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Abstract: Superoxide dismutase (SOD) is a fundamental antioxidant enzyme that neutralises super-
oxide ions, one of the main reactive oxygen species (ROS). Extremophile organisms possess enzymes
that offer high stability and catalytic performances under a wide range of conditions, thus represent-
ing an exceptional source of biocatalysts useful for industrial processes. In this study, SODs from the
thermo-halophilic Aeropyrum pernix (SODAp) and the thermo-acidophilic Saccharolobus solfataricus
(SODSs) were heterologously expressed in transgenic tomato cell cultures. Cell extracts enriched with
SODAp and SODSs showed a remarkable resistance to salt and low pHs, respectively, together with
optimal activity at high temperatures. Moreover, the treatment of tuna fillets with SODAp-extracts
induced an extension of the shelf-life of this product without resorting to the use of illicit substances.
The results suggested that the recombinant plant extracts enriched with the extremozymes could
find potential applications as dietary supplements in the nutrition sector or as additives in the food
preservation area, representing a more natural and appealing alternative to chemical preservatives
for the market.

Keywords: antioxidant protection; simulated gastric fluid resistance; proteolytic resistance; hyper-
thermophiles; tomato cell cultures; food preservation

1. Introduction

The ubiquitous enzyme superoxide dismutase (SOD) transforms superoxide radicals
(O2
−.) into H2O2, which is successively converted into H2O and O2 by the enzyme catalase.

Unlike the antioxidant chemical scavengers, SOD enzymes are characterized by intrinsic
renewal capacities, which means that they do not get exhausted but can keep their catalytic
activity for prolonged periods of time [1]. SODs are classified in Fe-SOD (found in prokary-
otes and in some plant chloroplasts), Mn-SOD (in prokaryotes and in mitochondria), and
Cu/Zn-SOD (in all eukaryotes, including animals and plants), according to the type of
metal ion associated to the catalytic site [2]. Thanks to their versatile properties, these
enzymes have been proposed for a wide range of industrial applications. However, like
most enzymes, their use in food is limited as they require specific ranges of chemical and
physical conditions to work properly and effectively [3,4]. Most of the SODs belonging
to mesophile organisms often have low stability and easily lose their antioxidant capacity
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when exposed to the environment [5]; thus, it has been proposed that the protection of
the conformational structure and longer storage stability by either site-directed mutage-
nesis or by mixing with compatible additives would make them potentially useful for
industrial applications [6,7]. In this context, extremophile microorganisms, which thrive in
extreme habitats that encompass both physical and geochemical environments, represent
an interesting source of stable, highly-active, and resistant SOD enzymes, able to work
in harsh conditions such as high and low temperatures or pHs, elevated UV doses, and
high levels of salt [6,8–12]. Among these microorganisms, the archaeons Aeropyrum pernix
and Saccharolobus solfataricus have attracted much attention for their unusual habitats and
extraordinary resistance properties, as the first can be found in harsh marine environments,
such as hydrothermal vents on the deep seafloors [13–16], and the second in hot volcanic
sulfuric ponds [17]. Both archaeons are hyper-thermophilic, proliferating at temperatures
ranging from 70 to 100 ◦C, and in addition, A. pernix stands up to 7% salinity [16], while
S. solfataricus optimally grows at pH from 2 to 4 [18]. The employment of extremophilic
antioxidant enzymes in the food sectors, where the presence of salts may affect enzymatic
activity, can offer a significant advantage over the use of mesophilic enzymes that are
less stable under extreme conditions. Salty food, such as marine fish, can be seriously
damaged by oxidation which compromises its organoleptic properties, leading to a rapid
deterioration of its appearance, taste, and nutritional value. On the other hand, ingested
SOD enzymes, contained in functional foods or supplements, barely resist the human
stomach environment, being rapidly inactivated by low pHs and digestive proteases, and
thus unable to fulfil their antioxidant action any longer. A solution to these applications
can come from the use of extremophilic SODs, like those derived from microorganisms
which are naturally adapted to live either in salty or acid environments.

In this study, we cloned and expressed the genes sodSs and sodAp (homologous to both
sodA and sodB genes from Escherichia coli, coding for the manganese- and iron-containing
enzymes Mn-SOD and Fe-SOD) from S. solfataricus and A. pernix, respectively, in tomato
(Solanum lycopersicum) cells in order to produce plant extracts enriched with SODSs or
SODAp and investigate on their structural and biochemical properties. Indeed, a competitive
and sustainable solution for the expression of heterologous proteins was represented by
the plant cell cultures, as the derived extracts, besides the recombinant proteins, were safe
and contained secondary metabolites that might have beneficial effects in a wide range of
industrial applications, specifically in food safety and human health.

The transgenic cell extracts exhibited extremophilic properties, resulting in exceptional
resistance to salt for SODAp and low pHs for SODSs, together with optimal activity at high
temperatures for both enzymes. These findings make them promising natural ingredients
to protect against the deleterious effects of oxidation in food preservation and human
nutrition. Moreover, we tested the SODAp-expressing tomato cell extracts by evaluating
their influence on the fillet colour of thawed yellowfin tuna (Thunnus albacares) and fresh
bluefin tuna (Thunnus thynnus), monitoring the histamine contents at different times. The
trial on processed tuna fish can be considered a pilot study elucidating the potential
advantages of using natural antioxidants in a complex system like defrosted tuna over
commercial brine solutions.

2. Materials and Methods
2.1. Cloning of Aeropyrum Pernix K1 and Saccharolobus Solfataricus P2 Mn/Fe-SOD Coding
DNA Sequences (CDS)

Genomic DNAs from Aeropyrum pernix K1 (taxonomy ID: 272557) and Saccharolobus solfataricus
P2 (taxonomy ID: 273057) were isolated from frozen cells using the PureLink® Genomic
DNA Mini Kit (Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA). The CDS of the
two sod genes (locus sodF_AERPE and sodF_SACS2, respectively), encoding the Mn/Fe-
dependent SOD (UniProtKB accessions Q9Y8H8 and P80857, respectively), were amplified
by PCR. The amplification mix was as follows: 25 ng of genomic DNA as a template,
0.02 U/µL of Phusion Green HotStart II High-Fidelity DNA Polymerase (Thermo Fisher
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Scientific, Waltham, MA, USA), 0.5 µM of each primer (Table S1A), and 200 µM of each
dNTP. The PCR reactions were performed following the conditions already reported in
Palmieri et al. [11]. The generated amplicons were confirmed by sequencing at Eurofins Ge-
nomics (Ebersberg, Germany). The 645 bp sodAp and 636 bp sodSs products were subcloned
into the blunt end pSC-B-amp/kan vector using the StrataClone PCR Cloning Kit (Agilent
Technologies, Santa Clara, CA, USA) and the sequence verification of the final constructs
was carried out (Figure S1A,B).

2.2. Cloning of SodAp and SodSs in Plant Expression Vectors

Both sod coding sequences were cloned into pCK-EGFP [19] by replacing EGFP with
the sod sequences. The constructs were modified by the addition of four restriction sites
(KpnI, SalI, SpeI, SmaI) at the 3′ of the 35S terminator (terK3S). The sodAp Open Reading
Frame (ORF) was amplified by PCR from the pSCB-sodAp cloning vector using the primers
sodAp_NcoI_F and sodAp_BX_R (Table S1B) and the purified product was cloned into the
NcoI-XbaI sites of pCK-EGFP. The sodSs ORF was amplified by PCR from the pSCB-sodSs
vector with primers sodSs_NcoI_F and sodSs_BX_R (Table S1B), and the purified product
was cloned into the NcoI-XbaI sites of pCK-EGFP. The expression boxes of two pCK vectors
included a tandem duplication of the 250 bp upstream sequences of the TATA elements
of the CaMV 35S promoter which acted as a strong enhancer of protein expression. For in
planta expression of sodAp and sodSs, the binary plasmid pBI121 was modified by replacing
the existing GUS expression cassette with those inserted in the previously described pCK-
ApsodterK3S and pCK-SssodterK3S. The expression cassette for sodAp and sodSs under the
control of the CaMV 35S promoter and terminator sequences (between HindIII and SmaI
restriction sites) were briefly subcloned into pBI121 digested with HindIII and EcoRI
(Figure S2). The accuracy of the subcloning procedures was controlled by nucleotide
sequencing on the newly synthesized vectors.

2.3. Genetic Transformation of Tomato Plants by Agrobacterium Tumefaciens

The sod genes, subcloned into the expression vector pBI121, were transferred to the
plant cells via Agrobacterium tumefaciens transformation, according to the procedure de-
scribed previously [11]. The primers used to amplify the sodSs or sodAp are reported in
Table S1C.

2.4. Molecular Analysis of the Tomato Transformed Lines

The presence of the two transgenes in the tomato transformed lines was verified
following the same protocol reported in Palmieri et al. [11]. Western Blot (WB) analysis was
carried out on the total proteins which were extracted from 100 mg of tomato calli ground
in the extraction buffer consisting in 150 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1.5 mM
EDTA, 1.5% Triton X-100, and a mixture of protease inhibitors with a broad specificity for
the inhibition of serine, cysteine, aspartic proteases, metalloproteases, and aminopeptidase
(MERCK, Darmstadt, Germany). Hence, the homogenates were centrifugated at 15,000× g
for 15 min at 4 ◦C to remove cellular debris, and the supernatants were used as crude cell
extracts. The total protein content was determined by using the Bio-Rad protein assay kit
(Bio-Rad, Hercules, CA, USA). The immuno-blot was performed as described below.

2.5. Production of Tomato Cell Extracts

Plant cell cultures were initiated using the protocol already described in Palmieri
et al. [11]. The lyophilised powder was dissolved in water at a concentration of 10% w/v,
and the protein concentration was measured by the Bradford assay [20], using bovine
serum albumin (BSA) as standard.

2.6. SOD and NBT Assays

SOD activity was measured spectrophotometrically based on the inhibition of the Nitro
Blue Tetrazolium (NBT) reduction [21]. Briefly, the reaction mixture (1 mL), containing 2 µg
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of the enzyme extracts obtained from non-transformed (WT, wild-type) or sod-transformed
tomato cells, Tris-HCl 50 mM, pH 8.0, 0.1 M EDTA and 1.5 mM NBT was exposed to a
light source for 8 min. Following the exposition, 0.12 mM riboflavin was added, and the
solution was exposed to the light for an additional 12 min to initiate the photochemical
reaction. The reaction was stopped by switching off the light source, and absorbance was
measured at 560 nm using a Jasco 640-V spectrophotometer equipped with a temperature
control unit. One unit of SOD activity was defined as the amount of enzyme required to
produce a 50% inhibition of NBT reduction under assay conditions. Protein concentration
was estimated by the Bradford method [20], using BSA as the standard. The effect of pH
on SODSs activity was examined by incubating protein samples (2 µg) in 50 mM buffers at
different pH values (1.0–8.0) for 15 min at 37 ◦C: pH 1.0–3.0, glycine-HCl; pH 5.0, sodium
acetate; pH 8.0, Tris-HCl. The effect of ionic strength on the SODAp activity was evaluated
by incubating protein samples in 50 mM Tris-HCl, pH 8.0 for 15 min at 37 ◦C at different
NaCl concentrations (0.5–1.5 M). The effect of temperature was measured by performing
the SOD activity assay after incubation for 15 min at temperatures ranging from 60 to
90 ◦C. The SOD activity in all the experimental conditions was assayed as described above.
Fold increase was calculated as a ratio between SOD activity in crude protein extracts of
wild-type plants and SOD activity in crude protein extracts of transgenic plants, using
the NBT assay. The relative activity was expressed as a percentage of the corresponding
maximal activities under the standard assay conditions. All experiments were performed
in triplicate on three different protein preparations.

An in-gel SOD assay was performed as described in Beauchamp and Fridovich [21],
with slight modifications. Briefly, an equal amount of each sample was separated by
electrophoresis on 10% non-denaturing polyacrylamide gel (Native-PAGE). Then, the
gel was soaked in a 50 mM Tris-HCl buffer (pH 8.0) containing 0.305 mM of NBT and
0.275 mM of riboflavin for 15 min in the dark at room temperature, followed by incubation
in 50 mM Tris-HCl buffer, pH 8.0, and 0.1% TEMED for an additional 15 min under the
same conditions. The SOD bands were visualized as a clear white region in the purple
formazan background after illumination with a fluorescent lamp.

2.7. Molecular Mass Determination

The size exclusion chromatography, performed on a Superdex 200 column (Pharmacia
Biotech, Milan, Italy), was used to estimate the native molecular mass of the partially
purified SODs. The column was pre-equilibrated with 50 mM Tris−HCl buffer (pH 7.5)
containing 50 mM NaCl. The SOD proteins were partially purified from the transformed
tomato cell extracts by two subsequent steps of ultrafiltration using molecular weight
cut-off (MWCO) spin filters of 100-kDa and 30-kDa (Millipore, Burlington, MA, USA). The
retentates were loaded on the column. Standard protein markers (BioRad code 151–1901)
were used to calibrate the gel filtration column.

2.8. In Vitro Gastric Digestion Assay on SODSs-Enriched Tomato Cell Extracts

The in vitro gastric digestion assay was conducted as reported in Corcoran et al. [22],
with modifications. Briefly, simulated gastric fluid (SGF) was formulated using NaCl
(2.05 g L−1), KH2PO4 (0.60 g L−1), CaCl2 (0.11 g L−1), and KCl (0.37 g L−1), adjusted to
pH 2.0 using HCl and autoclaved at 121 ◦C for 15 min. Porcine pepsin (13.3 mg L−1) was
added as a stock solution prior to analysis. For all assays, freshly prepared, simulated
digestion fluid was used. In the applied gastric digestion procedure, 30 µg of protein
extracts derived from both non-transformed (WT, wild-type) and sod-transformed tomato
cells were mixed in a ratio of 1:4 (v/v) with SGF without or with pepsin and incubated at
37 ◦C for 3 h. The pH was re-adjusted with 1 M HCl during digestion. 30 µg of WT extract
in buffer at pH 7.5 was used as control. After incubation, the reaction mixtures (40 µL) were
analysed by NBT-PAGE. The same digestion procedure was followed using BSA (30 µg)
as protein control. In this case, the reaction mixtures were analysed by SDS-PAGE (12%).
Standard proteins (broad range) were from New England BioLabs (Ipswich, MA, USA).
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2.9. Resistance of SODSs-Enriched Tomato Cell Extracts to Proteolytic Degradation

The proteolytic stability of SODSs was assessed by incubating 30 µg of protein ex-
tracts derived from both non-transformed (WT) and sod-transformed tomato cells with
Trypsin (10 µg and 20 µg) or Chymotrypsin (10 µg and 20 µg) at 37 ◦C for 3 h. Then,
the reaction mixtures (40 µL) were analysed by NBT-PAGE. The same procedure was
followed using BSA (30 µg) as protein control, and the reaction mixtures were analysed by
SDS-PAGE (12%).

2.10. SDS-PAGE and Western Blot Analyses

Thirty micrograms of the total proteins were loaded into 12% SDS-PAGE gel, and the
immunoblotting was performed on polyvinylidene fluoride (PVDF) membrane (Millipore) by
using the specific anti-SOD antibody, diluted 1:10,000 in TTBS buffer (Tris-buffered saline and
0.05% tween 20) containing 5% Blotting-Grade Blocker (Bio-Rad, Hercules, CA, USA). A goat
anti-rabbit antibody conjugated to horseradish peroxidase (HRP) was used as a secondary
antibody (dilution 1:5000), and the membrane was developed by a Pierce TM 1-Step Ultra
TMB blotting solution (Thermo-fisher, Waltham, MA, USA). The commercially available
MnSODEc from E. coli (SRP6107 MERCK, KGaA, Germany) was used as a control.

2.11. ORAC Assay

The spectrophotometric quantification of the inhibition of myoglobin (Mb) peroxida-
tion was used to assess the antioxidant capacity of the tomato extract enriched in SODAp
by a high-throughput 96-well microplate assay. Specifically, the chemical damage to Mb
by peroxyl radicals generated by the thermal decomposition at 37 ◦C and pH 7.4 of the
azo initiator AAPH was measured as a decrease in its intrinsic absorption at 409 nm. The
method was conducted in 50 mM phosphate buffer (pH 7.4) at 37 ◦C, where 100 µL of
Trolox standard solutions (5–100 mM) or plant cell extracts (WT and SODAp) and 100 µL of
myoglobin (75 mg/mL) were mixed in each well. Then, the microplate was pre-incubated
at 37 ◦C for 30 min. 100 µL of freshly prepared AAPH solution (180 mM) was added,
and the absorbance at 409 nm was recorded every minute for 40 min. The antioxidant
activity of the extracts was determined according to the method already described by
Huang et al. [23]. Oxygen radical absorbance capacity (ORAC) values of the samples were
expressed as micromoles of Trolox equivalents per gram.

2.12. Sampling Preparation

Chilled yellowfin tuna (Thunnus albacares) and fresh bluefin tuna (Thunnus thynnus) fillets
were bought at local markets in Southern Italy. Bluefin tuna was filleted in the laboratory and
each fillet was cut into portions of the same size and weight (4516 ± 10.5 g). Experimental
brines were inoculated by using a multi-needle industrial brine injector (Metalbud Nowicki
MHM-39/156) (Figure S3) and manually set as follows: brine pressure needle at 1.3 atm,
the head speed at 30 cycles/minute, and conveyor belt speed at 75 mm/cycle. The fillets,
placed on a conveyor belt, were injected with different brines, while control samples (CTR)
were injected with an aqueous solution. Once weight stabilisation was achieved, each
sample was packed under a vacuum and stored at refrigeration temperature (2 ± 1 ◦C) for
10 days. Several samples were created: yellowfin tuna fillets treated with the commercial
brine solution (CM), a vegetable extract prepared by dissolving 7.5 g in 1 L of water, as
recommended by the manufacturer; yellowfin and bluefin tuna fillets treated with SODAp
and WT solutions. All analyses were carried out at days 0, 6 and 10.

2.13. Colour Measurements

The changes in the colour of tuna fillets over time were followed by using the Konica
Minolta CM-2500d colourimeter (Minolta Co., Ltd., Osaka, Japan) with observer 10◦ (CIE64)
and illuminant D65 as the main measuring conditions set. The colour measurements were
conducted, including a specular component (sci mode) and adopting the CIELAB colour
space: lightness (L*), redness (a*), and yellowness (b*). Total colour difference (∆E) and
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variation in a* (∆a*) were calculated to better describe the colour changes that occur during
the storage period as follows:

∆E =

√
(L∗1 − L∗2)

2 + (a∗1 − a∗2)
2 + (b∗1 − b∗2)

2 (1)

∆a∗ = a∗2 − a∗1 (2)

where L*2, a*2, and b*2 were the values recorded on a specific day during the storage;
instead, L*1, a*1, and b*1 were the values collected at day 0. For the colorimetric study of the
fresh bluefin and thawed yellowfin tuna over the storage time, the evaluation of the inner
surface was carried out after 10 min of its exposure to air. To obtain representative results,
four superficial measurements were performed on the surface of tuna slices because the
colour might not be homogeneous over the entire surface. Specifically, imagining the major
surface of a tuna slice as a triangular figure, the colour measurements were performed on
areas corresponding to the three angles and the centre.

2.14. Histamine and Nitrate Determination in Tuna Fillets

The histamine content was measured using a commercial enzyme immunoassay test
kit (RIDASCREEN® Histamine enzymatic, R-Biopharm, Darmstadt, Germany) according to
the manufacturer’s instructions. The histamine concentration (µg/kg) was calculated with
the RIDASOFT® Win.NET software. The measurement of the nitrate levels in yellowfin
tuna fillets was conducted according to the method reported by Cortesi et al. [24]. On each
sample, the analyses were performed in triplicate the day after the injection of brines.

2.15. Statistical Analysis

Experiments were carried out in triplicate, and results were expressed as means± standard
error. Data were statistically analysed with a generalised linear mixed model (GLMM)
through SPSS version 27 (IBM Analytics, Armonk, NY, USA) with brine type and storage
times as a fixed effect. Tukey’s HSD post-hoc test was used to calculate the significant
differences between means at a significance level of p < 0.05.

3. Results and Discussion
3.1. Expression of SODAp and SODSs in Tomato Cell Cultures

Firstly, the genes coding SODSs and SODAp were cloned following the methods de-
scribed in the Materials and Methods section and sequenced to confirm their identity. The
coding sequences were expressed under the control of a variant of the 35S promoter, which
included a TEV leader (TL) sequence and duplication of 250 base pairs upstream of the
35S TATA element [19], to induce a ten-fold increase in the transcriptional activity and
an enhancement of the translation efficiency respect to that of the natural promoter [25].
Moreover, the incorporation of additional unique sites at the end of the terminator fa-
cilitated the sub-cloning of the full expression cassettes into the binary expression of
plasmid pBI121. Cotyledonary leaves of tomato cv MicroTom were co-cultivated with
Agrobacterium tumefaciens cultures carrying the binary vectors pBICK-sodSs and pBICK-
sodAp for plant transformation (Figure S2). After about four weeks, calli, originating
from selective media from the explants, were transferred to specific media to allow their
growth and maintain the callus state (Figure 1A–D). Hence, semi-quantitative RT-PCR
was performed to detect the expression of the sod genes in the different transgenic lines.
The presence of an amplification band corresponding to transgenic sodSs (Figure 1E) or
sodAp (Figure 1F) genes was evidenced in all the analysed cell lines, differently from the
untransformed tomato cells (WT).
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Figure 1. Transgenic calli production from tomato cotyledons (cv MicroTom) and RT-PCR analysis
of recombinant SODs. (A) Callus induction in cotyledon pieces; (B) callus formation on MS medium
containing NAA and kinetin; (C) callus lines regenerated; (D) transgenic clones; RT-PCR analysis of
(E) sodSs and (F) sodAp transgenic lines. Ladder: 1 Kb DNA marker (Promega, Madison, WI, USA);
WT: untransformed tomato calluses; 18S: amplification product of internal standard 18S gene.

The transformed callus lines were then subcultured, and total proteins were extracted.
Then, the crude extracts were analysed by SDS-PAGE, NBT-PAGE, and Western blotting
to confirm the presence of the expressed proteins. As shown in the SDS-PAGE reported
in Figure 2A, an extra protein band with the expected molecular mass of 24.5 kDa was
visualised in all the analysed SODAp transgenic samples compared to the protein profile
of the wild-type. This band was also positive for Native-PAGE followed by in-gel SOD
activity (Figure 2B) and Western blot analysis by using the specific anti-SOD antibody
(Figure 2C), thus confirming the presence and the nature of the recombinant protein in
the plant transgenic extracts. To roughly estimate the percentage of transgenic SODAp
in the total soluble proteins (TSP) of tomato cells, iBrigtTM software was used for the
densitometric analysis and SODAp was quantified by using the commercially available SOD
from Escherichia coli at known concentrations as reference (Figure 2A). It was not possible
to perform the same analysis by Western blot as exogenous and endogenous SOD isoforms
were undistinguishable by the anti-SOD Ab. The percentage of SODAp accumulated in
transgenic tomato cells was estimated at around 1.2–1.5% (w/w), in agreement with data
reported in the literature [26]. The sodSs product was expressed at undetectable levels in all
the differently obtained transgenic cell lines from SODAp. Nevertheless, the S. solfataricus
enzyme was detected in the transgenic plant extracts by Native-PAGE followed by in-
gel SOD activity in the transgenic plant extracts, thus confirming the presence of the
recombinant protein (Figure 2B). This technique has the advantage of being extremely
sensitive as levels of 10–100 ng of enzyme can already be detected.
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Figure 2. SDS-PAGE, NBT-PAGE and Western blot analyses of total protein extracts from transgenic
tomato cell lines. (A) Total protein extracts (30 µg) were electrophoresed on 12% SDS-polyacrylamide
gel and detected with Coomassie blue staining. (B) Total protein extracts from tomato cell lines
untransformed (WT) (first lane: 15 µg and second lane: 7 µg) or transformed with sodSs and sodAp

genes (15 µg) were electrophoresed on Native-PAGE (10%). Following Native-PAGE, protein bands
were detected by in-gel SOD activity staining using the Riboflavin-NBT assay. The results are
representative of three independent experiments on three different protein extracts. (C) Total proteins
(15 µg) were extracted from the tomato cell lines, separated by SDS-PAGE and transferred to PVDF
membrane. WB analysis was carried out using anti-SOD antibody. WT: untransformed tomato cells;
SODAp#1, SODAp#2 and SODAp#3: callus lines transformed with sodAp gene. SODEc: commercially
available SOD from E. coli was used for the comparative quantification of the relative intensity of
band of interest indicated with * in (A).

Such a result could not be surprising considering that the genes from the archaeon
S. solfataricus contain high proportions of rare codons, which often reduce the levels of their
heterologous expression [27], and the detectability of the gene products by Western blot
analysis is under the detection limit. To overcome this limitation, future investigations
could focus on an alternative strategy based on synthetic gene design with optimised codon
usage for plants to increase the amount of enzyme production in the extracts.

Finally, the molecular mass of both partially purified SODs was determined under
native conditions by gel-filtration chromatography, using a Superdex 200 column calibrated
with proteins of known molecular size. As shown in Figure S4A, SODSs eluted as a
single symmetric peak with an apparent Mr of ~52 kDa, according to the calibration curve
and to the electrophoretic analyses followed by enzyme activity staining (Figure S4B).
This value approached the theoretical mass of a homodimer, thus confirming that the
extremophilic enzyme had a structural organisation which consisted of two identical
subunits of approximately 24 kDa when expressed in tomato cells. The same result in
terms of the oligomeric organization was obtained with the partially purified SODAp (data
not shown).
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3.2. Biochemical Characterization of SODAp and SODSs

To evaluate the potential applications of the two extremozymes in industry, the effects
of diverse physicochemical effectors such as temperature, pH, and saline concentration on
SOD activity were examined in the transgenic protein extracts using the Riboflavin-NBT
assay. As depicted in Figure 3, SOD activity in SODAp-transgenic extracts was 10.4- to
12.4-fold greater than that in the WT in the temperature range from 70 to 90 ◦C (Figure 3A),
with the maximum registered at 80 ◦C. Moreover, the enzymatic activity in the transgenic
protein samples was 0.5- to 2.3-fold higher than that in WT under the tested NaCl con-
centrations (Figure 3B). Similar results were also obtained when protein extracts from
SODSs-tomato lines were incubated at high temperatures or different pHs. Indeed, the SOD
activity increased under the investigated conditions in recombinant extracts with respect
to that in the untransformed cell lines, with the major effects observed at 70 ◦C (11.8-fold)
(Figure 3C) and pH 3.0 (1.8-fold) (Figure 3D). These results suggested that the expression
of the extremophilic SODs conferred to the transgenic cell extracts the resistance to extreme
conditions compared to non-transgenic ones, in accordance with the hypertermo-halophilic
and hypertermo-acidofilic nature of SODAp and SODSs isoforms, respectively.
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Figure 3. Biochemical analysis of transgenic extracts. Effects of (A) temperature and (B) NaCl on
SODAp activity. Effects of (C) temperature and (D) pH on SODSs activity. Fold increase was calculated
as ratio between SOD activity in crude protein extracts from wild-type plants and SOD activity in
crude protein extracts from transgenic plants, using the NBT assay. All experiments were performed
in triplicate on three different protein preparations. Data were expressed as means ± standard
deviation. Standard deviation values lower than 5% were not shown.

Furthermore, the characterisation of the biochemical properties of the recombinant
SODs carried out under the specific environmental conditions in which their organisms
thrive revealed that SODSs and SODAp showed their optimum activity at 70 and 80 ◦C,
respectively, in agreement with their hyperthermophilic origin (Figure 4A). However,
SODSs and SODAp still kept more than 80% of their activity at 60 and 90 ◦C, respectively,
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with a linear reduction observed between 80 and 90 ◦C for SODSs and 60 and 70 ◦C for
SODAp. Concerning SODAp, the influence of saline concentration was also investigated due
to its marine source. As reported in Figure 4B, SODAp activity concomitantly increased with
salinity, reaching its optimum at 1.5 M NaCl concentration. Finally, SODSs characterisation
was performed in a pH range from 2.0 to 8.0, showing a slow decrease of its activity as the
pH value increased, with the maximum measured at pH 2.0, thus reflecting the acidophilic
nature of the extremophilic enzyme (Figure 4C).
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Figure 4. Biochemical properties of SODSs and SODAp. Effect of (A) temperature on SODAp and
SODSs activity and (B) NaCl on SODAp activity. Effect of (C) pH on SODSs activity. The activity at
the optimal temperature, pH or NaCl concentration was defined as 100%. The SOD activity was
measured using the NBT assay, and all experiments were performed in triplicate on three different
protein preparations. Data were expressed as means± standard deviation. Standard deviation values
lower than 5% were not shown.

3.3. Resistance of SODSs-Tomato Cell Extracts to Simulated Gastric Fluid (SGF) and
Pancreatic Proteases

Since most proteins are susceptible to digestive proteolysis (pepsin, pancreatic endo-
proteases), which compromises their structural integrity and function, there is an urgent
need to find good solutions to protect therapeutic enzymes from gastric acid and proteolytic
digestion. Indeed, it has been reported that SODs-enriched plant extracts developed as a
dietary supplement often fail because the low pH and the high proteolytic activity in the
digestive tract could be chemically inactive and thus render the enzyme ineffective [28].
Therefore, the use of extremozymes with exceptional stability features could represent an
interesting alternative to circumvent this problem.

In this context, a study was conducted to assess the resistance of the recombinant
hyperthermo-acidophilic SODSs to digestion by pepsin in a medium mimicking the gastric
milieu in vitro and to proteolytic degradation by pancreatic proteases. To this aim, the
SODSs-tomato cell extracts were incubated with a simulated gastric fluid (SGF) for 3 h at
37 ◦C, in the presence and absence of pepsin, and then analysed by a NBT in-gel SOD assay.
As shown in Figure 5A, different from the wild-type protein extracts (WT), which showed
a complete suppression of SOD activity after the treatment, the extracts containing the
recombinant SODSs preserved their activity, both after treatment with SGF only and in the
presence of pepsin, suggesting a high resistance to acid pHs and proteolysis, according to
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the extremophilic nature of the enzyme. Similar results were obtained when the resistance to
pancreatic serine proteases, trypsin, or chymotrypsin was evaluated (Figure 5B). Specifically,
when the WT extracts were incubated with each mammalian protease for 3 h at 37 ◦C,
a marked intensity reduction of the SOD activity band was observed, while the SOD
activity was completely preserved in the transgenic SODSs extracts in both the conditions
investigated, thus confirming the resistance of this enzyme to protease degradation.
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Figure 5. Proteolytic resistance of SODSs-enriched plant extracts. (A) Total protein extracts (30 µg)
obtained from non-transformed tomato cell lines (WT) or transformed with sodSs (SODSs) non-
incubated (t = 0) or incubated for 3 h at 37 ◦C with simulated gastric fluid (SGF) in the presence or
absence of pepsin (9 µg). (B) Total protein extracts (30 µg) obtained from non-transformed tomato
cell lines (WT) non-incubated (t = 0) or incubated with trypsin (20 µg) or chymotrypsin (20 µg) for 3 h
at 37 ◦C; total protein extracts (30 µg) obtained from tomato cell lines transformed with sodSs (SODSs)
non-incubated (t = 0) or incubated with trypsin (Try, 20 µg) or chymotrypsin (Chymo, 20 µg) for 3 h
at 37 ◦C. Following Native-PAGE (10%) analysis, protein bands were detected by in-gel SOD activity
staining using the Riboflavin-NBT method. The results are representative of three independent
experiments on three different protein preparations.

As an additional control, the protein bovine serum albumin (BSA), used as a model of a
mesophilic protein, was completely digested when incubated with SGF and the proteolytic
enzymes, confirming the susceptibility to degradation by proteases of mesophilic proteins
in the tested condition (Figure S5).

3.4. Activity of SODAp-Tomato Cell Extracts on Tuna Slices

The consumption of tuna fish is widespread all over the world, although consumers’
trust is sometimes challenged by the illegal use of additives or unknown substances capable
of masking the state of freshness of tuna and preserving its red colour [29]. Indeed, the
bright red colour of tuna is considered the main sensory parameter that determines its
acceptability in the market and guides the consumers’ choices, acquiring the role of the
most economically important factor. Therefore, stakeholders have been researching and
using substances able to stabilize the colour of tuna meat for several years now, including
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banned molecules, such as carbon monoxide, which could mask the degradation progress
of tuna and thus its histamine content [30,31].

To test the preservation capacity of fish meat, the extract obtained from the tomato cell
line transformed with sodAp was tested on fillets of thawed yellowfin tuna (Thunnus albacares)
and fresh bluefin tuna (Thunnus thynnus), by evaluating its influence on the fish colour and
monitoring the histamine content during the storage period.

Regarding the analyses on the thawed yellowfin tuna fillets, an increasing value of
the total colour difference (∆E) over time was detected, because of the colour deterioration
that normally occurs. Indeed, the ∆E value was strictly connected to the changes in
the pigmentations of tissue and, consequently, to all the coordinates of CIElab colour.
Specifically, the highest values of ∆E were reached by the WT samples (extracts from
non-transformed cell lines) followed by the control ones (CTR, injection of only water). The
CM (commercial brine) and SODAp-tuna samples exhibited the lowest grade of browning
(Figure 6A), confirming the differences in the general colour appearance of the brines
employed in this study. Nevertheless, a more specific parameter for describing the changes
in acceptability of tuna fillets is the redness value, which is closely related to the content
and status of oxidation of myoglobin and haemoglobin [32]. As reported in Figure 6B, the
values of ∆a* (variations in redness) suggested an important activity of the commercial
brine to significantly enhance the red colour of fillets. This result highlighted its alarming
ability to mask the natural degradation of the tuna, which retained its freshness properties
even when the legislative limit for histamine could be exceeded. Indeed, although the
sensory properties were preserved only in CM samples on the twelfth day of storage (data
not shown), the analysis of histamine showed higher concentrations (124.2 ± 2.6 mg/kg)
compared to the minimum limit set at 100 mg/kg by the Reg. (CE) no. 2073/2005. This
commercial powder, which was probably a plant extract of beet, was recognised for its
naturally high nitrate content, which could act in the food matrix as a chemical additive.
Concerning the level of nitrate detected in the samples under study, none of them exceeded
the concentration of 7 mg/kg, with the CM samples showing the highest concentration
(5.33 ± 1.16 mg/kg), which was very close to the average amount of nitrate detectable in
fish (5 mg/kg) [29,33].

In this regard, it was interesting to note that the use of a low concentration of this
commercial powder was dangerous not for its nitrate content but for its ability to stabilise
the colour over time, adulterating the tuna and hiding its real state of conservation. Hence,
the tomato cell lines transformed with sodAp (SODAp) can be considered a promising tool
that could guarantee the preservation of the red colour without representing a problem
for public human health (Figure 6B). Indeed, our results demonstrated that the efficiency
of SODAp brine in improving the tuna colour up to the 10th day of storage, when the
histamine values were found below the legislative limits, was due to the presence of the
extremophilic SOD enzyme, as the WT samples had no effect (Figure 6).

Another set of experiments was conducted to investigate the antioxidant potential of
SODAp extracts in bluefin tuna (T. thynnus), which was richer in slow fibres and myoglobin
compared with T. albacares [34]. To this aim, WT and SODAp extracts were injected into
fresh bluefin tuna fillets using the water only as control (CTR), and the colour evolution
was followed up to the 10th day of storage. As reported in Figure 7, although slight colour
differences among samples were already detectable after 6 days of storage at refrigeration
temperature, a notable effect of SODAp brines was observed on the fillets after 10 days.
Specifically, the values of colour differences (∆E) and the redness variations (∆a*) clarified
the potential effects of SODAp brine in slowing down the deterioration processes, which
affected the general appearance of fresh tuna fillets (Figure 6C). Considering the colour
evolution (∆E) that considered the initial state of tuna fillets pigmentation, significant
differences between the colour of each sample were found. Indeed, the ∆E values in
samples injected with the SODAp brine were lower than those recorded for the other
samples (Figure 6C). However, although a weak effect of the tomato extract alone on the
product’s general appearance was observed, the values of ∆a* referred to WT samples
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made evident that the decreased ∆E did not contribute to the conservation of red colour.
On the contrary, significant differences (p < 0.05) were found comparing the ∆a* values of
SODAp-tuna samples with those of control and WT-treated fillets over 10 days of storage
(Figure 6D).
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Figure 6. Analyses of total colour difference (∆E) and variation in a* (∆a*) in Thunnus albacares and
Thunnus thynnus fillets during the storage (4 ± 1 ◦C) for 10 days. (A) ∆E and (B) ∆a* values in
Thunnus albacares fillets injected with aqueous solutions containing water only (CTR: blue); extracts
from tomato cell lines non-transformed with sodAp (WT: light red); extracts from tomato cell lines
transformed with sodAp (SODAp: green); commercial brine (CM: red). (C) ∆E and (D) ∆a* values of
Thunnus thynnus fillets injected with aqueous solutions containing water only (CTR: blue); extracts
from tomato cell lines non-transformed with sodAp (WT: light red); extracts from tomato cell lines
transformed with sodAp (SODAp: green). The measurements were conducted on the inner surface of
the tuna fillets after 10 min exposure to air. Results are means of three independent experiments,
and error bars represent the standard error (sem). * Significant difference (p < 0.05) between the
treated and the control samples. *** Significant difference (p < 0.001) between the treated and the
control samples.

In conclusion, the injection of SOD extremozymes in fresh and thawed tuna fillets could
guarantee an extension of the products’ shelf life without resorting to illicit substances. To
date, the only additives allowed for this type of product have been the antioxidants (ascorbic
acid, sodium ascorbate, calcium ascorbate), whose use has been limited to 300 mg/kg by
the current European Commission rules.
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Figure 7. Appearance of Thunnus thynnus slices stored for 10 days at refrigerated temperature
(4 ± 1 ◦C). The samples were injected with aqueous solutions containing water only (CTR), extracts
from tomato cell lines non-transformed with sodAp (WT), extracts from tomato cell lines transformed
with sodAp (SODAp).

3.5. Activity of SODAp-Tomato Cell Extracts on Myoglobin Oxidation

As the loss of the red colour in fish meat is mainly linked to the oxidation of oxymyoglobin
(OxyMb), an ORAC assay was performed to assess the ability of SODAp-containing extract to
protect myoglobin from oxidation, using the compound 2,2′-Azobis(2-amidinopropane) dihy-
drochloride (AAPH) as oxidant [35]. Scalar dilutions of WT and transgenic SODAp tomato
extracts were incubated with myoglobin in the presence of AAPH, and the absorbance
decay, due to the oxidation of the heme group of the protein caused by the oxidant, was
measured at 409 nm. The values of antioxidant capacity, expressed as micromole of Trolox
equivalents per gram, were calculated as explained in the Materials and Methods section
and resulted in 388 ± 24 µmol Trolox eq·g−1 for the SODAp extract and 195 ± 21 µmol
Trolox eq·g−1 for the WT extract, indicating that the presence of the enzyme in the tomato
cell extract significantly increased the myoglobin protection against oxidation and confirm-
ing the results on the redness preservation of fish slices showed above.

4. Conclusions

After microbial spoilage, the oxidation of food, resulting in the loss of organoleptic
properties and nutritional values, is the second most important cause of food impair-
ment [36]. For this reason, antioxidants have become very popular and scientifically
interesting compounds due to their benefits in many areas.

Specifically, in nutrition technology, the enrichment of various foodstuffs with syn-
thetic compounds such as t-Butyl-4-HydroxyAnisole (BHA) or other typology of antioxi-
dants (e.g., vitamins, carotenoids, polyphenols) is a frequently adopted method to counter-
act the oxidation phenomena. However, many of these additives cannot be used in large
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quantities as they can be health hazards and cause serious side effects. While vitamins are
not stable over time and are subject to hydrolytic processes mostly determined by high
temperatures or high salt concentrations [37]. Therefore, one of the main challenges in
the food industry is how to minimise the impact of processing techniques and storage
methods on food quality due to the increase in consumers’ perception and awareness. In
this scenario, extremophilic microorganisms represented an underutilised and innovative
source of novel enzymes, having developed unique mechanisms to survive under a wide
range of extreme and inhospitable environmental conditions in terms of temperature, pH,
or salinity, among others. The extremophile-derived enzymes, or extremozymes, offer new
alternatives for biotechnological applications [38], able to perform reactions under harsh
conditions, like those found in several industrial processes.

In this paper, protein extracts enriched with SODs from two extremophiles and heterol-
ogously expressed in tomato cell lines were biochemically characterised. This innovative
approach, which combines the advantage of using plant cells as a bio-factory of recombi-
nant proteins with the extraordinary catalytic properties of extremozymes, could support
the development of sustainable, eco-friendly, and efficient food technologies with positive
impacts on human health.
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www.mdpi.com/article/10.3390/antiox11091731/s1. Table S1: Primer sequences used in this study;
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vector; Figure S2: Schematic representation of pBICK-sodSs/Ap; Figure S3: Scheme of the experi-
mental procedure for the sampling and preparation of tuna fillets (filleting, brine injection, and
vacuum skin packaging-VSP); Figure S4: Gel filtration chromatography of partially purified SODSs;
Figure S5: Effect of proteolytic treatments on BSA.
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