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Abstract: Despite its potential against several carcinomas, the pharmacological efficacy of silibinin
(SLB) is hampered by poor solubility, absorption, and oral bioavailability. To face these issues, we
developed polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) coated with hydrophilic polyethene
oxide (PEO) for controlled and targeted SLB delivery. NPs were produced at two different SLB
loadings and presented a spherical shape with smooth surfaces and stable size in water and cell
culture medium. The encapsulation efficiencies were found to be >84%, and thermal analysis revealed
that the SLB was present in an amorphous state within the NPs. In vitro SLB release experiments
revealed that at the lowest SLB loading, desorption of the active molecule from the surface or
nanoporosities of the NPs mainly dictates release. In contrast, at the highest SLB loading, diffusion
primarily regulates release, with negligible contributions from other mechanisms. Cell experiments
showed that, compared with the free drug, SLB loaded in the produced NPs significantly increased
the bioactivity against H1299, H1975, and H358 cells.

Keywords: silibinin; stealth nanoparticles; poloxamer/PLGA nanoparticle stability; lung cancer cells

1. Introduction

Silymarin is a flavonoid derived from the seeds of the medicinal plant Silybum mar-
ianum, commonly known as milk thistle, and has been widely used in the medical field,
especially for the treatment of liver disease (Figure 1). Silymarin is composed of seven
flavonolignans (silibinin, isosilibinin, silycristin, isosilycristin, and silydianin) and one
flavonoid (taxifolin) [1]. In particular, silibinin (SLB) is the biologically active compound of
silymarin and is composed of two diastereoisomers (silybin A and silybin B) [2,3]. Recent
studies have shown that SLB possesses inhibitory effects on multiple cancers, such as
prostate, colon, breast, and skin cancer [4]. SLB also possesses significant antiproliferative
activity and has effects on the induction of apoptosis, chemosensitization, growth inhibition,
reversal of multidrug resistance (MDR), and inhibition of angiogenesis, tumor invasion,
and metastasis [5–8]. Nonetheless, the efficacy of SLB is drastically hindered by its low
aqueous solubility (<0.1 mg/mL) and poor bioavailability after oral administration [9,10],
which causes the need for high doses to elicit adequate plasma levels. To overcome this
issue, a wide array of delivery systems have been developed to increase SLB solubility
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and bioavailability [11]. To this end, the formulation and use of polymeric nanoparticles
(NPs) for drug delivery are promising for the treatment of cancer compared to traditional
chemotherapy [12]. Moreover, NPs endowed with a hydrophilic surface possess prolonged
circulation properties which in turn allow them to take advantage of the enhanced perme-
ability and retention (EPR) effect of solid tumors [13]. Such NPs can extravasate within
tumors through aberrant vasculature resulting from uncontrolled angiogenesis [13–18] or
inflamed or compromised capillary endothelium, and be retained for prolonged periods
of time due to the reduced draining of fluids from the tumor [12]. Among the polymers
used to produce NPs for tumor treatment, poly(lactic-co-glycolic acid) (PLGA) is a ma-
terial of choice. Indeed, PLGA NPs have several advantageous properties [19], such as
biocompatibility, biodegradability, and the possibility of obtaining targeted drug deliv-
ery [13,20]. These are pivotal features in that they allow the minimization of the systemic
toxicity associated with traditional chemotherapy. The functionalization of these carriers
with specific ligands can further improve their specificity toward tumor tissues. PLGA
particles are quickly phagocytosed after intravenous injection depending on their size,
thereby attaining tendentially short circulation times [20]. This problem can be attenuated
by preparing NPs using a blend of PLGA and poloxamers. In previous works, we produced
NPs based on a physical blend of PLGA and poloxamers F127 and F68 to confer stealth
properties to the produced NPs [13,16]. Specifically, poloxamers are amphiphilic triblock
copolymers consisting of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide)
(PEO–PPO–PEO) segments and, when added to NPs produced by single/double emulsion
or nanoprecipitation techniques, spontaneously arrange the hydrophilic ethylene oxide
segments toward the external aqueous phase, thus making the surface hydrophilic and
conferring stealth properties to the NPs. Stealth NPs are designed to evade immune de-
tection, employing polyethylene glycol (PEG) or poloxamers for improved circulation.
PEG forms a hydrated steric barrier around NPs, reducing aggregation and prolonging
systemic presence [13,21]. Poloxamers similarly utilize EO for creating a hydrated pro-
tective layer. The unique triblock configuration of poloxamers allows the hydrophobic
PO block to anchor effectively to NP surfaces, potentially enhancing stability in complex
biological environments. While PEG provides uniform surface coverage, poloxamers offer
robust anchoring due to their amphiphilic nature [13,22,23]. In our previous studies, NPs
based on physical blends of PLGA–poloxamers were shown to increase the stability of the
produced devices in cell culture media [20] and promote their accumulation in vivo in the
lung in a murine model [20]. Furthermore, the addition of poloxamers has been shown to
increase the circulation time of NPs after intravenous administration [13,14,16,17,24–26],
thus providing NPs with passive targeting ability [27]. Therefore, the objective of this work
was to load SLB within PLGA–poloxamer NPs and assess their bioactivity against different
lung tumor cells. To this aim, NPs were produced by the nanoprecpitation technique and
fully characterized for their technological and thermodynamic features, along with their
release mechanism. Also, the in vitro bioactivity of the produced NPs was assessed against
three human lung cancer cell lines, namely H1299, H1975, and H358 cells [13,14,17].
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2. Materials and Methods
2.1. Materials

Silibinin (SLB), 2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-6-
(3,5,7-trihydroxy-4-oxobenzopyran-2-yl) benzodioxin, silybin, and equimolar uncapped
poly(D,L-lactide-coglycolide) (PLGA) (Resomer RG504H, Mw 40 kDa) were purchased
from Sigma-Aldrich (St. Louis, MO, Milan, Italy). Poloxamers F127 (a = 100 and b = 65) and
F68 (a = 76 and b = 29) were obtained from Lutrol (Basf, Ludwigshafen, Germany). Potas-
sium chloride (KCl) from Carlo Erba (Cornaredo, Italy) was used. Dimethylformamide
(DMF), dimethyl sulfoxide (DMSO), ethanol (EtOH), acetone, dibasic sodium phosphate
(Na2HPO4), and sodium chloride (NaCl) were obtained from J-Baker (Chicago, IL, USA).
For cell culture experiments, Roswell Park Memorial Institute (RPMI-1640) medium sup-
plemented with fetal bovine serum (FBS), 50 UI/mL penicillin, 0.05 mg/mL streptomycin,
sodium pyruvate, and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) from
Euroclone (Rome, Italy) were used. All chemicals and media were used as received without
any further purification. The concentration of the SLB stock solution was 150 mM in DMSO.

2.2. Preparation of Nanoparticles (NPs)

NPs were produced by the nanoprecipitation–solvent evaporation technique [13]. In
brief, 5 mL of an oil phase composed of a PLGA or PLGA–poloxamer (PLGA:F68:F127,
2:1:1 weight ratio) solution (2% w/v polymers) were combined with 5 or 10 mg of SLB by
vortexing for 10 min, as reported in Table 1. The obtained solution was then precipitated
through a syringe needle (22 G) in 40 mL of an aqueous phase, containing F127 and F68
as surfactants (1:1 wt ratio; 0.375 mg/mL overall concentration), by a syringe pump (flow
rate = 333.3 µL/min; d = 11.99 mm). After acetone evaporation by overnight stirring at
room temperature, the obtained NP suspension was washed three times at 13,000 rpm for
10 min by centrifugation (Hettich Zentri-Fugen, Tuttlingen, Germany). Finally, NPs were
stored at 4 ◦C.

Table 1. Composition and acronyms of the different concentrations of the NP formulations.

Sample
Acronym

Polymer Concentration in
the Organic Phase Oil % w/v

Polox in the
Aqueous

Phase % w/v

PLGA% F68% F127% F68% F127%

(w/v) (w/v) (w/v) (w/v) (w/v)

P 2 0.0175 0.0175

PP 1 0.5 0.5 0.0175 0.0175

PP-SLB5 1 0.5 0.5 0.0175 0.0175

PP-SLB10 1 0.5 0.5 0.0175 0.0175

2.3. Physicochemical Analysis of the NPs
2.3.1. Particle Size and Surface Charge Analyses

The mean size, size distribution, and zeta potential of the produced NPs were attained
by photon correlation spectroscopy (PCS; N5 Submicron Particle Size Analyser, Beckman
Coulter, Miami, FL, USA, Beck-man-Coulter, and ζ-potential (ZP)) by dynamic light scat-
tering (DLS) analyses carried out with a Zetasizer Ultra apparatus (Malvern Instruments,
Malvern, UK) at room temperature. To perform the measurements, NPs were suspended in
ultrapure water at a concentration of 0.1 mg/mL. Each sample underwent twelve runs at
room temperature.

2.3.2. Stability Study

The stability of the NPs was evaluated by tracking their size over time in an aqueous
suspension at 4 ◦C, as well as in cell culture medium at 37 ◦C. The time trends of hydrody-



Materials 2024, 17, 5480 4 of 14

namic diameters of unloaded, PP-SLB5, and PP-SLB10 NPs were tracked for up to 30 days
in double-distilled water (storage conditions) and in RPMI-1640 medium supplemented
with 10% FBS at 37 ◦C for up to 72 h. Additionally, NP size measurements were conducted
on cell culture medium alone to check for any potential self-aggregation. The results
presented were averaged from at least five individual measurements.

2.3.3. Nanoparticle Morphology

Transmission electron microscopy (TEM) images of NPs were characterized using a
TEM, TECNAI-12, FEI, Hillsboro, OR, USA. For this analysis, 100 µL of ultradiluted NP
suspensions in water was placed onto a copper TEM grid (300 mesh, 3 mm in diameter).

2.3.4. Yield, Drug Entrapment Efficiency, and Drug Loading of Nanoparticles

The yield of the NPs and SLB entrapment efficiency (η) and drug loading (λ) were
determined from preliminarily freeze-dried NPs (0.01 atm, 24 h; Modulyo, Edwards,
UK). Specifically, the NP yield was calculated based on the actual mass of the recovered
freeze-dried NPs. For entrapment efficiency and drug loading tests, 100 µL of PP-SLB5
or PP-SLB10 NPs was mixed with 900 µL of DMSO and gently stirred for 30 min at room
temperature to dissolve the particles and allow total SLB dissolution in the medium. The
obtained solution was centrifuged for 15 min at 13,000 rpm, and SLB was quantified
by a spectrophotometric assay (UV-1800, Shimadzu Laboratory World, Kyoto, Japan) at
λ = 289.0 nm. The linearity of the response was verified over the concentration range of
0.2–50 µg/mL (y = 0.0367x − 0.0023; R2 > 0.999) [10,28]. η and λ were expressed as follows:

η = 100 ·
m
(

SLBentrapped

)
m(SLBtotal)

λ = 100 ·
[m(SLB) total − m

(
SLB)entrapped

]
[m(NPs) + m(SLBtotal)]

(1)

± the standard deviation (SD) calculated on three separate batches.

2.3.5. Thermal Characterization via Differential Scanning Calorimetry (DSC)

Thermal analyses were performed by differential scanning calorimetry (DSC) on pure
SLB and lyophilized SLB-loaded NPs to investigate drug–polymer and polymer–polymer
interactions. Tests were carried out on powders of pure SLB and freeze-dried PP, PP-SLB5,
and PP-SLB10 powders (24 h, 0.01 atm, −50 ◦C; Buchi, Flawil, Switzerland). The samples
were inserted in aluminum pans and analyzed using a 10–250 ◦C temperature with a heating
rate of 10 ◦C/min. The measurements were conducted in an inert nitrogen atmosphere
purged at a 50.0 mL/min flow rate. The heat evolved during the thermic event (W/g) was
calculated from the recorded DSC thermograms by integrating the exothermic/endothermic
peaks, while the glass transition temperature (Tg) was obtained from the thermogram
inflection point.

2.4. In Vitro Drug Release Studies

The release of SLB from the NPs was assessed by loading 4 mL of a NP suspension
(at 14.56 mg/mL for PP-SLB5 and 19.33 mg/mL for PP-SLB10) into a dialysis membrane
(Spectra/Por® Biotech Cellular ester, Fisher Scientific, Bishop Meadow Road, Loughbor-
ough, Leicestershire, UK; molecular cut-off 12 kDa), which was immersed at 80 rpm in
an orbital incubator (SI50, Stuart R, London, UK) containing phosphate buffer solution
(PBS) 90% v/v or DMF 10% v/v, with the pH adjusted to 7.4. At predetermined time
points, 1 mL aliquots of the release medium were taken and replaced with an equivalent
volume of fresh medium. SLB was quantified by a spectrophotometric assay (UV-1800,
Shimadzu, Kyoto, Japan) at a wavelength of 324.5 nm [10,28]. The instrument response
was linear over the 0.1–50 µg/mL concentration range (y = 0.0358x + 0.0454; R2 > 0.997).
The experiments were run in triplicate. In this study, we compared the results of various
models to interpret release data, aiming to select the most suitable one for SLB release from
formulated NPs [29]. The models are reported in the following:
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The zero-order equation is as follows:

F = K0t (2)

where F is the released drug fraction at time t and k0 is the zero-order release rate con-
stant [30].

The first-order equation is as follows:

In(1 − F) = −k1t (3)

where k1 is the first-order release rate constant [31].
Higuchi’s equation is as follows:

F = kHt0.5 (4)

where kH is the Higuchi release rate constant [32].
The Korsmeyer–Peppas semiempirical model is as follows:

In(F) = In(KKP) + nIn(t) (5)

where kKP is the Korsmeyer–Peppas constant, which describes the structural and geometric
characteristics of the device, and n is the release exponent, which indicates the main drug
release. Each model was fit to average release data.

2.5. Cell Culture

The human lung cancer cell lines NCI-H1299 (ATCC CRL-5803), NCI-H1975 (ATCC
CRL-5908), and NCI-H358 (ATCC CRL-358) were obtained from the ATCC (Manassas, VA,
USA). The cells were routinely propagated in RPMI-1640 medium supplemented with
10% heat-inactivated fetal bovine serum (FBS), 1% L-glutamine, 1% sodium pyruvate,
50 UI/mL penicillin, and 0.05 mg/mL streptomycin (Euroclone, Milan, Italy). The cells
were maintained at 37 ◦C in a humidified atmosphere containing 5% CO2 and were in the
logarithmic growth phase at the start of the experiments. Subculturing was performed
twice every week, beginning with a low-passage cell stock, for a period of 2–3 months
following thawing. The cell lines were routinely tested for mycoplasma contamination
using the MycoAlert Mycoplasma Detection Kit (Lonza, Verviers, Belgium).

2.6. In Vitro Bioactivity of PP-SLB Nanoparticles

For the cell proliferation assay and for each cell line, 3 × 104 cells/well in 1 mL of
growth medium were seeded in 12-well plates. Sixteen hours after seeding, the cells were
treated with different concentrations of SLB alone or encapsulated in PP-SLB5 NPs. Before
cell treatment with PP-SLB5 NPs, the formulation was filtered twice through 0.45 µm filters
(filter size: 25 mm; AlfaTech, Genova, Italy) for enhanced sterility assurance. Cells treated
with vehicle (DMSO) or unloaded NPs were used as controls. After 24 h of treatment,
the cells were collected and counted with Trypan blue solution (Sigma-Aldrich, Merck
KGaA group, Darmstadt, Germany). Cell viability was assessed by counting live cells
using an MTS assay (CellTiter 96; Promega Corporation, Madison, WI, USA) following
the manufacturer’s instructions. For the MTS assay, the absorbance was measured on a
microplate reader at a wavelength of 490 nm (VICTOR Multilabel Plate Reader; PerkinElmer,
Inc., Waltham, MA, USA). Cytotoxicity was expressed as a percentage compared to the
control cells. The 50% inhibition concentration (IC50) was calculated from the growth
curves using GraphPad Prism 10. All experiments were conducted in triplicate, and the
results are presented as the mean ± standard deviation (SD).

2.7. Statistical Analysis

The statistical data analysis was conducted using GraphPad Prism 10 software (Graph-
Pad Software, Inc., San Diego, CA, USA). An unpaired t test was utilized to identify signif-
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icant differences between the two treatment groups. For multiple comparisons, Tukey’s
multiple comparison tests followed by one-way ANOVA were used. Statistical significance
was set at p < 0.0001 and p < 0.05.

3. Results and Discussion

The pharmacological potential of SLB is severely restricted by its extensive first-pass
metabolism in the liver, thus resulting in an incomplete or irrelevant intestinal absorption,
mainly due to its low aqueous solubility [33]. To face these solubility and bioavailability
issues, we propose loading SLB in PLGA-based nanoparticles (NPs), both with and without
poloxamers (PP and P formulations, respectively) [13] to attain controlled and targeted SLB
delivery to the lung. In an earlier study we demonstrated that, after a single intraperitoneal
injection, PP NPs were sequestered from the lungs, whereas P NPs were not detected in
any organ [20]. We hypothesized that the incorporation of amphiphilic poloxamers into the
organic phase used for NP production led to the spontaneous organization of hydrophilic
ethylene oxide units toward the NP surface, thus providing the NPs with a hydrophilic
surface that may change their pharmacokinetics, thereby promoting passive lung targeting.

3.1. Morphology and Characterization of NPs

The results of TEM observations show that NPs are spherical with a regular surface
(Figure 2) [13]. The sizes of the unloaded P and PPNPs were around 150 and 90 nm,
respectively; the SLB-loaded NPs were around 100 and 124 nm for the PP-SLB5 and PP-
SLB10 NPs, respectively (Table 2). Notably, SLB loading in NPs increased their mean
diameter compared to unloaded NPs (p < 0.05), likely due to physical interactions of SLB
with the poloxamers and PLGA, as previously demonstrated [9]. The polydispersity index
(PDI) of PP NPs (0.132 ± 0.01) was significantly lower than those of PP-SLB5 and PP-SLB10
NPs (0.212 ± 0.03 and 0.302 ± 0.06, respectively) (Table 2). The inclusion of poloxamers
brought about a reduction in the ZP from ∼−20 mV (PP NPs) to ∼−31 mV (P NPs), which
is crucial for their dimensional stability in suspension. In contrast, the presence of SLB
within the NPs did not affect ZP values (Table 2) (p < 0.05) [16,34].

Table 2. NP size, polydispersity index (PDI), and zeta potential in distilled water at 4 ◦C. The
entrapment efficiency, drug loading, yield values, and standard deviations were calculated from the
last three independent experiments.

Formulation Particle Mean
Diameter (nm)

Polydispersity
Index (PDI)

Zeta Potential
(mV)

Entrapment
Efficiency (%)

Drug Loading
(%) Yield (%)

P 153 ± 1.6 * 0.140 ± 0.01 −31.4 ± 2.0 *
PP 89 ± 0.6 *#$ 0.132 ± 0.01 $ −19.2 ± 2.0 * - 57.02 ± 0.4 #$

PP-SLB5 98 ± 2.2 #& 0.212 ± 0.03 & −20.9 ± 0.4 84.8 ± 3.0 1.61 ± 1.8 74.3 ± 2.5 #

PP-SLB10 124 ± 2.0 $& 0.302 ± 0.06 $& −21 ± 2.0 93.9 ± 2.1 1.20 ± 0.1 72.8 ± 1.8 $

* p < 0.05 P vs. PP; # p < 0.05 PP vs. PP-SLB5; $ p < 0.05 PP vs. PP-SLB10; & p < 0.05 PP-SLB5 vs. PP-SLB10.

The encapsulation efficiencies of the SLBs were 84.8% and 93.9%, with actual loadings
of 4.24 mg and 9.39 mg of SLB per 100 mg of polymer for PP-SLB5 and PP-SLB10 NPs,
respectively. Furthermore, the drug loading percentages for the SLBs were found to be 1.61%
for PP-SLB5 and 1.20% for PP-SLB10. The hydrophobic nature of SLB may be responsible
for its high encapsulation efficiency. Interestingly, the increase in the entrapment efficiency
was not accompanied by significant changes in NP zeta potential, whereas it increased
the NP size, polydispersity index, and yield (p < 0.05) (Table 2). Studies of stability in
double-distilled water at 4 ◦C for 30 days and in complete RPMI-1640 medium at 37 ◦C for
72 h proved that PP-NPs possess a satisfactory dimensional stability (Table 3).
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P 153 ± 1.6 154 ± 0.2 160 ± 1.1 182 ± 5.4 166 ± 9.4 168 ± 2.5 191 ± 1.5
PP 89 ± 0.6 92 ± 0.4 89 ± 0.6 90 ± 1.0 85 ± 0.5 84 ± 0.8 84 ± 0.3

PP-SLB5 98 ± 2.2 156 ± 3.3 153 ± 2.3 156 ± 1.9 153 ± 4.0 160 ± 2.0 164 ± 1.2
PP-SLB10 124 ± 2.9 185 ± 1.5 163 ± 1.0 186 ± 4.7 130 ± 2.5 197 ± 1.8 198 ± 15

The outcomes of thermal analyses are detailed in Figure 3 and Table 4. As can be
observed from the thermograms depicted in Figure 3, all the NP formulations displayed
an endothermic peak associated with the melting of poloxamers at 53.3 ◦C, while that of
SLB presented a melting peak at 171.3 ◦C. The disappearance of the melting peak of SLB in
drug-loaded NPs can be attributed to the loss of the crystalline forms of SLB. Therefore,
DSC outcomes indicate that the active molecule is present as a molecular dispersion in the
NPs [20,35].
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Table 4. Melting temperature (Tm), onset temperature (Tonset), and enthalpy change (∆H◦m) of the
unloaded and SLB-loaded PLGA–poloxamer nanoparticles (PP NPs).

Sample ∆H◦ (J/g) Tonset (◦C) Tm (◦C)

PP 28.6 ± 2.5 47.0 ± 1.9 53.3 ± 0.2
PP-SLB5 52.8 ± 3.7 46.9 ± 2.6 52.3 ± 1.1

PP-SLB10 40.7 ± 1.2 49.4 ± 1.0 53.3 ± 0.5
SLB 172.3 ± 10.4 152.6 ± 2.2 171.3 ± 1.0

3.2. In Vitro Drug Release Kinetics

In vitro release curves of SLB from PP-SLB5 and PP-SLB10 NPs are shown in Figure 4.
The release profiles were reproducible, thus showing the ability of PP-NPs to control and
sustain SLB release. A significant burst effect was detected, in which approximately 97%
and 73% of the SLB was released by PP-SLB5 and PP-SLB10 in 24 h, respectively, followed
by a slower release phase. The release was completed within approximately 5 days.

Release data were fitted to Equations (2)–(5) to identify the conventional mathematical
model that best describes SLB release and to verify whether different SLB loadings alter the
release mechanism. Zero-order kinetics refer to a constant drug release rate over time. In
contrast, the first-order model describes the release rate depending on the concentration
of the remaining drug. The Higuchi equation models drug release as proportional to
the square root of time. Finally, the semiempirical Korsmeyer–Peppas model describes
drug release primarily dictated by diffusion, possibly coupled with other mechanisms that
facilitate it [36]. Specifically, when applying the Korsmeyer–Peppas model to spherical
particles, a value of n ≤ 0.43 indicates pure Fickian diffusion, while when 0.43 < n < 0.85,
the release mechanism is considered anomalous diffusion, in which Fickian transport is
associated with other mechanisms such as swelling and/or degradation [37,38].

The values of the fitting parameters used in the simulations are listed in Table 5.
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Table 5. Fitting parameters used in the simulations.

SLB 5 SLB 10

Model Parameter R2 R2

Zero order k0 [h−1] 0.133 0.997 0.082 0.949
First order k1 [h−1] 0.227 0.937 0.084 0.971

Higuchi kH [h−0.5] 0.300 0.942 0.158 0.977

Korsemeyer–Peppas kKP [h−n] 0.151
0.935

0.259
0.982n 0.927 0307
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The observation of R2 values indicates that for the PP-SLB 5 NPs, the best-fit release
curves were obtained with the zero-order model (R2 = 0.997), while the Korsmeyer–Peppas
equation better describes the release from the PP-SLB 10 NPs (R2 = 0.982). This indicates
that at the lowest SLB loading, the driving force of release is constant over time; hence,
desorption of the active molecule from the NP surface or nanoporosities prevails. In
contrast, for PP-SLB 10 NPs, an n value of 0.307 indicates that diffusion is the primary
mechanism governing SLB release from PLGA-based NPs within the experimental time
frame, with negligible contributions from other mechanisms such as NP degradation [39].
This finding implies that SLB is also located in the inner regions of the NPs and clearly
indicates that PLGA degradation occurs over a longer period than SLB release.

In general, drug release from polyester-based biodegradable devices in an aqueous
environment is dictated by a complex diffusion–degradation mechanism triggered by water
diffusion into the polymeric matrix [20,37,40]. PLGA degradation consists of the hydrolytic
cleavage of ester bonds in the polymer backbone, which generates acidic degradation
products. If these products accumulate in the polymeric matrix, they accelerate device
degradation, thus establishing first-order autocatalytic degradation [41–43]. Once solubi-
lized, the encapsulated molecule diffuses outwards through the interconnected pores of
the polymer matrix [37]. This phenomenon has been observed in micrometric devices, for
which it is necessary to use high concentrations of polymers in the organic phase (10–24%
w/v in the organic phase) [37,40,44]. This favors the trapping of degradation products
and therefore autocatalysis. In contrast, at the nanometric scale, polymer concentrations
of approximately 2–4% w/v are used, leading to a much higher porosity, with a reduced
possibility of degradation product accumulation within the NPs. Therefore, although the
very high surface area of NPs rapidly triggers degradation, autocatalysis does not occur to
a significant extent. Overall, NPs need a prolonged time for complete degradation, and
other formulation strategies would be beneficial for optimizing and further sustaining
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drug release. In any case, SLB-PP5 formulation was selected to test the effectiveness of
nanoencapsulation in promoting the bioactivity of SLB, since in a previous paper we had
demonstrated that a mean size ≤ 100 nm strongly promotes NP cell internalization [45].

3.3. In Vitro Bioactivity of PP-SLB Nanoparticles

The bioactivity of PP-SLB was tested in vitro on three different human lung cancer
cell lines that differ in p53 expression: H1299 [46] and H358 are p53-deficient [47], while
H1975 expresses wild-type p53 [48]. These cells were selected since NPs based on a PLGA–
poloxamer blend showed a tropism toward lung tissue [20]. Preliminarily, to study in vitro
cytotoxicity, cells were treated with increasing concentrations of SLB for 24 h, after which
cell viability was measured. The results of cell cytotoxicity tests are reported in Figure 5.
The IC50 was 54.70 ± 2 µg/mL for H1299 cells, 55.43 ± 2 µg/mL for H1975 cells, and
11.43 ± 2 µg/mL for H358 cells, showing that this latter cell line is the most sensitive
(Figure 5).
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100 µg/mL) of SLB for 24 h.

Subsequently, the bioactivity of PP-SLB5 NPs was assessed from cytotoxicity tests
against the three cell lines. The PP-SLB5 formulation, selected for its smaller particle
size and rapid SLB release, was compared to the equivalent concentrations of free SLB. It
must be underlined that, following filtration, the actual concentration of SLB in the NP
suspension was found to be 2.53 µg/mL. The results of these experiments are shown in
Figure 6.

As shown in Figure 6, PP-SLB5 NPs displayed a cytotoxic effect around the IC50 of all
cell lines tested, while the same concentration of the free drug produced no detectable effect.
In more detail, NPs induced cell death around 50% at an equivalent SLB concentration
as low as 2.53 µg/mL, while the free drug caused no effect even at higher concentrations
(5 µg/mL). Thus, these findings show that the cytotoxicity of SLB against human lung
tumor cells was promoted by >10-fold. This result is particularly promising considering
that the produced NPs displayed a tropism for the lung in vivo [20].
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These outcomes are in line with the literature findings, which show that a significant
amount of research interest has been devoted to testing the synergistic effect of SLB with
currently used chemotherapeutics and improve its bioavailability profile [7,49,50]. In
detail, in the field of nanomedicine, SLB has been tested in combination with glycyrrhizic
acid and loaded in PEGylated nanoliposomes, which showed a >10-fold increase in SLB
bioactivity against human hepatocellular carcinoma cells [51]. In another report, Kuen
et al. demonstrated that SLB loaded in chitosan-based NPs displayed enhanced cytotoxicity
against the A549 lung tumor cell line [52]. To the best of our knowledge, this is the first
time that PLGA–poloxamer NPs have been tested for SLB delivery and bioactivity toward
the human lung cancer cells used in this study.

4. Conclusions

The formulated NPs proved to be safe both in vitro and in vivo, as they demonstrated
preferential accumulation in the lungs [20]. Furthermore, PP NPs can increase the bioactiv-
ity of SLBs, as shown by in vitro experiments on lung cancer cells. Despite the promising
results obtained in this study, the proposed formulations still present quick release, and
it may be desirable to sustain them for longer periods of time in specific therapies. How-
ever, the results of the mathematical model comparison demonstrated that by varying the
amount of drug loaded into the NPs, it is possible to exploit different release mechanisms.
Specifically, in the case of the formulations with the highest SLBs, the release mechanism
is diffusive. The diffusion of SLBs is likely to occur through the polymeric matrix and
nanoporosities of the device. This suggests that by narrowing the nanoporosities of the
NPs through proper formulation changes, it is in principle possible to sustain SLB release.
This goal can be achieved by varying the molecular weight and/or concentration of PLGA
in the organic phase and/or by further increasing the drug loading. Future studies will
therefore focus on optimizing the formulation to prolong SLB release.
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