We will
derive analogous commutation relations in the context of the bicrossproduct framework of
quantum groups in the next section.

4 The bicrossproduct construction

Given two Hopf algebras X ,A, a bicrossproduct Hopf algebra, X BJ A [48], is the tensor
product X⊗A with Hopf algebra operations, endowed with two structure maps, a covariant
right action of X on A and a covariant left coaction of A on X , respectively

/ : A×X → A, (4.1a)
β : X → A⊗X , (4.1b)

– 6 –
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which have to be compatible with the Hopf algebra structure. We review in appendix B the
main definitions and properties. The meaning of the symbol BJ is that the first algebra
acts on the second from the right, while the second coacts back on the first from the left,
like a generalization of a semidirect product.

For the case under analysis, the bicross-structure of C%(P ) is obtained by identifying
the algebra X with a deformation of the Minkowski spacetime, while A will be the algebra
of functions on the Lorentz group. Dually, the bicross-structure of the deformed universal
enveloping U(p) is obtained by identifying X with U(so(1, 3)) and A with the deformed
Lie algebra of translations.

4.1 The bicrossproduct structure of the algebra C%(P )

The quantum Hopf algebra C%(P ) is obtained deforming the commutative algebra of func-
tions on the group manifold [22, 23]. It is possible to obtain the noncommutative structure
by quantizing the Poisson bracket of coordinate functions associated with the classical
r-matrix (details are reported in appendix B.1), which reads2

r = i%(P0 ∧M12). (4.2)

For comparison, an analogous analysis is summarized in appendix B.2 for the κ case Cκ(P ).
Notice that the %-Poincaré r-matrix (4.2) satisfies the classical Yang-Baxter equation, dif-
ferently from the r-matrix of the κ case, which is known to satisfy a modified Yang-Baxter
equation.

The noncommutative algebra of functions on the group manifold is obtained in [23]
by quantizing the Poisson brackets (B.11). The latter entails the r-matrix (4.2), besides
the left- and right-invariant vector fields of the Poincaré group which are spelled out in
eqs. (B.12) for convenience. Similarly to the κ-Minkowski case, the coproduct, antipode
and counit of the Lorentz sector are undeformed, while they are deformed for the transla-
tions parameters. This result can be derived by imposing covariance of the commutation
relations (3.5) (analogously (2.2) for the κ case) under left coaction of the quantum group
(see [23] for details). One finally obtains the following quantum group structure:

[aµ, aν ] = i%[δν0(a2δµ1 − a1δµ2)− δµ0(a2δν1 − a1δν2)] , (4.3a)
[Λµν ,Λ%σ] = 0 , (4.3b)

[Λµν , aρ] = i% [Λ%0(Λµ1g2ν − Λµ2g1ν)− δρ0(Λ2νδ
µ

1 − Λ1νδ
µ

2)] , (4.3c)
∆(Λµν) = Λµα ⊗ Λαν , (4.3d)
S(Λµν) = (Λ−1)µν , (4.3e)
ε(Λµν) = δµν , (4.3f)
∆(aµ) = Λµν ⊗ aν + aµ ⊗ 1 , (4.3g)
S(aµ) = −aν(Λ−1)µν , (4.3h)
ε(aµ) = 0 . (4.3i)

2This can be quickly verified by expanding the twist (3.1) up to the first order in the deformation
parameter.
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The %-Minkowski spacetime in this approach is assigned a priori. It determines its quantum
group of symmetries, by requiring that it be the noncommutative algebra of continuous
functions on the spacetime, which is covariant under the left coaction of the group: xµ →
xµ
′ = Λµν ⊗ xν + aµ ⊗ 1. We shall see in section 4.3.1 a dual picture, where the same

spacetime emerges as an appropriate quotient of the quantum universal enveloping algebra
of the Poincaré algebra p.

Proposition 4.1 The quantum Hopf algebra C%(P ) has a bicrossproduct structure, namely

C%(P ) = T ∗% BJ C(SO(1, 3)), (4.4)

where C(SO(1, 3)) is the classical undeformed (Hopf) algebra of continuous functions over
the Lorentz group and T ∗% is the noncommutative (Hopf) algebra of functions of %-Minkowski
spacetime, given by:

[xµ, xν ] = i%[δν0(x2δµ1 − x1δµ2)− δµ0(x2δν1 − x1δν2)] , (4.5a)
∆(xµ) = xµ ⊗ 1 + 1⊗ xµ , (4.5b)
S(xµ) = −xµ , (4.5c)
ε(xµ) = 0 . (4.5d)

To prove this statement, we apply the construction described in appendix B. In order
to define the right action of T ∗% on C(SO(1, 3)), we first extend the elements xµ ∈ T ∗% to
xµ⊗1 ≡ aµ ∈ T ∗% ⊗C(SO(1, 3)) and the elements Λαβ ∈ C(SO(1, 3)) to 1⊗Λαβ ≡ Λαβ ∈ T ∗% ⊗
C(SO(1, 3)); then, on assuming a bicrossproduct structure on the tensor product quantum
group, we compute by means of the Hopf algebra product (B.3a) and the coproduct (4.5b)

[xρ ⊗ 1, 1⊗ Λµν ] = xρ ⊗ Λµν − xρ ⊗ Λµν − 1⊗ (Λµν / xρ), (4.6)

but [xρ⊗1, 1⊗Λµν ] is (minus) the commutator (4.3c). Therefore we obtain the right action
in the form

Λµν / xρ = i% [Λρ0(Λµ1g2ν − Λµ2g1ν)− δρ0(Λ2νδ
µ

1 − Λ1νδ
µ

2)] . (4.7)

Note that, from (B.5), Λµν / 1 = Λµν and 1 / 1 = 1, but 1 / xρ = 0.
To find the left coaction of C(SO(1, 3)) on T ∗% , we compute ∆(xµ⊗ 1) from (B.3c) and

the coproduct (4.5b):

∆(xµ ⊗ 1) = xµ ⊗ 1⊗ 1⊗ 1 + 1⊗ xµ(1̄) ⊗ xµ(2̄) ⊗ 1 . (4.8)

Thus, comparing with (4.3g), we find that xµ(1̄) = Λµν and xµ(2̄) = xν , therefore:

β(xµ) = Λµν ⊗ xν . (4.9)

Note that β(1) = 1⊗ 1.
Once the right action and left coaction are obtained, we have to verify that the com-

patibility conditions (B.4a)–(B.4d) hold. This is proven in appendix C in order not to
burden the text.

– 8 –
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It remains to check that the quantum group relations (4.3) are reproduced by means
of the bicrossproduct structure given by eqs. (B.3a)–(B.3e).

From (B.3a) we have

(1⊗ Λµν) · (1⊗ Λαβ)− (1⊗ Λαβ) · (1⊗ Λµν) = 1⊗ (ΛµνΛαβ − ΛαβΛµν),
(xµ ⊗ 1) · (xν ⊗ 1)− (xν ⊗ 1) · (xµ ⊗ 1) = (xµxν ⊗ 1 + xµ ⊗ (1 / xν))− (µ↔ ν)

= xµxν ⊗ 1− xνxµ ⊗ 1, (4.10)
(xα ⊗ 1) · (1⊗ Λµν) = xα ⊗ Λµν ,
(1⊗ Λµν) · (xα ⊗ 1) = xα ⊗ Λµν + 1⊗ (Λµν / xα);

from which one finds the commutation rules (4.3a)–(4.3c).
From (B.3c) one finds

∆(xµ ⊗ 1) = xµ ⊗ 1⊗ 1⊗ 1 + 1⊗ Λµλ ⊗ xλ ⊗ 1,
∆(1⊗ Λαβ) = 1⊗ Λαγ ⊗ 1⊗ Λγβ ,

∆(xα ⊗ Λµν) = xα ⊗ Λµβ ⊗ 1⊗ Λβν + 1⊗ ΛαβΛµγ ⊗ xβ ⊗ Λγν ,
(4.11)

and eqs. (4.3d), (4.3g) are recovered.
From (B.3d):

ε(xµ ⊗ 1) = ε(xµ)ε(1), (4.12)

but from (4.5d) ε(xµ) = 0, so that we obtain (4.3i) by identifying the l.h.s. with ε(a).
Moreover

ε(1⊗ Λαβ) = ε(1)ε(Λαβ), (4.13)

but ε(Λαβ) = δαβ and we find (4.3f). Finally

ε(xµ ⊗ Λαβ) = ε(xµ)ε(Λαβ), (4.14)

which is the expected result from the homomorphism property of the counit.
The last condition to analyse is (B.3e). It yields

S(xµ ⊗ 1) = (1⊗ S(Λµν) · (S(xµ)⊗ 1) = −xν ⊗ (Λ−1)µν , (4.15a)
S(1⊗ Λµν) = (1⊗ Λµν) · (1⊗ 1) = 1⊗ (Λ−1)µν , (4.15b)
S(xα ⊗ Λµν) = S(xβ)⊗ S(ΛαβΛµν) = −xβ ⊗ (Λ−1)αβ(Λ−1)µν , (4.15c)

leading to (4.3e) and (4.3h). This completes the proof of the bicrossproduct structure (4.4).

4.2 The bicrossproduct structure of the algebra U%(p)

In this section we build a noncommutative Hopf algebra which is dual to C%(P ) and pos-
sesses a bicrossproduct structure. In order to distinguish it from U%(p), the one obtained
from the twist in section 3, we will indicate it with a calligraphic notation, U%(p). To
this, we will perform an invertible nonlinear change of generators relating the two algebras,
which results to be a Hopf algebra homomorphism as shown in the next section.
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The algebra U%(p) is the analogue, for %-deformation, of the famous quantum Hopf
algebra Uκ(p), introduced by Majid and Ruegg in [1], that is, the bicrossproduct dual
of the κ-Poincaré Cκ(P ) described in appendix B.2. In section 4.3 we show that their
construction applies to our case and reproduces our results.

Primarily, let us show that the twist-related Hopf algebra U%(p) defined by (3.2) does
not have a bicrossproduct structure, namely it is not of the form U%(p) = U(so(1, 3)) BJ T%,

where U(so(1, 3)) is the undeformed universal enveloping algebra of the Lorentz sector, and
T% is the %-deformed (Hopf) algebra of translations. To do this, let us denote the generators
of the Lorentz and translations sector of the tensor product above respectively with mµν

and pµ and let us extend them to the whole tensor product algebra, by posing

Pλ = 1⊗ pλ ∈ U(so(1, 3))⊗ T%, Mµν = mµν ⊗ 1 ∈ U(so(1, 3))⊗ T%. (4.16)

Given the coproducts for translation generators in (3.2) we deduce the relevant Hopf alge-
braic structures of T%, naturally identified as a subalgebra of U%(p), so to have

[pµ, pν ] = 0, (4.17a)
∆Fp0 = p0 ⊗ 1 + 1⊗ p0, (4.17b)

∆Fp1 = p1 ⊗ cos
(
%

2p0

)
+ cos

(
%

2p0

)
⊗ p1 + p2 ⊗ sin

(
%

2p0

)
− sin

(
%

2p0

)
⊗ p2, (4.17c)

∆Fp2 = p2 ⊗ cos
(
%

2p0

)
+ cos

(
%

2p0

)
⊗ p2 − p1 ⊗ sin

(
%

2p0

)
+ sin

(
%

2p0

)
⊗ p1, (4.17d)

∆Fp3 = p3 ⊗ 1 + 1⊗ p3, (4.17e)
S(pµ) = −pµ, (4.17f)

ε(pµ) =0 , (4.17g)

while the Hopf algebra U(so(1, 3)) remains undeformed.
We want to show that the factorization U%(p) = U(so(1, 3)) ⊗ T% generated by the

elements (4.16) is not compatible with the bicrossproduct structure. Indeed, while it is
possible to read the right action of U(so(1, 3)) on T%, the left coaction of T% is ill-defined.
For the right action we apply eq. (B.5),

[Mµν , Pλ] = mµν ⊗ pλ −
(
mµν ⊗ (pλ / 1) + 1⊗ (pλ / mµν)

)
, (4.18)

where we used the undeformed coproduct ∆mµν = mµν ⊗ 1 + 1⊗mµν . On the other hand,
the Lie algebra sector of U%(p) is undeformed, so that

[Mµν , Pλ] = i(gνλPµ − gµλPν). (4.19)

Comparing the two, we finally obtain

pλ / mµν = −i(gνλpµ − gµλpν). (4.20)

For the left coaction, however, we encounter a problem. Let us rewrite the last of eqs. (3.2)
by expanding the tensor product, as in (4.16). We have:

∆(m30⊗1) = m30⊗1⊗1⊗1+1⊗1⊗m30⊗1− %21⊗p3⊗m12⊗1+ %

2m12⊗1⊗1⊗p3. (4.21)
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Comparing the latter with eq. (B.3c), we obtain

∆(m30 ⊗ 1) = (m30(1) ⊗m30(2)
(1̄))⊗ (m30(2)

(2̄) ⊗ 1), (4.22)

where we used the notation β(x) = x(1̄) ⊗ x(2̄), with x, x(2̄) ∈ U(so(1, 3)), x(1̄) ∈ T%, and β
the sought left coaction. It is easy to see that there is no left coaction of T% on U(so(1, 3),
since the last term in eq. (4.21) has p3 as fourth component of the tensor product, while
all terms in (4.22) have the identity as fourth component.

This means that, although C%(P ) and U%(p) are dual in the Hopf-algebraic sense, they
are not bicrossproduct-dual.

In what follows we show that it is possible to obtain, through a nonlinear change of
generators of U%(p), a new quantum group that is not only Hopf-dual to C%(P ), but also
bicrossproduct-dual, having a bicossproduct structure itself. As already mentioned, this is
analogous to the κ-Poincaré case, where the quantum group Cκ(P ) is Hopf-dual to both
the quantum groups of the universal enveloping algebra in the standard and Majid-Ruegg
bases, but bicrossproduct-dual only to that of the Majid-Ruegg basis.

To do this, let us rewrite the Poincaré generators of U%(p) in a non-covariant way by
defining Ri = 1

2εijkMjk, Ni = Mi0, so that the algebra reads:

[Pµ, Pν ] = 0, [Ni, P0] = iPi, [Ni, Pj ] = iδijP0, [Ni, Nj ] = −iεijkRk,
[Ri, P0] = 0, [Ri, Pj ] = iεijkPk, [Ri, Nj ] = iεijkNk, [Ri, Rj ] = iεijkRk.

(4.23)

The twisted coproducts in (3.2) become then

∆FP0 = P0 ⊗ 1 + 1⊗ P0,

∆FP1 = P1 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗ P1 + P2 ⊗ sin

(
%

2P0

)
− sin

(
%

2P0

)
⊗ P2,

∆FP2 = P2 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗ P2 − P1 ⊗ sin

(
%

2P0

)
+ sin

(
%

2P0

)
⊗ P1,

∆FP3 = P3 ⊗ 1 + 1⊗ P3,

∆FR1 = R1 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗R1 +R2 ⊗ sin

(
%

2P0

)
− sin

(
%

2P0

)
⊗R2,

∆FR2 = R2 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗R2 −R1 ⊗ sin

(
%

2P0

)
+ sin

(
%

2P0

)
⊗R1,

∆FR3 = R3 ⊗ 1 + 1⊗R3,

∆FN1 = N1 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗N1 +N2 ⊗ sin

(
%

2P0

)
− sin

(
%

2P0

)
⊗N2

+ P1 ⊗
%

2R3 cos
(
%

2P0

)
− %

2R3 cos
(
%

2P0

)
⊗ P1 + P2 ⊗

%

2R3 sin
(
%

2P0

)
+ %

2R3 sin
(
%

2P0

)
⊗ P2,

∆FN2 = N2 ⊗ cos
(
%

2P0

)
+ cos

(
%

2P0

)
⊗N2 −N1 ⊗ sin

(
%

2P0

)
+ sin

(
%

2P0

)
⊗N1

+ P2 ⊗
%

2R3 cos
(
%

2P0

)
− %

2R3 cos
(
%

2P0

)
⊗ P2 − P1 ⊗

%

2R3 sin
(
%

2P0

)
− %

2R3 sin
(
%

2P0

)
⊗ P1,

∆FN3 = N3 ⊗ 1 + 1⊗N3 + %

2P3 ⊗R3 −
%

2R3 ⊗ P3. (4.24)
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Inspecting eq. (4.22) one infers that, in order to have a well defined left coaction, a
new basis is needed such that the new coproduct has all the translation generators on one
side of the tensor product, while the Lorentz ones are on the other side. To do this, we
perform the following non-linear transformation of the generators:

P̃0 = P0,

P̃1 = P1 cos
(
%

2P0

)
− P2 sin

(
%

2P0

)
,

P̃2 = P2 cos
(
%

2P0

)
+ P1 sin

(
%

2P0

)
,

P̃3 = P3,

R̃1 = R1 cos
(
%

2P0

)
−R2 sin

(
%

2P0

)
,

R̃2 = R2 cos
(
%

2P0

)
+R1 sin

(
%

2P0

)
,

R̃3 = R3,

Ñ1 = N1 cos
(
%

2P0

)
−N2 sin

(
%

2P0

)
+ %

2R3P̃1,

Ñ2 = N2 cos
(
%

2P0

)
+N1 sin

(
%

2P0

)
+ %

2R3P̃2,

Ñ3 = N3 + %

2R3P3,

(4.25)

which is such that the Lie algebra relations continue to be undeformed. Details of the
computation of the commutators are reported in appendix D. Let us prove that we have
the desired property for the coproducts.

Exploiting the fact that

∆ cos(x) = cos(x)⊗ cos(x)− sin(x)⊗ sin(x), (4.26)
∆ sin(x) = cos(x)⊗ sin(x) + cos(x)⊗ sin(x), (4.27)

for x = %P0/2, we can write the coproducts of the new generators as

∆P̃0 = P̃0 ⊗ 1 + 1⊗ P̃0,

∆P̃1 = P̃1 ⊗ 1 + cos
(
%P̃0

)
⊗ P̃1 − sin

(
%P̃0

)
⊗ P̃2,

∆P̃2 = P̃2 ⊗ 1 + cos
(
%P̃0

)
⊗ P̃2 + sin

(
%P̃0

)
⊗ P̃1,

∆P̃3 = P̃3 ⊗ 1 + 1⊗ P̃3,

∆R̃1 = R̃1 ⊗ 1 + cos
(
%P̃0

)
⊗ R̃1 − sin

(
%P̃0

)
⊗ R̃2,

∆R̃2 = R̃2 ⊗ 1 + cos
(
%P̃0

)
⊗ R̃2 + sin

(
%P̃0

)
⊗ R̃1,

∆R̃3 = R̃3 ⊗ 1 + 1⊗ R̃3,

∆Ñ1 = Ñ1 ⊗ 1 + cos
(
%P̃0

)
⊗ Ñ1 − sin

(
%P̃0

)
⊗ Ñ2 + %P̃1 ⊗ R̃3,

∆Ñ2 = Ñ2 ⊗ 1 + cos
(
%P̃0

)
⊗ Ñ2 + sin

(
%P̃0

)
⊗ Ñ1 + %P̃2 ⊗ R̃3,

∆Ñ3 = Ñ3 ⊗ 1 + 1⊗ Ñ3 + %P̃3 ⊗ R̃3.

(4.28)
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Since the counits for the old generators are all zero, it is easy to see that the same result
holds for the new generators:

ε(P̃µ) = ε(Ñi) = ε(R̃i) = 0. (4.29)

For the antipodes, by means of direct calculation, one finds:

S(P̃0) = −P̃0,

S(P̃1) = −P̃1 cos
(
%P̃0

)
− P̃2 sin

(
%P̃0

)
,

S(P̃2) = −P̃2 cos
(
%P̃0

)
+ P̃1 sin

(
%P̃0

)
,

S(P̃3) = −P̃3,

S(R̃1) = −R̃1 cos
(
%P̃0

)
− R̃2 sin

(
%P̃0

)
,

S(R̃2) = −R̃2 cos
(
%P̃0

)
+ R̃1 sin

(
%P̃0

)
,

S(R̃3) = −R̃3,

S(Ñ1) = − cos
(
%P̃0

)
Ñ1 − sin

(
%P̃0

)
Ñ2 + % cos

(
%P̃0

)
P̃1R̃3 + % sin

(
%P̃0

)
P̃2R̃3,

S(Ñ2) = − cos
(
%P̃0

)
Ñ2 + sin

(
%P̃0

)
Ñ1 + % cos

(
%P̃0

)
P̃2R̃3 − % sin

(
%P̃0

)
P̃1R̃3,

S(Ñ3) = −Ñ3 + %R̃3P̃3.

(4.30)

Therefore we have obtained a new Hopf algebra, which we call U%(p), to distinguish it from
the twisted one, U%(p).

Proposition 4.2 The quantum Hopf algebra U%(p) admits the bicrossproduct decomposi-
tion

U%(p) = U(so(1, 3)) BJ T%, (4.31)

with T% the new deformed translations sector.

The proof of the statement proceeds in two steps. One first has to find the right action
of U(so(1, 3)) on the translations and the left coaction of T% on the Lorentz sector. Then
one has to verify the compatibility conditions of these maps, eqs. (B.4a)–(B.4d), having
checked the Hopf algebra structure given by eqs. (B.3a)–(B.3e).

Let us denote the standard Poincaré rotation and boost generators of U(so(1, 3)) by
mk, nk, respectively and the generators of T% by pµ. We then identify X ≡ U(so(1, 3)),
A ≡ T% and we extend the generators of the two Hopf algebras to the whole tensor product
by posing

M̃µν = mµν ⊗ 1, Ñi = ni ⊗ 1, R̃i = mi ⊗ 1, P̃µ = 1⊗ pµ. (4.32)

Repeating the same steps as in eqs. (4.18), (4.19) and (4.20), we apply (B.5) to find[
R̃i, P̃µ

]
= mi ⊗ pµ − (mi ⊗ (pµ / 1) + 1⊗ (pµ / mi)) , (4.33)[

Ñi, P̃µ
]

= ni ⊗ pµ − (ni ⊗ (pµ / 1) + 1⊗ (pµ / ni)) , (4.34)

– 13 –



J
H
E
P
0
8
(
2
0
2
3
)
2
2
0

where we used the undeformed coproducts ∆mi = mi ⊗ 1 + 1⊗mi, ∆ni = ni ⊗ 1 + 1⊗ ni.
On the other hand, the Lie algebra sector of U%(p) is undeformed, namely[

R̃i, P̃µ
]

= i δµj εijkP̃k , (4.35)[
Ñi, P̃µ

]
= i δiµ P̃0 + i δµ0 P̃i. (4.36)

Comparing the two sets of equations, one finally obtains the right action of the Lorentz
generators on T%

pµ / mi = −i δµj εijkpk, pµ / ni = −i (δµi p0 + δµ0 pi). (4.37)

In order to find the left coaction of T% on U(so(1, 3)) we expand the Lorentz coproducts
in (4.28)

∆(mA ⊗ 1) = mA ⊗ 1⊗ 1⊗ 1 + 1⊗ cos(%p0)⊗ma ⊗ 1− 1⊗ sin(%p0)⊗ εABmB ⊗ 1 ,
∆(m3 ⊗ 1) = m3 ⊗ 1⊗ 1⊗ 1 + 1⊗ 1⊗m3 ⊗ 1 ,
∆(nA ⊗ 1) = nA ⊗ 1⊗ 1⊗ 1 + 1⊗ cos(%p0)⊗ na ⊗ 1− 1⊗ sin(%p0)⊗ εABnB ⊗ 1

+ %(1⊗ pA ⊗m3 ⊗ 1) , (4.38)
∆(n3 ⊗ 1) = n3 ⊗ 1⊗ 1⊗ 1 + 1⊗ 1⊗ n3 ⊗ 1 + %(1⊗ p3 ⊗m3 ⊗ 1) ,

where A,B = 1, 2. We thus compare with (B.3c), which now reads

∆(mi ⊗ 1) = (mi(1) ⊗mi(2)
(1̄))⊗ (mi(2)

(2̄) ⊗ 1) ,

∆(ni ⊗ 1) = (ni(1) ⊗ ni(2)
(1̄))⊗ (ni(2)

(2̄) ⊗ 1) , (4.39)
β(mA) = cos(%p0)⊗mA − εAB sin(%p0)⊗mB,

β(m3) = 1⊗m3,

β(nA) = cos(%p0)⊗ nA − εAB sin(%p0)⊗ nB + %pi ⊗m3, (4.40)
β(n3) = 1⊗ n3 + %p3 ⊗m3.

The Hopf algebra structure of the tensor product algebra U(so(1, 3)) ⊗ T%, with the right
action and left coaction found above, is assured by the validity of eqs. (B.3a)–(B.3e).
Indeed, eqs. (B.3a), (B.3c) are certainly satisfied since we have employed them to obtain
the right action and left coaction. Eq. (B.3b) is trivially satisfied, as well as eq. (B.3d), since
the counits are all zero in both the factor Hopf algebras as well as in the bicrossproduct
algebra. The remaining conditions (B.3e) are easily verified by direct calculations.

To complete the proof that U%(p) has the proper bicrossproduct structure, it remains
to check the compatibility conditions eqs. (B.4a)–(B.4d). Eq. (B.4a) is trivially satisfied
since the counits of all the generators are zero, and the right action gives always terms
proportional to generators. Eq (B.4b) can be verified by straightforward computations
applying the coproduct to the actions (4.37):

∆(pλ / mµν) = −i (gνλ∆(pµ)− gµλ∆(pν)) . (4.41)
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To verify eq. (B.4c) one has to apply the coaction β to the commutators of Lorentz gener-
ators:

β([mµν ,mλσ]) = i[gµσβ(mνλ)− gνσβ(mµλ) + gνλβ(mµσ)− gµλβ(mνσ)]. (4.42)

Then, a straightforward evaluation of all possible Lorentz commutators shows that (B.4c)
holds. Eq. (B.4d) is trivially satisfied since the starting coproducts of U(so(1, 3)) are co-
commutative and the terms a/x(2) in the l.h.s. , being proportional to p’s, always commute
with x(1)

(1̄).
This concludes the proof of Prop. 4.2.

4.3 The algebra isomorphism between U%(p) and U%(p)

In this subsection we will follow the steps described in [1] to show that the map between
U%(p) and U%(p) is an algebra homomorphism (indeed an isomorphism, it being invertible).
Moreover, we shall obtain the %-Minkowski spacetime as T ∗% , dual to the enveloping algebra
of translations, T%, which is also an algebra, on which T and the whole U%(p) act covariantly.

At first we consider the classical Poincaré algebra, which has the structure of a semidi-
rect sum, g = h ⊕S f, with h the algebra of translations and f the Lorentz algebra (notice
that here we follow the notation used by mathematicians with the abelian algebra, which
is acted upon by the Lorentz algebra, on the left). The mathematical structure of the
semidirect sum is that of a ‘split extension’ namely a short exact sequence

h ↪→ g→ f, (4.43)

with the two maps, an inclusion i : h → g and a projection π : g → f, such that h is an
invariant subalgebra of g and f is the quotient of g by h . The same holds for Lie groups.
A Lie group G is a semidirect product of H and F , namely G = H o F , iff

H ↪→ G→ F, (4.44)

is a split short exact sequence.
In [48–50] a generalization is provided for quantum groups. A bicrossproduct Hopf

algebra is there constructed as a split extension of Hopf algerbas. The approach is applied
in [1] to obtain the κ-Poincaré quantum group Uκ(p) (with the so-called Majid-Ruegg basis)
and a homomorphism is established with the κ-Poincaré Uκ(p) (with the so called standard
basis). In the following we adapt the procedure to the %-Poincaré case.

The starting observation is that U%(p) contains T% as a sub-Hopf Algebra, which can
be included in U%(p) via an inclusion map i. In a complementary way, U%(p) projects onto
the classical U(so(1, 3)) with a Hopf Algebra map π:

T%
i
↪−→ U%(p) π−→ U(so(1, 3)). (4.45)

From an operative point of view, i is a standard immersion map while π is such that

π(Ñi) = ni, π(R̃i) = mi, π(P̃µ) = 0, (4.46)
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where Ñi, R̃i, P̃µ ∈ U%(p) and ni,mi ∈ U(so(1, 3)), as in section 4.2. Namely, π projects the
generators of the deformed enveloping algebra into their classical Lorentz counterparts.

To implement the bicrossproduct construction it is also necessary to define a Hopf
Algebra homomorphism j and a linear map p that play an inverse role with respect to i, π.
Namely

T%
p←− U%(p) j

←−↩ U(so(1, 3)), (4.47)

with
π ◦ j = id, p ◦ i = id. (4.48)

The linear map p has to be a co-algebra homomorphism, meaning that

(p⊗ p) ◦∆ = ∆ ◦ p, ε ◦ p = p. (4.49)

Furthermore, if j, p satisfy the properties

(id⊗ j) ◦∆ = (π ⊗ id) ◦∆ ◦ j, (4.50)
p(u)t = p(u i(t)), u ∈ U%(p), t ∈ T%, (4.51)

then U%(p) is a bicrossproduct extension of U(so(1, 3)) by T% [48–50]. Let us analyse the
construction in some details. By defining

R̃A :=j(mA)=RAcos
(
%

2P0

)
−εABRB sin

(
%

2P0

)
,

R̃3 :=j(m3)=R3 ,

ÑA :=j(nA)=NAcos
(
%

2P0

)
−εABNB sin

(
%

2P0

)
+ %

2R3

(
PAcos

(
%

2P0

)
−εABPB sin

(
%

2P0

))
,

Ñ3 :=j(n3)=N3+ %

2R3P3 , (4.52)

where, as in the previous section, εAB , A,B = 1, 2 is the Levi-Civita pseudotensor in 2
dimensions, one can verify that eq. (4.50) is satisfied. Moreover, eq. (4.51) holds trivially.
Let us recall that in eqs. (4.52) the lowercase generators are the ones of the classical
U(so(1, 3)), with undeformed commutators and coproducts, the uppercase generators with
tilde, on the l.h.s. , are the generators of the quantum Hopf algebra U%(p) and the uppercase
generators on the r.h.s. are related to U%(p). In other words, the map j defined by eqs. (4.52)
is nothing but the nonlinear change of basis that we have performed in the previous section
from U%(p) to U%(p).

As for the right action and left coaction, they are given in this approach by the following
definitions

t / h = j(Sh(1))tj(h(2)), t ∈ T%, h ∈ U(so(1, 3)), (4.53)
β(π(u)) = p(u(1))Sp(u(3))⊗ π(u(2)), u ∈ U%(p), (4.54)

where the notation a(3) comes from the square of the coproduct ∆2a = a(1) ⊗ a(2) ⊗ a(3).
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Equipped with these maps, the set (T%,U(so(1, 3)), /, β) completely determines the
Hopf algebra structure of U%(p). In fact, the commutators and coproducts are determined
by the cross relations

i(t)j(h) = j(h(1))i(t / h(2)),
∆(i(t)) = i(t(1))⊗ i(t(2)),

∆(j(h)) = j(h(1))(i⊗ j) ◦ β(h(2)),
(4.55)

where h ∈ U(so(1, 3)), t ∈ T%. By direct checking, it is easily verified that eqs. (4.53), (4.54),
and (4.55) reproduce the algebra and coalgebra sectors of U%(p) presented in previous
section.

Therefore we can conclude that

• The quantum Hopf algebra U%(p) derived in the previous section by a non-linear
change of basis for the twisted Hopf algebra U%(p) is a bicrossproduct algebra com-
plying with the definitions in [48–50];

• It is the same Hopf algebra which one would obtain by rigorous mathematical con-
struction via an Hopf algebra extension of the undeformed U(so(1, 3)) through the
deformed Hopf algebra of translations T%;

• Because of that, and by virtue of eqs. (4.52), the bicrossproduct algebra U%(p) and the
twisted Hopf algebra U%(p) are homomorphic as Hopf algebras (indeed isomorphic,
being the non-linear map invertible).

4.3.1 The %-Minkowski spacetime re-derived

Further building upon the results from [1], we construct the noncommutative spacetime
upon which the Hopf algebra U%(p) acts in a covariant way.

In order to appreciate the different approaches, let us recall that, within the twist
framework, the covariant spacetime and its symmetries are defined at once by twisting both
structures, see section 3. On the other hand, in terms of the quantum group of functions
over the group manifold, C%(P ), the quantum spacetime is the primary object and the
quantum symmetries are defined by requiring covariance of the former (or, viceversa, one
can start from C%(P ) and check the covariance of the quantum space), see section 4.1.

In this section we follow a dual approach to the latter, which exploits the bicross-
product structure of U%(p) and its duality with C%(P ). We will show that the algebra of
noncommutative coordinates can be obtained as the dual of the algebra of translations T%,
which is precisely T ∗% , the Hopf subalgebra of C%(P ) that we have already encountered in
the bicrossproduct factorization of C%(P ), see Prop. 4.1.

To this, let us apply the definitions of Hopf algebra duality

〈t, xy〉 = 〈t(1), x〉〈t(2), y〉,
〈ts, x〉 = 〈t, x(1)〉〈s, x(2)〉, ∀t, s ∈ T%, ∀x, y ∈ T ∗% .

(4.56)

Upon introducing the dual pairing between T% and T ∗% , with tµ = iP̃µ,

〈P̃µ, xν〉 = −iδνµ, (4.57)
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and using the first of eqs. (4.56), we can read off the commutators between coordinates

[x1, x0] = i%x2, [x2, x0] = −i%x1, [x3, xµ] = 0. (4.58)

After pplying the second of eqs. (4.56), the coproducts turn out to be

∆xµ = xµ ⊗ 1 + 1⊗ xµ. (4.59)

The %-Minkowski spacetime is thus immediately recovered. Furthermore, within this frame-
work it is possible to define a natural action of the %-Poincaré generators on the coordinates
xµ, still exploiting the Hopf algebra duality relations. The canonical action of T% on T ∗% is
given by

t . x = 〈t, x(1)〉x(2) , (4.60)

which in our case simply reads
P̃µ . x

ν = −iδµν . (4.61)

The action of U(so(1, 3)) on T ∗% can be obtained by dualizing its action on T%, namely:

〈t, h . x〉 = 〈t / h, x〉, (4.62)

with t ∈ T%, x ∈ T ∗% and h ∈ U(so(1, 3)). Upon using eq. (4.20), such action can be read
off immediately from the definition above:

Ñi . x
0 = ixi, Ñi . x

j = −iδji x0, R̃i . x
0 = 0, R̃i . x

j = εijkx
k. (4.63)

With these building blocks, the action on the product of two algebra elements, say, a and
b, is given by the canonical Hopf Algebra action

h . ab = (h(1) . a)(h(2) . b). (4.64)

for any h ∈ U%(p), as required for an action to be covariant.
As an example, we prove the covariance of the commutator [x1, x0] = i%x2 under the

boost Ñ2. Using (4.63) and recalling the coproducts (4.28), it is easy to see that

Ñ2 . (x1x0) = 0, Ñ2 . (x0x1) = −%x0, Ñ2 . (i%x2) = %x0, (4.65)

so that the covariance condition

Ñ2 . [x1, x0] = i%Ñ2 . x
2 (4.66)

is verified. Covariance of the commutation relations under the action of the other Lorentz
generators can be verified in a similar fashion.

For the translation generators the covariance of the commutation relations

P̃σ . [xµ, xν ] = i %
(
δµj δ

ν
0 − δ

µ
0 δ

ν
j

)
ε3jkP̃σ . x

k, (4.67)

can be verified by computing the left-hand side with the coproduct (4.28) and subsequently
using the action of translations on the dual, (4.60). As an example, we show this for
t2 = iP̃2.
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We have
t2 . (xµxν) = i(P̃2(1) . x

µ)(P̃2(2) . x
ν), (4.68)

with P̃2(1) ⊗ P̃2(2) = P̃2 ⊗ 1 + cos
(
%P̃0

)
⊗ P̃2 + sin(%P0)⊗ P̃1. We thus apply eq. (4.60) to

each term of the product, to find

t2 . (xµxν) = − (δµ2xν + δν2x
µ + %δµ0 δ

ν
1 ) , (4.69)

namely
t2 . (xµxν − xνxµ) = −% (δµ0 δν1 − δν0δ

µ
1 ) , (4.70)

which is the same result that we get by computing the right hand side of (4.67)

r.h.s. = %
(
δµj δ

ν
0 − δ

µ
0 δ

ν
j

)
ε3jkδ

k
2 = % (δµ1 δν0 − δν1δ

µ
0 ) . (4.71)

The proof can be repeated in a similar way for the other generators of translations. There-
fore (4.67) holds true.

5 Plane waves and ?-product in %-Minkowski

In the previous sections we have seen that the %-Minkowski spacetime can be interpreted in
two different ways. From the perspective of the twist construction, the commutation rules
of spacetime coordinates are computed by means of the ?-product corresponding to the
twist that generates the algebra of symmetries discussed in section 3. From the perspective
of the bicrossproduct construction, the %-Minkowski commutation relations are deduced by
exploiting the duality between the translation generators and spacetime coordinates.

On the other hand, starting from the commutation rules of spacetime one can rep-
resent the algebra of noncommutative functions as an algebra of operators by choosing a
specific ordering for the basis of noncommutative plane waves φ̂(p) =: eipµx̂µ : [51]. The
operator product of plane waves φ̂(p) defines a noncommutative ?-product for functions on
spacetime, according to

(f ? g)(x) =
∫

d4p d4k f̃(p)g̃(k) 〈φ̂(p)φ̂(k)〉 , (5.1)

where the tilde indicates the standard Fourier transform. Different ordering prescriptions
will define different products. In appendix E a short review for the analogous case of κ-
Minkowski is given, in order to highlight the similarities. The notation 〈φ̂(p)φ̂(k)〉 defines
the noncommuting function, φ(p⊕k) = exp [i(p⊕ k) · x], which corresponds to the operator
between brackets once the operator product is computed, ⊕ representing a deformed sum.
In terms of noncommutative exponentials eipµxµ the ?-product between functions reads,
then,3

(f ? g)(x) =
∫

d4p d4k f̃(p)g̃(k) eipµxµ ? eikνxν . (5.2)

3We ignore here convergence issues. The product is well defined for a fairly large class of functions,
which includes the Schwarzian ones.
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with

eip·x ? eik·x = ei(p⊕k)·x. (5.3)

Moreover, the composition rule of plane waves defines a coproduct for the translation
generators. This will be derived by requiring consistency of the action of translations
on both sides of (5.3), or, equivalently, by acting on both sides of the operator version
φ̂(p)φ̂(k) = φ̂(q), with q = p ⊕ k. The operator φ̂(q) and the related function will be dif-
ferent for different ordering prescriptions. Therefore, the deformed sum ⊕ defines different
coproducts for the translation generators, as we shall see in detail below.

The question arises as to whether the ?-product and coproduct derived from plane wave
multiplication correspond to any of the structures defined either through the bicrossproduct
or the twist constructions.

Different ordering prescriptions of the plane waves result in different coproducts of the
translation generators, and in different ?-products. We shall show that in fact only a specific
ordering choice, the so called time-to-the-right prescription, results in a coproduct that is
compatible with translation generators associated with the bicrossproduct construction.
This ordering also defines a novel ?-product which appears to be different from previously
known ones [24, 45]. Other ordering choices correspond to different coproducts, that is
to non-linear redefinitions of the translation generators. In particular, the so called time-
symmetric prescription is associated with the translation generators in the twisted basis,
and it coherently defines the ?-product which is obtained from the twist [24].

In order to define plane waves and their rule of multiplication, we follow [52, 53] and
start with (finite dimensional) representations of the spacetime algebra. The commutation
relations (2.3) can be represented by means of 4× 4 matrices

x̂0 =


0 i% 0 0
−i% 0 0 0

0 0 0 0
0 0 0 0

 , x̂1 =


0 0 0 i%
0 0 0 0
0 0 0 0
0 0 0 0

 ,

x̂2 =


0 0 0 0
0 0 0 i%
0 0 0 0
0 0 0 0

 , x̂3 =


0 0 0 0
0 0 0 0
0 0 0 i%
0 0 0 0

 ,
(5.4)

which formally close the Lie algebra of the centrally extended Euclidean group in 3 di-
mensions, with one rotation (x̂0) and two spatial translations (x̂1, x̂2), while x̂3 is a central
generator.
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5.1 Time-to-the-right ordering and bicrossproduct basis

Using the representation (5.4), we can write plane waves in matrix form. Choosing the
time-to-the-right ordering we define

φ̂R(p) = eipkx̂
k
eip0x̂0 =


cos(%p0) − sin(%p0) 0 −%p1
sin(%p0) cos(%p0) 0 −%p2

0 0 1 −%p3
0 0 0 1

 . (5.5)

Multiplying two plane waves we get
φ̂R(p)φ̂R(k) = φ̂R(p⊕R k) =

=


cos(%(k0 + p0)) − sin(%(k0 + p0)) 0 −%[p1 + k1 cos(%p0)− k2 sin(%p0)]
sin(%(k0 + p0)) cos(%(k0 + p0)) 0 −%[p2 + k2 cos(%p0) + k1 sin(%p0)]

0 0 1 −%(p3 + k3)
0 0 0 1

 .
(5.6)

Comparing the last column of the single plane wave representation, eq. (5.5), to the last
column of (5.6), we find the law of addition of momenta,

(p⊕R k)0 = p0 + k0,

(p⊕R k)1 = p1 + k1 cos(%p0)− k2 sin(%p0),
(p⊕R k)2 = p2 + k2 cos(%p0) + k1 sin(%p0),
(p⊕R k)3 = p3 + k3.

(5.7)

Therefore, the multiplication of plane waves is a new plane wave of momentum p ⊕R k.
Namely, it is still an eigenfunction of translations. This can in turn be related to the
coproduct of translation generators PRµ , as we now demonstrate.

In the language of noncommutative plane wave operators φ̂R = eipkx̂
k
eip0x̂0 , on which

the translation generators act as PRµ φ̂R(p) = pµφ̂R(p), we must have

PRµ

(
φ̂(p)φ̂(k)

)
= PRµ φ̂(p⊕R k) = (p⊕R k)µφ̂(p⊕R k). (5.8)

One can verify by direct calculation that, in order for this to hold, the coproduct of PRµ
should be:

∆PR0 = PR0 ⊗ 1 + 1⊗ PR0 ,

∆PR1 = PR1 ⊗ 1 + cos
(
%PR0

)
⊗ PR1 − sin

(
%PR0

)
⊗ PR2 ,

∆PR2 = PR2 ⊗ 1 + cos
(
%PR0

)
⊗ PR2 + sin

(
%PR0

)
⊗ PR1 ,

∆PR3 = PR3 ⊗ 1 + 1⊗ PR3 .

(5.9)

Let us check it for PR2 , as the others can be easily verified analogously. On indicating with
µ̂ the standard operator product, we have, applying (5.9) to the product of plane waves

PRµ

(
φ̂(p)φ̂(k)

)
= µ̂ ◦∆PR2 (φ̂(p)⊗ φ̂(k))

= µ̂ ◦
[
PR2 φ̂(p)⊗ φ̂(k) + cos

(
%PR0

)
φ̂(p)⊗ φ̂(k) + sin

(
%PR0

)
φ̂(p)⊗ PR1 φ̂(k)

]
= (p2 + cos(%p0)k2 + sin(%p0)k1) φ̂(p)φ̂(k) . (5.10)
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In terms of noncommutative functions φ(p) = eipνx
ν the translation generators act as

differential operators, PRµ φ(p) = −i∂µeipνx
ν = pµφ(p).4 Therefore we must have

PRµ (φ(p) ? φ(k)) = PRµ φ(p⊕R k) = −i∂µ exp(i(p⊕R k)νxν) = (p⊕R k)µφ(p⊕R k). (5.11)

Again, this holds if the coproduct of PRµ takes the form (5.9). As done before, we check it
for PR2 . On indicating with µ the ? product between functions, and applying (5.9) to the
product of plane waves, we have

PRµ (φ(p) ? φ(k)) = µ ◦∆PR2 (φ(p)⊗ φ(k)) = µ ◦
[
PR2 φ(p)⊗ φ(k) + cos

(
%PR0

)
φ(p)⊗ φ(k)

+ sin
(
%PR0

)
φ(p)⊗ PR1 φ(k)

]
= (p2 + cos(%p0)k2 + sin(%p0)k1) (φ(p) ? φ(k)) . (5.12)

Comparing with the results obtained in the previous sections, we find that the %-Minkowski
coproducts for translation operators in the bicrossproduct basis, given in (4.28), take ex-
actly the form (5.9). We conclude that the bicrossproduct basis is compatible with the
time-to-the-right ordering for plane-waves.

We briefly mention what happens upon choosing the time-to-the-left ordering. With
analogous calculations, it is possible to show that the structure of the coproducts is similar
to the one obtained with the time-to-the-right ordering, namely the enveloping algebra is
still a bicrossproduct, modulo an inversion of the deformation parameter (i.e. %→ −%) and
a swap between the tensor product spaces, namely:

∆PL1 = 1⊗ PL1 + PL1 ⊗ cos
(
%PL0

)
+ PL2 ⊗ sin

(
%PL0

)
,

∆PL2 = 1⊗ PL2 + PL2 ⊗ cos
(
%PL0

)
− PL1 ⊗ sin

(
%PL0

)
,

∆PL0,3 = PL0,3 ⊗ 1 + 1⊗ PL0,3 .

(5.13)

An analogous result is also present when analysing the time-to-the-right and time-to-the-left
plane waves in κ-Minkowski.

5.1.1 The ?-product

While the ?-product can be defined for any ordering, in the following we concentrate on
the time-to-the-right one. From eqs. (5.2), (5.3) we find

(f ? g)(x) =
∫

d4p d4kf̃(p0 − k0, pA −RAB(−%p0 + %k0)kB, p3 − k3)g̃(k)eipµxµ

=
∫

d4p (f̃ ◦ g̃)(p)eipµxµ , (5.14)

with RAB(θ), A,B = 1, 2 the rotation matrix in the 1-2 plane of argument θ and

(f̃ ◦ g̃)(p) =
∫

d4k f̃(p0 − k0, pA −RAB(−%p0 + %k0)kB, p3 − k3) g̃(k) (5.15)

the deformed convolution of Fourier transforms.
4Notice that the superscript R for the generator of translations is redundant when acting on a single

plane wave. We maintain it for book keeping.
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Let us show by direct calculation that this product is cyclic with respect to the standard
integration measure on R4 namely that

∫
d4x f(x) ? g(x) =

∫
d4x g(x) ? f(x). (5.16)

From the expression obtained in terms of plane waves (5.14) we compute

∫
d4x (f ? g)(x) =

∫
d4x d4p d4k f̃(p0 − k0, pA −RAB(−%p0 + %k0)kB, p3 − k3)g̃(k)eipµxµ

=
∫

d4p d4kf̃(p0 − k0, pA −RAB(−%p0 + %k0)kB, p3 − k3)g̃(k)δ(pµ)

=
∫

d4k f̃(−k0,−RAB(%k0),−k3)g̃(k)

=
∫

d4k f̃(k)g̃(−k0,−RAB(%k0)kB,−k3)

=
∫

d4p d4kf̃(k)g̃(p0 − k0, pA −RAB(−%p0 + %k0)kB, p3 − k3)δ(pµ)

=
∫

d4x d4p d4k f̃(k)g̃(p0 − k0, pA −RAB(−%p0 + %k0)kB, p3 − k3)eipµxµ

=
∫

d4x (g ? f)(x). (5.17)

We thus conclude that the ?-product derived from the time-to-the-right ordering for plane
waves is indeed cyclic. Furthermore, it is also %-Poincaré invariant, since the measure is
undeformed.

Notice however that the stronger closure condition [54]
∫
f ? g =

∫
f · g does not hold.

It has been already noticed that the cyclicity property is a fundamental property of the
?-product because it allows to formulate field theories in terms of a ?-gauge invariant action
(namely such that the fields transform according to ψ(x)→ g(x)?ψ(x), with g a unitary el-
ement of the noncommutative algebra). When the stronger closure condition is fulfilled one
has the further simplifying property that quadratic terms of the action, such as the kinetic
and the mass term, are undeformed, hence they produce the standard tree level propagator.
This is the case of the twisted %-Minkowski product, for which the closure property has been
employed to investigate the behaviour of scalar field theories at one loop [21]. We recall
that an analogous situation holds for Moyal and Wick-Voros products, which represent the
same spacetime noncommutativity, both being cyclic, but only Moyal being closed. Their
application to scalar field theory and a comparison between the results has been analysed
in [55]. It would be interesting to analyse the consequences of the new product (5.14)
within a similar setting. We plan to come back to applications in a further publication.5

5Another ?-product for the %-Minkowski spacetime has been recently found [45], based on Weyl quanti-
zation. It appears to be different from the ones presented here. The latter is cyclic but not closed. It has the
interesting property that

∫
f† ?g =

∫
f̄ ·g where the adjoint is defined w.r.t. a suitable integration measure.
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5.2 Time-symmetric ordering and twist basis

Consider the time-symmetric ordering for plane waves

φ̂S(p) = ei
p0x̂

0
2 eipkx̂

k
e
p0x̂

0
2 =

=


cos(%p0) − sin(%p0) 0 −%(p1 cos

(
%p0

2
)
− p2 sin

(
%p0

2
)
)

sin(%p0) cos(%p0) 0 −%(p2 cos
(
%p0

2
)

+ p1 sin
(
%p0

2
)
)

0 0 1 −%p3
0 0 0 1

 .
(5.18)

The product of symmetric ordered plane waves φ̂S(p)φ̂S(k) is given by
cos(%(k0 + p0)) − sin(%(k0 + p0)) 0 −%F (p0, k0, p1, k1, p2, k2)
sin(%(k0 + p0)) cos(%(k0 + p0)) 0 −%G(p0, k0, p1, k1, p2, k2)

0 0 1 −%(p3 + k3)
0 0 0 1

 , (5.19)

with
F (p0, k0, p1, k1, p2, k2) = p1 cos

(
%
p0
2

)
+ k1 cos

(
%

2(k0 + 2p0)
)

+ p2 sin
(
%
p0
2

)
+ k2 sin

(
%

2(k0 + 2p0)
)
,

G(p0, k0, p1, k1, p2, k2) = p2 cos
(
%
p0
2

)
+ k2 cos

(
%

2(k0 + 2p0)
)

+ p1 sin
(
%
p0
2

)
+ k1 sin

(
%

2(k0 + 2p0)
)
.

(5.20)

Using trigonometric identities, this can be put in the form φ̂S(p⊕S k) where the deformed
composition law ⊕S is defined as follows

(p⊕S k)0 = p0 + k0,

(p⊕S k)1 = p1 cos
(%

2k0
)

+ cos
(%

2p0
)
k1 + p2 sin

(%
2k0

)
− sin

(%
2p0
)
k2,

(p⊕S k)2 = p2 cos
(%

2k0
)

+ cos
(%

2p0
)
k2 − p1 sin

(%
2k0

)
+ sin

(%
2p0
)
k1,

(p⊕S k)3 = p3 + k3.

(5.21)

Let us notice that this is exactly the deformed sum obtained in [24] by computing the
twisted ?-product of plane waves. By introducing time-symmetric translation generators,
we want to find, as in the previous subsection, the coproduct ∆PS which is compatible with
the request that φ(p⊕Sk) be an eigenfunction of translations PSµ φ(p⊕Sk) = (p⊕Sk)µφ(p⊕S
k). It turns out that this composition law can be checked to be compatible with the twisted
coproducts (3.2) of translation generators. Indeed, acting with the twisted coproducts on
the product of two symmetric ordered plane-waves, one obtains a composition law of p
and k that is the same as the one given by the ⊕S operation. Consistently, one can verify
that the ?-product which is obtained by convolution of time-symmetric plane waves along
the same lines as in the previous section, matches the one that is computed in [24] using
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the twist, eq. (3.3). We have, therefore, obtained the plane waves representation which
corresponds to the twisted ?-product.

In the previous sections, we have shown that the twist translation generators and
bicrossproduct translation generators are related by a nonlinear transformation. We can
verify that the same relation holds between the momenta of the time-symmetric and the
time-to-the-right ordered plane waves. To do this, starting from the momenta in the time-
symmetric plane waves, pi, we perform the following transformations

p̃1 = p1 cos
(
%
p0
2

)
− p2 sin

(
%
p0
2

)
,

p̃2 = p2 cos
(
%
p0
2

)
+ p1 sin

(
%
p0
2

)
,

p̃0,3 = p0,3 ,

(5.22)

which we apply to the time-symmetric plane waves (5.18). One can verify that the trans-
formed plane waves are eigenfunctions of the translation generators

P̃1 = PS1 cos
(
%
PS0
2

)
− PS2 sin

(
%
PS0
2

)
,

P̃2 = PS2 cos
(
%
PS0
2

)
+ PS1 sin

(
%
PS0
2

)
,

P̃0,3 = PS0,3 ,

(5.23)

which are precisely the generators obtained in section 4.2 through the change of basis (4.25)
and one can identify P̃µ with PRµ .

5.2.1 Equivalence class of star products

It is known that different ?-products associated with a given spacetime noncommutativity
are equivalent, in the sense that an invertible map T can always be found, such that

T (f ? g) = Tf ?′ Tg. (5.24)

In the framework of phase-space quantization this redundance is well known and related to
ordering ambiguities. For quantum spacetime, it has been studied for the class of transla-
tion invariant ?-products [56], of which the Moyal product is the only closed representative.
For rotation invariant products the issue is discussed in [57].

Interestingly, for the %-Minkowski case such a map is easily found in terms of the in-
vertible relations between the Poincaré generators related to the various orderings that it
is possible to choose for the ?-product of plane waves. In particular, eqs. (5.22) connect-
ing the time-symmetric ordering with the time-to-the right ordering allow to connect the
twisted ?-product found in [24], which is closed, with the bicrossproduct (5.14) which is
only cyclic. The map can be explicitly written in Fourier transform

Tf :=
∫

d4p f̃(p)T̃ eipµxµ (5.25)

with T̃ eipµxµ := eip̃µxµ according to (5.22).
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6 Conclusions

The noncommutative spacetime %-Minkowski shows some interesting features, which single
it out among the variations of the original κ-Minkowski. Similarly to the latter, it has an
undeformed algebra of Lorentz symmetries, C(SO(3, 1)), as a subalgebra of the quantum
Poincaré group C%(P ), as well as un undeformed Lorentz Lie algebra sector and a bicross-
product construction which make it possible to read its quantum relativity group as a
natural extension of the semidirect product of Lie groups to the Hopf algebraic framework.
Moreover, the bicrossproduct structure allows to obtain the spacetime (i.e. the noncom-
mutative algebra T ∗% ) as a generalization of the concept of homogeneous space which holds
for the Minkowski spacetime in the classical setting.

Besides the bicrossproduct derivation, the %-Minkowski symmetries may be obtained
by a twist. In this case the algebra is generated by an r-matrix which is solution of the
classical Yang-Baxter equation, whereas, up to our knowledge, the twists related to the κ-
Minkowski algebra are associated with modified Yang-Baxter equations and, as such, they
require an enlargement of the Poincaré symmetry in order to be defined. The deformed
Poincaré symmetries, U%p) and U%p), obtained following the bicrossproduct and the twist
approaches, are isomorphic quantum groups related by a nonlinear change of generators.

Using a finite-dimensional representation of the algebra of coordinates and expanding
the noncommutative functions on a basis of plane waves, it has been possible to define
different ?-products related to different ordering prescriptions. We have found that the
time-symmetric ordering singles out the twisted star product already found in [21], whereas
the time-to-the-right ordering yields a novel ?-product, consistent with the bicrossproduct
construction. We have shown that it enjoys the cyclicity property with respect to the
standard measure in R4 and, unlike the twisted product, it is not closed. Therefore, it
would be interesting to study gauge theories within the two approaches, invariance being
ensured by cyclicity, and compare the results.

There are other interesting features, such as the discretization of the spectrum of
the time observable due to the non-commutativity of coordinates [22], which could have
phenomenological applications. Moreover, a 2 + 1-dimensional version of the %-Minkowski
framework was taken as a starting point for quantum gravity phenomenology studies.
In [41, 58], the %-deformations of the Poincaré symmetries predict the so-called dual-lensing
effect, which might open a new window on Planck-scale phenomenology. The algebra of
relativistic symmetries used in these studies is however different from the ones we have
discussed in this work. In particular, the Lorentz sector is deformed. An analysis of the
different implications for these models will be matter of future work. Another aspect which
deserves further investigation is the relation with the λ-Minkowski spacetime (where the
role of x0 and x3 is exchanged), whose analysis is likely to be very similar, although the
physics it describes would be different.
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A The twist

In this appendix we give some defintions and show some properties of the twist approach.
A Drinfel’d twist F is an invertible map F ∈ U(g)⊗U(g), with an action on the algebra

of functions on the group,

F : C(G)⊗ C(G)→ C(G)⊗ C(G), (A.1)

which satisfies the following cocycle and normalization conditions

(F ⊗ 1)(∆⊗ id)F = (1⊗F)(id⊗∆)F , (A.2)
(ε⊗ 1)F = (1⊗ ε)F = 1. (A.3)

Twist operators that do not satisfy the cocycle condition are called non admissible twists.
In terms of this map it is possible to introduce a noncommutative ?-product between

functions defined on G as follows

f ? g = µ?(f ⊗ g) .= µ ◦ F−1(f ⊗ g), f, g ∈ C(G); (A.4)

where µ? is the noncommutative deformation of the classical commutative product µ :
C(G) ⊗ C(G) → C(G). The cocycle and the normalization conditions imply that the ?-
product is associative and the existence of the neutral element 1: f ? 1 = 1 ? f = f .

In our work we will deal with twists of a particular kind called abelian twists (namely
constructed in terms of commuting generators of the Lie algebra), and for this case it is
possible to show that

F−1 ≈ 1⊗ 1 + 1
2r + . . . (A.5)

i.e., that the classical r-matrix is given by the first order in the deformation parameter
expansion of the twist operator.
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Connected with this property, it is possible to show that if the classical r-matrix does
not solve a CYBE but a modified one, then the dual universal enveloping algebra does not
admit an abelian admissible twist. This is the case of κ-Poincaré, and the reason we are
forced to obtain its quantum algebra via other procedures, while in the %-Poincaré case,
since the r-matrix satisfies a CYBE, we can employ the twist procedure.

For a Lie algebra-type deformation that admits an admissible twist operator, a simple
way to obtain a quantum enveloping algebra of Poincaré is achieved deforming the standard
Poincaré Hopf algebra via the relation

∆F = F∆F−1, (A.6)

leaving all the other maps undeformed.
The κ-Minkowski algebra has been described in terms of a ?-product derived via

many different twisting operators. These are the so called Jordanian [8–11] and Abelian
twists [12–14]. In general, they both need the enveloping algebra of symmetries to be en-
larged, including at least the Weyl generator, yielding for example the deformed universal
enveloping algebra of the Weyl group [59].

B The bicrossproduct structure

Following [60, 61] we present here a constructive definition of the bicrossproduct structure.
Let X ,A be two Hopf algebras, a bicrossproduct algebra X BJ A is the tensor product

X ⊗ A endowed with two additional structure maps, a covariant right action of X on A
and a covariant left coaction of A on X

/ : A×X → A, (B.1a)
β : X → A⊗X , (B.1b)

such that

a / (xy) = (a / x) / y, (B.2a)
1 / x = ε(x)1, (B.2b)

(a · b) / x = (a / x(1))(b / x(2)), (B.2c)
(id⊗ β) ◦ β = (∆⊗ id) ◦ β, (B.2d)
(ε⊗ id) ◦ β = id, (B.2e)

β(ab) = β(a)β(b), (B.2f)
β(1) = 1⊗ 1, (B.2g)

and with an Hopf algebra structure given by:

µ((x⊗ a), (y ⊗ b)) = (x⊗ a) · (y ⊗ b) = xy(1) ⊗ (a / y(2))b, (B.3a)
1XBJA = 1X ⊗ 1A, (B.3b)

∆(x⊗ a) = (x(1) ⊗ x(2)
(1̄)a(1))⊗ (x(2)

(2̄) ⊗ a(2)), (B.3c)
ε(x⊗ a) = ε(x)ε(a), (B.3d)

S(x⊗ a) = (1X ⊗ S(x(1̄)a)) · (S(x(2̄))⊗ 1A), (B.3e)
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where x, y ∈ X , a, b ∈ A and following the Sweedler notation, we have defined ∆(h) =∑
i h(1)i ⊗ h(2)i = h(1) ⊗ h(2) and β(x) = x(1̄) ⊗ x(2̄), with x(1̄) ∈ A and x(2̄) ∈ X . The

structure maps must also satisfy the following compatibility conditions:

ε(a / x) = ε(a)ε(x), (B.4a)

∆(a / x) = (a(1) / x(1))x(2)
(1̄) ⊗ (a(2) / x(2)

(2̄)), (B.4b)

β(xy) = (x(1̄) / y(1))y(2)
(1̄) ⊗ x(2̄)y(2)

(2̄), (B.4c)

x(1)
(1̄)(a / x(2))⊗ x(1)

(2̄) = (a / x(1))x(2)
(1̄) ⊗ x(2)

(2̄). (B.4d)

An important thing to note is that the bicrossproduct algebra X BJ A can always be seen
as the universal enveloping algebra generated by elements X = x⊗ 1, A = 1⊗ a, modulo
the commutation relations

[X,A] = x⊗ a− x(1) ⊗ (a / x(2)); (B.5)

in fact, from (B.3a)

XA = (x⊗ 1) · (1⊗ a) = x⊗ (1 / 1)a = x⊗ a, (B.6a)
AX = (1⊗ a) · (x⊗ 1) = x(1) ⊗ (a / x(2)). (B.6b)

B.1 The classical r-matrix deformation method

Here we give a short review of the deformation induced by the classical r-matrix, while
referring to [62–64] for details.

Given a Lie algebra g corresponding to a Lie group G, a classical r-matrix is a tensor
r ∈

∧2 g satisfying the modified Yang-Baxter Equation (MYBE)

[r12, r13 + r23] + [r13, r23] = t, (B.7)

with t ∈ ⊗3g a g-invariant, and rαβ ∈ ⊗3g, α, β = 1, 2, 3, defined as

r12 = cijai ⊗ aj ⊗ 1, (B.8)
r23 = cij1⊗ ai ⊗ aj , (B.9)
r13 = cijai ⊗ 1⊗ aj , (B.10)

ai ∈ g. If t = 0 eq. (B.7) is called classical Yang-Baxter Equation (CYBE).
This element defines a Poisson-Lie group [62] through the following Sklyanin bracket:

{f, g} = rαβ(XR
α fX

R
β g −XL

α fX
L
β g), f, g ∈ C∞(G), (B.11)

where XR, XL are the right- and left-invariant vector fields. The algebra C∞(G) is, then,
a Poisson-Hopf algebra with trivial cosector and antipodes.

If there is no order ambiguity, it is then possible to quantize this structure to a quantum
group via the canonical quantization of the Sklyanin bracket {, } → 1

i [, ].
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In the next section we shall apply (B.11) to the κ-Poincaré case, whereas in section 4.1
it shall be applied to the %-Poincaré deformation. Therefore we shall need the left and right
invariant vector fields of the Poincaré group explicitly. They read (see for example [23])

XL
αβ = Λµα

∂

∂Λµβ − Λµβ
∂

∂Λµα , XL
α = Λµα

∂

∂aµ
,

XR
αβ = Λβν

∂

∂Λαν
− Λαν

∂

∂Λβν
+ aβ

∂

∂aα
− aα

∂

∂aβ
, XR

α = ∂

∂aα
.

(B.12)

B.2 The quantum group Cκ(P )

In order to obtain the quantum group Cκ(P ), one could start from the κ-Minkowski com-
mutation relations (2.2) and impose the covariance of the κ-Minkowski algebra under the
action of the quantum group. However, as discussed in [23], this method leads to some
ambiguity in the mixed commutators between Lorentz and translation parameters. To
avoid this issue, we will work in the framework of classical r-matrices.

A classical r-matrix for Cκ(P ) is found to be [59]:

r = iλM0ν ∧ P ν . (B.13)

This r-matrix satisfies a modified Yang-Baxter equation, which is why the twist operator
requires an enlargement of the Poincaré algebra as mentioned at the end of appendix A.

Following [23] we compute the Poisson brackets for the group-parameters using
eqs. (B.11) and (B.12) and quantize them via canonical quantization to obtain the fol-
lowing quantum group structure:

[aµ, aν ] = iλ(δµ0a
ν − δν0a

µ), (B.14a)
[Λαβ , aρ] = −iλ((Λα0 − δα0)Λρβ + (Λ0β − g0β)gαρ), (B.14b)

[Λαβ ,Λγδ] = 0, (B.14c)
∆(aµ) = Λµν ⊗ aν + aµ ⊗ 1, (B.14d)

∆(Λµν) = Λµα ⊗ Λαν , (B.14e)
ε(aµ) = 0, (B.14f)
ε(Λµν) = δµν , (B.14g)
S(aµ) = −aν(Λ−1)µν , (B.14h)
S(Λµν) = (Λ−1)µν . (B.14i)

This quantum group has a well-known bicrossproduct structure given in terms of the
decomposition

Cκ(P ) = T ∗κ BJ C(SO(1, 3)), (B.15)

where C(SO(1, 3)) is the classical commutative algebra of continuous functions on the
Lorentz group and T ∗κ the algebra of functions on the dual of the translational sector,
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defined by

[aµ, aν ] = iλ(δµ0a
ν − δν0a

µ), (B.16a)
∆(aµ) = aµ ⊗ 1 + 1⊗ aµ, (B.16b)
S(aµ) = −aµ, (B.16c)
ε(aµ) = 0. (B.16d)

The left coaction and the right action are respectively given by

βL(xµ) = Λµν ⊗ xν , (B.17a)
Λαβ C x% = −iλ((Λα0 − δα0)Λρβ + (Λ0β − g0β)gαρ), (B.17b)

where the right action is read off by the mixed commutators, and the left coaction is
implicitly defined by the coproduct, as discussed in [1]. In this way we can explicitly see
that T ∗κ ∼Mκ, and we can obtain the noncommutative spacetime from the quantum group
via a quotient procedure similar to that of the classical case, noting that in this quantum
version the quotient should be performed with respect to the deformed action.

Since this result is well-known in the literature, we will omit the details. We exhibit,
in this paper, explicit calculations only for the novel case of C%(P ).

C Proof of Proposition 4.1

In order to complete the proof of Proposition 4.1 we have to verify that the action and the
coaction satisfy (B.4a)–(B.4d).

We start proving (B.4a). From (4.7) and (4.3f), and since the counit map is a homo-
morphism:

ε(Λµν / xρ) = i% [δρ0(g2νδ
µ

1 − g1νδ
µ

2)− δρ0(δµ1g2ν − δµ2g1ν)] = 0, (C.1)

while, from (4.3i),
ε(Λµν)ε(xρ) = 0, (C.2)

so that (B.4a) is true.
We next consider (B.4b). Starting from the left-hand side we have that (omitting i%

factors)

∆(Λαβ / xρ) = ∆(Λρ0)[∆(Λα1)g2β −∆(Λα2)g1β ]− δρ0[∆(Λ2β)δα1 −∆(Λ1β)δα2], (C.3)

since the coproduct is an homomorphism.
For the right-hand side we have

(Λαλ / xρ)⊗ Λλβ + ΛαλΛρσ ⊗ (Λλβ / xσ)
= ΛαλΛρσ ⊗ Λσ0(Λλ1g2β − Λλ2g1β)− δρ0(Λ2λδ

α
1 − Λ1λδ

α
2)⊗ Λλβ . (C.4)

The terms factorized by δρ0 are exactly equal to those coming from the coproducts fac-
torized by δρ0 in the left-hand side; moreover, the remaining terms can be checked to be
equal to the remaining ones of the left-hand side, thus proving (B.4b).
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For (B.4c), from the right-hand side we obtain

β([xµ, xν ]) = [δµ0(Λ2αδ
ν

1 − Λ1αδ
ν

2)− δν0(Λ2αδ
µ

1 − Λ1αδ
µ

2)]⊗ xα, (C.5)

while the right-hand side is

β([xµ, xν ]) = (Λµα / xν − Λνα / xµ)⊗ xα + ΛµαΛνβ ⊗ [xα, xβ ]
= [Λν0(Λµ1g2α − Λµ2g1α)− δν0(Λ2αδ

µ
1 − Λ1αδ

µ
2)

+ δµ0(Λ2αδ
ν

1 + Λ1αδ
ν

2)− Λµ0(Λν1g2α − Λν2g1α)]⊗ xα

+ ΛµαΛνβ ⊗ [δα0(x2δ
β

1 − x1δ
β

2)− δβ0(x2δ
α

1 − x1δ
α

2)]; (C.6)

terms factorized by δν0 and δµ0 are equal to (C.5), and the remaining ones cancel out.
Let us turn our attention to (B.4d). To perform the calculation we recall (4.5b)

and (4.9). Computing the left-hand side we have:

xν(1)
(1̄)(Λαβ / xν(2))⊗ xν(1)

(2̄) = Λνλ(Λαβ / 1)⊗ xλ + (Λαβ / xν)⊗ 1, (C.7)

while, for the right-hand side:

(Λαβ / xν(1))xν(2)
(1̄) ⊗ xν(2)

(2̄) = (Λαβ / 1)Λνλ ⊗ xλ + (Λαβ / xν)⊗ 1, (C.8)

and by means of the commutativity of Λ’s, the compatibility request is proved.

D Some explicit calculations of the commutation relations for U%(p)

In this appendix we provide explicit details of the computations needed to prove that the
algebra sector of the novel %-Poincaré basis remains undeformed.

We refer to the change of basis (4.25) and remind the reader that the un-tilded gen-
erators close the standard Poincaré algebra. We want to prove that, after the change of
basis, the algebra sector remains the same.

The commutators involving only rotations and momenta are easily retrieved. As an
example, let us compute

[R̃1, P̃2] =
[
R1 cos

(
%

2P0

)
−R2 sin

(
%

2P0

)
, P2 cos

(
%

2P0

)
+ P1 sin

(
%

2P0

)]
= iP3 cos2

(
%

2P0

)
+ iP3 sin2

(
%

2P0

)
= iP3 = iP̃3.

(D.1)

When the third component of momentum is involved we have,

[R̃1, P̃3] = [R1 cos
(
%

2P0

)
−R2 sin

(
%

2P0

)
, P3]

= −iP2 cos
(
%

2P0

)
− iP1 sin

(
%

2P0

)
= −iP̃2,

(D.2)

giving the standard Poincaré result. With analogous calculations we conclude that

[R̃i, P̃j ] = iεij
kPk. (D.3)
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Lie brackets involving the boost generators are more involved, since they imply an action
of the boost generators on the trigonometric functions. Let us compute, as an example,

[Ñ1, P̃1] =
[
N1 cos

(
%

2P0

)
−N2 sin

(
%

2P0

)
+ %

2R3P̃1, P1 cos
(
%

2P0

)
− P2 sin

(
%

2P0

)]
.

(D.4)
By exploiting the following result (easily proven by induction)

[N1, (P0)k] = ik(P0)k−1P1, k ∈ N,

the commutators involving boosts and trigonometric functions of P0 can be verified to be[
N1, cos

(
%

2P0

)]
= −i%2 sin

(
%

2P0

)
P1,

[
N1, sin

(
%

2P0

)]
= i

%

2 cos
(
%

2P0

)
P1. (D.5)

An analogous calculation is also valid for N2. Threefore we can compute all non-trivial
terms in (D.4).[

N1 cos
(
%

2P0

)
, P1 cos

(
%

2P0

)]
= iP0 cos2

(
%

2P0

)
− i%2P

2
1 cos

(
%

2P0

)
sin
(
%

2P0

)
,[

N1 cos
(
%

2P0

)
, P2 sin

(
%

2P0

)]
= i

%

2P1P2 cos2
(
%

2P0

)
,[

N2 sin
(
%

2P0

)
, P1 cos

(
%

2P0

)]
= −i%2P1P2 sin2

(
%

2P0

)
,[

N2 sin
(
%

2P0

)
, P2 sin

(
%

2P0

)]
= iP0 cos2

(
%

2P0

)
+ i

%

2P
2
2 cos

(
%

2P0

)
sin
(
%

2P0

)
.

(D.6)

Putting these results together with the correct signs displayed in (D.4) we obtain

i

(
P0−

%

2

(
P1cos

(
%

2P0

)
−P2sin

(
%

2P0

))(
P2cos

(
%

2P0

)
+P1sin

(
%

2P0

)))
=i
(
P̃0−

%

2 P̃1P̃2

)
.

(D.7)
The remaining term in the commutator involving the rotation generator yields[

%

2 P̃1R3, P̃1

]
= i

%

2 P̃1P̃2, (D.8)

exactly canceling the other term proportional to %
2 . Therefore we conclude that

[Ñ1, P̃1] = iP̃0. (D.9)

Similar techniques can be used to show that the commutators between the novel boost
generators and the novel translation generators are the standard Poincaré ones.

As for the Lorentz sector, analogous computations show that the commutators between
rotations and boosts are also undeformed. The tricky ones are those involving only boost
generators. Let us analyze the one between Ñ1 and Ñ2:

[Ñ1, Ñ2] = (D.10)

=
[
N1 cos

(
%

2P0

)
−N2 sin

(
%

2P0

)
+ %

2R3P̃1, N2 cos
(
%

2P0

)
+N1 sin

(
%

2P0

)
+ %

2R3P̃2

]
.
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Introducing the shorthand notation

A = N1 cos
(
%

2P0

)
−N2 sin

(
%

2P0

)
, B = %

2R3P̃1,

C = N2 cos
(
%

2P0

)
+N1 sin

(
%

2P0

)
, D = %

2R3P̃2,

(D.11)

we need to compute the quantity [A,C] + [B,C] + [A,D] + [B,D]. We start with [A,C]
and further break it down in commutators involving the boosts with no tilde.[
N1cos

(
%

2P0

)
,N2cos

(
%

2P0

)]
=[N1,N2]cos

(
%

2P0

)
+N1

[
cos
(
%

2P0

)
,N2

]
cos
(
%

2P0

)
+N2

[
N1,cos

(
%

2P0

)]
cos
(
%

2P0

)
=i
(
−R3cos2

(
%

2P0

)
+%

2cos
(
%

2P0

)
sin
(
%

2P0

)
(N1P2−N2P1)

)
,[

N1cos
(
%

2P0

)
,N1sin

(
%

2P0

)]
=i%2N1P1, (D.12)[

N2sin
(
%

2P0

)
,N2cos

(
%

2P0

)]
=−i%2N2P2,[

N2sin
(
%

2P0

)
,N1sin

(
%

2P0

)]
=i
(
R3sin2

(
%

2P0

)
+%

2sin
(
%

2P0

)
cos
(
%

2P0

))
(N1P2−N2P1).

Adding these up with the signs dictated by (D.10), we get

[A,C] = i

(
−R3 + %

2N1P1 + %

2N2P2

)
. (D.13)

Next, we compute [A+B,D], given by[
Ñ1,

%

2R3P̃2

]
= %

2 [Ñ1, R3]P̃2 + %

2 [Ñ1, P̃2] = −i%2Ñ2P̃2. (D.14)

Then, [B,C] can also be easily calculated

[B,C] =
[
%

2R3P̃1, Ñ2 −
%

2R3P̃2

]
= i

(
−%2Ñ1P̃1 + %2

4 R3P̃1
2 + %2

4 R3P̃2
2
)
. (D.15)

Collecting the results we have

[Ñ1, Ñ2] = i

(
−R3 + %

2N1P1 + %

2N2P2−
%

2Ñ2P̃2−
%

2Ñ1P̃1 + %2

4 R3P̃1
2 + %2

4 R3P̃2
2
)
. (D.16)

Using (4.25), we find

Ñ1P̃1 + Ñ2P̃2 = N1P1 +N2P2 + %

2R3P̃2
2 + +%

2R3P̃1
2
, (D.17)

so that
[Ñ1, Ñ2] = −iR3 = −iR̃3, (D.18)

like the in the standard Poincaré case. Commutators between Ñ1, Ñ2 with Ñ3 are computed
in a similar fashion, but with fewer intermediate steps.
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E Plane waves in κ-Minkowski

The κ-Minkowski spacetime is characterized by a noncommutativity between coordinates
given in (2.2). Following [52, 53], we represent the coordinates in terms of 5 × 5 matrices
as follows:

x̂0 = −i`


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 , x̂i = i`

 0 −ei 0
−eiT 03×3 −eiT

0 ei 0

 , (E.1)

where {ei}i=1,2,3 is the canonical vector basis for R3.
We find that also in this case the time-to-the-right ordering of plane waves is linked

to the translation generators in the bicrossproduct basis. Indeed, noncommutative κ-plane
waves in the time-to-the-right ordering,

φ̂R(p) = eipix̂
i
eip0x̂0

, (E.2)

lead to the composition law of momenta(p⊕R k)0 = p0 + k0,

(p⊕R k)i = pi + e−`p0ki.
(E.3)

Defining the time-to-the-right translation operator PRµ such that φ̂(p ⊕R k) be an eigen-
function,

PRµ φ̂(p⊕R k) = (p⊕R k)µφ̂(p⊕R k), (E.4)

one can show that the coproducts of the time-to-the-right translation generators are the
well-known bicrossproduct ones

∆PR0 = PR0 ⊗ 1 + 1⊗ PR0 ,

∆PRi = PRi ⊗ 1 + e−`P
R
0 ⊗ PRi .

(E.5)

On the other hand, noncommutative κ-plane waves in the time-symmetric ordering

φ̂S(p) = e
ip0x̂

0
2 eipix̂

i
e
ip0x̂

0
2 , (E.6)

lead to the composition law (p⊕S k)0 = p0 + k0,

(p⊕S k)i = pie
`k0

2 + e
−`p0

2 ki .
(E.7)

This is compatible with the coproducts for the time-symmetric translation generators,

PSµ φ̂(p⊕S k) = (p⊕S k)µφ̂(p⊕S k) , (E.8)

of the form
∆PS0 = PS0 ⊗ 1 + 1⊗ 1⊗ PS0 ,

∆PSi = PSi ⊗ e
`PS0

2 + e
−`PS0

2 ⊗ PSi .
(E.9)
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These are the coproducts of the κ-Poincaré translations in the so-called standard basis [6]
and are related to the bicrossproduct ones via the map [1]

PR0 = PS0 ,

PRi = PSi e
−
`PS0

2 .
(E.10)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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