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A quantitative dimension free
isoperimetric inequality for the fractional
Gaussian perimeter

ALESSANDRO CARBOTTI, SIMONE CITO, DOMENICO ANGELO
LA MANNA, AND DIEGO PALLARA

We prove a quantitative isoperimetric inequality for the fractional
Gaussian perimeter using extension techniques. Though the expo-
nent of the Fraenkel asymmetry is not sharp, the constant appear-
ing in the inequality does not depend on the dimension but only
on the Gaussian volume of the set and on the fractional order.

1. Introduction

The Gaussian isoperimetric inequality states that among all sets with
prescribed Gaussian measure, the halfspace is the one with least Gaus-
sian perimeter. This result has been proved independently by Borell [6] and
Sudakov-Tsirelson [39]. In [I5] it has been proved that halfspaces are the only
volume-constrained minimizers for the Gaussian perimeter, while in [3] 4] [17]
inequalities of quantitative type, that allow to relate the deficit between a
halfspace and a set with the same Gaussian volume with some function of
the Gaussian measure of their symmetric difference, are proved. In the same
vein, in [14], a quantitative isoperimetric result has been obtained for the
first eigenvalue of the Ornstein-Uhlenbeck operator with Dirichlet bound-
ary condition. The results in [I7] have been improved in [34] 35]. On the
other side, fractional perimeters and nonlocal perimeters depending on more
general kernels have been object of great attention in the last years, since
they are related to nonlocal minimal surfaces [9) B3], phase transitions [40],
fractal sets [30] and many other problems. In the Euclidean setting, frac-
tional isoperimetric inequalities of qualitative and quantitative type have
been proved in [16, 28] and [27, 29], respectively. See also [19] where the
authors introduce a notion of fractional perimeter using a distributional ap-
proach and [21] where an isoperimetric problem with the competition of
two fractional perimeters of different order is studied. In [36] the authors
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introduce a notion of fractional Gaussian perimeter using the by now well
known extension techniques introduced in [10} [38] and they prove a qualita-
tive isoperimetric inequality in the more general setting of abstract Wiener
spaces. Inspired by the paper [7], where the authors prove a stability esti-
mate for the fractional Faber-Krahn inequality, and taking into account the
extension technique of [38], we prove a quantitative isoperimetric inequal-
ity for a fractional perimeter in the Gauss space. Although the technique
is similar, we find a different exponent since the perimeter is given by the
H*/2 norm of the characteristic function, while the first eigenvalue depends
on the H® norm. See also [I8] where the authors prove the same stability
result for the fractional capacity. Moreover, similarly to the local case (see
[3, 24]), the constant appearing in the inequality does not depend on the
dimension of the ambient space. This fact exploits Proposition [3.3| where
we prove that halfspaces have the same fractional Gaussian perimeter as
halflines having the same one dimensional Gaussian measure. To conclude,
we notice that the asymptotics as s — 07 under the pointwise convergence
and the asymptotics as s — 1~ under I'-convergence have been studied in
[13] and in [12] in the present setting. In [20] the authors give a different
notion of Gaussian fractional perimeter of a measurable set F in a bounded
domain © ¢ RY using a singular integral representation of the form

ly1?

P)(E;Q ::/ e_lall?d:c/ Ldy
7 (59 ENQ penq |z — y[NFs
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+/ -k / € 4
e 1 dr ———dy
N )
ENQe genq | — y[N TS

and they prove the I-convergence of (1 — s)PJ(FE;Q) to the Gaussian
perimeter as s — 1~ exploiting techniques similar to the ones used in [I].
See also [5], where kernels with faster than L' decay at infinity are taken
into account.

The precise statement of our main result is the following.

Main Theorem. Let N > 1, s € (0,1) and m € (0,1). For any set E with
finite fractional Gaussian perimeter of order s and ~v(E) = m we have

(1.1) D}(E) = P}(E) — P)(H) > CymA,(E)

s )
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where H is any halfspace with v(H) = v(E) and Cs ,, is a positive constant
which depends only on s and m.

Here A,(FE) denotes the Gaussian Fraenkel asymmetry: for the precise
definition of the quantities involved in we invite the reader to check
Section 2l We notice that, as far as we know, the notion of perimeter used
here is not a particular case of the one given in [8, 7], where the authors
independently prove the local minimality of halfspaces for a broad class of
nonlocal perimeters using some calibration methods. See also the recent [11]
where the result is proved in the more general setting of Carnot Groups.

The paper is structured as follows. In Section 2] we introduce the notation
used throughout the paper and state some preliminary results. In Section
we recall the extension technique used to define the fractional Gaussian
perimeter of a measurable set (roughly speaking, we introduce a new “verti-
cal” variable in order to study an equivalent degenerate local problem in the
upper halfspace in one dimension more), we give some estimate of the rate of
convergence of the extension to the original function and we prove a crucial
result to obtain a dimension free constant in our Main Theorem. We also
give an approximation of the Gaussian fractional perimeter of the halfspace,
whose precise computation is not known up to our knowledge. Section [4] is
more technical; here we collect some useful results that relate the asymmetry
of a given measurable set with the asymmetry of some suitable level sets of
the extension. Section[5]is devoted to the proof of the Main Theorem. Finally,
in Section [6] we collect some remarks about our results and we discuss some
open problems arising from our analysis.

2. Preliminary results

For N € N we denote by vy and 7—[]7\7 —1 respectively, the Gaussian measure
on RY and the (N — 1)-Hausdorff Gaussian measure

1 _L2 N
™ Gt T
1 N
N-1 ._ e, N-1
Wy = e TR

where £V and HV~! are the Lebesgue measure and the Euclidean (N — 1)-
dimensional Hausdorff measure, respectively. When k € {1,..., N} is a given
integer, we denote by 7 the standard k-dimensional Gaussian measure;
when there is no ambiguity we simply write v instead of .
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The Gaussian perimeter of a measurable set F in an open set € is defined
as

Py(E;Q) = \/ﬂsup{/E(diw —-x) dy(z) : o € CX(URY), [glloo < 1}.

If O = RY, we denote the Gaussian perimeter of F in the whole RY simply
by P,(E). Moreover, if E has finite Gaussian perimeter, then E has locally
finite Euclidean perimeter and it holds

1o 1 =2 .
Py(B) =1y~ (0"E) :M/B*Ee = dHN " (a),

(2m) "=

where 0*F is the reduced boundary of E. We refer to [2] for the properties
of sets with finite perimeter.
We introduce the increasing function ® : R — (0,1) by

O(r) = /T dvy1(t),

—00

and its inverse @1 : (0,1) — R. We have

Y(Hy,r) = @(r)

and
Py(Hyr) = e_T2/27

where, for w € SV=! and r € R, H,,, denotes the halfspace
H,, = {iL‘ eRY st 2z w< r}.

Moreover, the Gaussian perimeter of any halfspace with Gaussian volume
m € (0,1) is given by

e tm)?

(2.1) I(m):=e¢ =2 |

where I:(0,1) — (0,1] is usually called isoperimetric function, and the
Gaussian isoperimetric inequality reads as follows

(2.2) Py(E) = I((E)),

stating that halfspaces are the unique (see [15]) volume constrained minimi-
zers of the Gaussian perimeter. A sharp stability result for (2.2]) has been
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obtained in [3]. Following [22], we introduce a suitable notion of symmetriza-
tion in the Gauss space. First, for any J C R we set

(2.3) J* = (=00, @7 (11())).

Then, for h € RN with |h| = 1, we consider the projection 2’ = x — (z - h)h
and write z = 2’ + th with t € R, and for every measurable function wu :
RY — R we define the symmetrized function in the sense of Ehrhard

(2.4) uj, (2" + th) =sup{c € R: t € {u(a’+h) > c}*}

Notice that if u is (weakly) differentiable, uj is differentiable as well and the
inequality

| i@ < [ 1vu@P ae)

holds, see |23, Theorem 3.1] for the Lipschitz case; the Sobolev case eas-
ily follows by approximation. Since symmetrization preserves the class of
characteristic functions, for every measurable set £ C RY we may define
the Ehrhard-symmetrized set E} through the equality

XE; = (XE)-

We define the Gaussian Fraenkel asymmetry and the fractional Gaussian
isoperimetric deficit of a set F as

B . v (EAH,,)
weSN -1 ’y(E)

9

and
DI(E) == P](E) — P](Hy,),

s

where A stands for the symmetric difference between sets and Py (E) is the
s-fractional Gaussian perimeter of E, see Section [3| These definitions are
motivated by the fact that halfspaces are the optimal sets for the fractional
isoperimetric problem as well, see [36].

3. The extension technique and the fractional Gaussian
perimeter

In this section we collect the main results leading to the definition of the
fractional Gaussian perimeter of a set and some preliminary results. Our ap-
proach is based on the extension technique due to Caffarelli-Silvestre [10] in
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the Euclidean case and extended to wider frameworks, including the Gaus-
sian case, by Stinga-Torrea in [38]. In the sequel, for any 1 < p < co we use
the notation L for the space LP(RY, dv) and recall that in the Gaussian
case the Ornstein-Uhlenbeck operator plays the same role as the Laplacian
in the Euclidean setting. The Ornstein-Uhlenbeck operator A, is defined,
for u sufficiently smooth, as

(3.1) (Ayu)(z) = (Au)(z) —x - Vu(x).

Since it comes from the symmetric bilinear form

1
E(u,v) = 2/RN Vu - Voudy,

we have that —A, is a positive definite selfadjoint operator which generates
a Co-semigroup of contractions, which we denote by e'®v, in L% (see, [31]
for a recent survey of the main properties of A, e!A+ and references). As
in [38], we can define its fractional powers by means of classical spectral
decomposition by the Bochner’s subordination formula (see e.g. [32])

s 1 o etBry —y
(3.2) (—A)u = /0 Tt

where I' denotes the Euler Gamma function and the Ornstein-Uhlenbeck
semigroup €' is given by the Mehler formula recalled in [31]

(@) = G e /RN“(e o —y)e T T dy

:/ u(e"z 4+ V1 — e 2ty)dy(y).
RN

Since for any A > 0 it holds

1 ©1 e \?
—dt] =
<IF<—§)\ /0 tat! >

again by functional calculus and Bochner’s subordination formula we deduce

(3.3) (_Av)g ° (_Av)g = (_A’y)s'

For an equivalent definition of (—A)® and for other qualitative proper-
ties involving the fractional Ornstein-Uhlenbeck operator we refer to [26].
The next proposition is an easy consequence of selfadjointness.
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Proposition 3.1. For u,v € Dom((—A,)®) it holds
/ e (—A ) vudy = / e%A”(—Av)gve%A”(—Av)gu dry.
R¥ RN

Proof. Since (—A,)® and e are selfadjoint operators in L%, from ([3.3)) and
the semigroup law we get

/RN e (—A ) vudy = /RN B (=AL)2 o (—A,)2vudy

= /RN(—AW)gegA”e;A”(—AV)ZU udry

= / eéA”(—Av)gveéA” (—A,)2udy.
RN

As pointed out by Stinga and Torrea in [38], the fractional powers of the
Ornstein-Uhlenbeck operator can be obtained through an auxiliary problem,
as it happens in the Euclidean case, see [10].

Theorem 3.2. Let ¢ € Dom((—A,)?). The solution of the extension prob-
lem

(3.4) AV + 120V + 02V =0 inRYT!
' V(x,0) = p(x) in RV,
s given by
1 > tA, A)S 6_%
(35) ng(fL',Z) = @ ) e (* 'Y) gp(x)tlifs dt

and it satisfies

— lim 21_2532U¢(IE, Z) = KQS(_A'y)S‘P($)7

z—0t
where

(3.6) Koo = 2542((_5;’)’

Coming to fractional Sobolev spaces, for s € (0, 1) in the spirit of [38] we
define the space H as the space of functions u € L% such that the following
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seminorm

[u]?. = inf{// (|va|2 + |8zv|2)21_25d7(:n)dz :
ad Rf+l
v E Hﬁ)C(RfH), v(+,0) = u}

is finite. If for a function u the infimum is achieved, the minimizer U €
H} (Rf“) of the above functional is a weak solution of (3.4) with u in

loc
place of ¢. In particular, when v = y g for some measurable set F, we define

the fractional Gaussian perimeter of E as

1
PI(E) = §[XE]Z§-

After this preparation we define an inner product in H7 by

v(=Ay) udy = Ko /RN u(—A,)°vdy

(u,v) s = K2s/

RN

whenever u,v € Dom((—A,)®). This gives the equality

[u]?gW = Kgs/ u(—Ay ) udy.
RN

Note that when s < 1, using Bochner’s formula, we have
BTl = e [ u(-a)udy = Kal (-5 bull,
RN

for every u € Dom((—A,)?).
Let us prove that the fractional Gaussian perimeter of a halfspace is the
same in any dimension.

Proposition 3.3. For s € (0,1) and r € R we set
H,:=(—oco,r) and HY :={zeR": zy<r}

Then we have
P (HY) = PP (H,),

i.e., P{(HY) does not depend on the dimension N.
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Proof. Let (y,z) € R%, let v(y, z) be the solution of

2 1-s 2, — ; 2
(3.8) {8yu —yOyu + 20 u+ 0;u=0 inRY

u(y,0) = xu,(y) in R,
and consider

(3.9) Ay u+ %@u +0?u=0 in Rﬁ“
' u(z,0) = xgy(7) in RV,

We prove that w(z, z) := v(zy, z) solves (3.9). Indeed, we have

(3.10) A w+ %@w + 02w = 02 v — N0y v + 17;88,21) + 9% =0,
and

(3.11) w(z,0) = v(zy,0) = xu, (2n) = XHx (2).

Putting together (3.10]) and (3.11]) we have that w solves ({3.9)). Now we note
that w has finite energy. Indeed,

(3.12) // (|wa\2 + |8Zw|2)dny(m)z1_Sdz
RYT!

- / / (18,02 + 9.0[2) d ()2 d,
72

where we have used that vy = ynv_1 ® 71 and

L/) dVN—lGﬂ)::l'
RN-1

Since the functional
Hyp, 3 ¢ // X (IVaol? + 10201 dyn (2) 2 *d=
RY*!

is strictly convex, it has only one critical point which coincides with the
minimizer. Hence we have proved that w(z, z) = v(xy, z) is the solution of
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the minimum problem

1nf{// (|Vzu‘2 + |82u|2)dny(x)zl—st .
RY+
u € HIIOC(R1+1)5 U(', 0) = XHiv}v

and recalling the definition of P (H,Z,V ), the equality in (3.12)) gives the result.
O

Remark 3.4. As it will be clear later, in order to have a more accurate
control on the constant in the inequality we need an approximation of
the value of the fractional Gaussian perimeter of the halfspace. Firstly, we
define the normalized Hermite polynomials as

() = (?/;l!"e“f (;i:)n(e_f).

It is well known that

“+o00
—Ay hy, =nh, inR and / hphm dy = 0.

—0o0

Thus now define the halfline H, := (—o0,r) and f"(z) := xm, (x). We expand
f7 on the basis given by h,, and have

=" fih
k=0

It is quite simple to evaluate f;, indeed those are just the projection of f"
on hy, and are given, for any k € NU {0}, by
d\", _.z
(daz) (e 2 ) dx

. +o00 . _i T (_1)k
fim [ iy o= [
B (—l)k d k—1 e
B v 2rk! <d7"> (e : )’

where, with abuse of notation when k = 0

- sld)

m"‘,\,

~—

\
5~
N
[
8 =

Q)

m“*.o

QU
=~
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Hence the following formula holds

+o0
313 R =5 [ FEA)G

2
S (ST MRS T
k=1 k=1
1 00 .1 d k—1 2 2
“wxa((E) @)

—+00

—00

where in the second and the third equality, respectively, we used the fact

that
+oo +o0
/ hidy=1 and / hydy = 0.

—0o0 —00

Now we use the asymptotic behavior of the Hermite polynomials (see [25]
Pag. 201, Formula 18]). After the change of variable z = 5 and the use of
Stirling’s formula for the Gamma function, we see that tﬁ;re exists v € N
such that

2

9 1/4 =
hi—1(r) ~ () (k:e for k > v.

=

™ -1)
Therefore,
1 /2 (& 1, > 1
PY'(H,) o [ e (Z 5 W)+ > le)
k=1 k=v+1

1 /2 _.2 ( )+/°° dx
~ — —e 2 c\T,V,S8 T 1-s

dm V vt it
—2(u+1)—155>

1—s

- <c(r, v,8) + &

where ¢(r, v, s) is the partial sum up to & = v that is uniformly bounded with
respect to s € [0, 1] (since v does not depend on s). Using Proposition
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this simply means that

lim (1 —s)P)(HY) = lim (1 - s)P}"(H,

s—1- s—1-

1

= HN
\/gﬂ'Q \/77r2

From now on to shorten the notation, we set Ug = U, to denote the

solution of problem (3.4) when ¢ = xg.
The last proposition of this section gives an estimate of the rate of con-

vergence of the Stinga-Torrea extension and will be useful later.

1

Proposition 3.5. Lets € (0,1) and ¢ € Dom((—A,)®). Let Uy, be the solu-
tion of the extension problem

A 1—2s A 21, — : RN-I—I
(314 { WV 20V 402V =0 in RYFY

Vi(z,0) = ¢(x) in RV,

Then, the following estimate holds

(3.15) (9= Up(2), ) = /RN 0(p = Up(,2)) dy < B2s2™ (0]
with

1 T'(1-ys)
£ Ky (1 +5)

Bas ==
where Kog is given in ({3.6]).

Proof. As a consequence of Theorem we know that the solution U,(z, 2)
is given by

22

Uplar2) = 1y | e (=0 0) ) s .

Then, we can write
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and using Proposition

(3.16)

Now recall that the function v(-,t) =e 2 ((—A,)2¢) is nothing but the
solution of the Cauchy problem
(3.17) 2000 = Ayv (z,t) € RN x (0, 00),

| o(,0) = (~A)ip(@) weRY

evaluated at ¢t. Hence we have
d
(3.18) Lo o)1, = / oA v dy = / vDiv(e”
RN RN

= —/ |Vol2dy <0
RN

[E1

2 Vv)d

which 1mphes that the L2 norm is nonmcreasmg in the ¢ variable. Hence,

using and ( - formula can be rewritten as

2

1 . ©1—ew
(319) (o~ Ul >¢>L2sr||<—m>wr\%z/ e ar
v (s) "Jooo

1 F( ) 25 2 2 2s 2
with P95 as in the statement, and the proof is complete. O

Since we are interested in applying the above lemma to characteristic
functions and fractional perimeters, it is convenient to rewrite the above
lemma with ¢ = y g and s replaced by s/2. We notice that if ¢ is a characteri-
stic function, then U, < 1 everywhere (to prove it one uses the variational
formulation and shows that replacing any competitor v with min{v, 1} the
energy does not increase). This observation allows us to say that xg(xg —
Ug) > 0 in the whole Rf“. Then reads

(3.20) /E(l — Ug(-,2)) dy < 6SZS[XE]§{§ = 282" P](E).
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4. Estimates on the level sets of the extension

This section contains some technical results that are the core of the proof of
the Main Theorem. Our strategy follows the ideas in [7]: we first estimate
DI (FE) from below with a quantity involving the asymmetry of the superlevel
sets of Ug(-,z) and then, in a suitable range of values for the function Ug
and for the vertical variable z, we show that the asymmetry of the superlevel
sets is estimated from below by A, (E).

The following proposition provides an enhanced version of an inequality
proved in [36]. In the spirit of [7, 29], given a set E, we apply the Stinga-
Torrea extension to the function xg and exploit the sharp Gaussian quanti-
tative inequality proved in [3].

Proposition 4.1. Let s € (0,1) and let E CRN be an open set with
PJ(F) < 0. Fort >0 and z > 0, we set

Ei, = {:U eRY . Ug(z,z) > t}, pz(t) == v(Eyz),

and, for any m € (0,1)

@71(m)2
e 2
) = g 1imye
Then for every halfspace H := H,, , s.t. v(H) = v(E) we have

Iea(t)

_ pY l Oozl_s z b 2
(4.1) PJ(E) - P; (H)zzc/o d/o Pl () A (Br2) = s

where ¢ is the absolute constant in [3, Main Theorem).

Proof. We have

1 1 B
PJ(E) = i[XE]iﬂ =3 <//RN+1 2178\ Y, Upldy(z)dz
7 +

+// zl_S\GZUEPd’y(x)dz).
RYH

For the z-derivative, we may compute (see [36, Lemma 3.2]).

(4.2) // 130,02y (2)dz > // 190,02y (2)dz,
R{X+1 Rﬁ+1
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while for the x-derivative, by using the coarea formula we have
(4.3) // 78|V, Up|?dy(z)dz
RY+

:/ zl—Sdz/ dt/ Vo UgldH) ™ (x)
0 0 {zeRN:Ug(z,z)=t}

e ) 00 P.(E . 2
Z / Zl_SdZ/ ’Y( L ) N—-1 dt?
0 0 dHy ~ (x)

f{xGRN:UE(J;,z):t} V. Ug|

where we have used Hélder’s inequality with exponents (2,2) to get

dHY ()
( ) 7( t, ) = < B, . E| v (JJ) OB, . vacUE|

Now, we consider the Ehrhard-symmetrized of the set Ey .

Ef,={z e RN : Up(z,z2) > t}
and, from the trivial inequality
(Py(Erz) = Py(E;L))* >0,
we easily obtain
(45)  PyE.)? = P (EL) + 2P (E7L) (Py(Br) — Py(E7L)).

Moreover the Main Theorem in [3] provides us with the following quantita-
tive inequality

r

N‘m

(46)  Py(E) = Py(E") = Py(E)— ™% > m

‘A'Y(E)Qa
for any set E such that y(E) = m, with » = ®~!(m), and for some absolute
constant ¢ > 0, see the discussions in the Introduction of [3] and in [4].

Inserting (4.6 in (4.5)) we conclude that

(4.7) Py(E..)? > Py(Ef,)? + f(‘;zc(t))g (Ef) A, (B2
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If we put (4.7)) into (4.3) we obtain

(4.8) // A78|\V,Ug | dy(z)dz
R+
o0 o~ P(E* 2
2/ zl_sdz/ Mdt
0 o —ui(D)

1 [ o0 Py (E; )AL (B )3
b [ [T auet) P

where we have the equalities

HNl
(Ei) = [ / :
palt) = (£ - rVUE|

drHN 1
/
Mz(t)Z—/ = el
BYon |V:cUE|

By using these facts we obtain

/ zlsdz/ / A%z / _ P tzzv)l dt
0 0 —Mz 0 0 faE iy~ (z)

IV.Ug|

/ 15dz/ (/ \vag|dH§V—1(x)>dt,
0 OE;,

where we have applied Holder’s inequality with exponents (2,2) as in (4.4]).
In this case the equality occurs, as the functions |V,U%|'/? and |V, U%|~1/2
are constant on the level plane E; .. By applying the coarea formula we get

(4.9) / zl—Sdz/ (/ |vag\dH§V—1(x)>dt
0 0 OF; .
_ // S, U 2y () d
RY+



Quantitative fractional Gaussian isoperimetric inequality 593

By plugging (4.9)) into (4.8) and summing with (4.2)) we finally obtain

1
_ 1 < / / A8V, Up Py (2)dz + / / zl_s|8ZUE]2d'y(:c)dz>
RN+1 Rf+l
> 2 <// A7V U dy(x)dz + // zls|8ZUE]2dfy(x)dz>
RY*!

1 s * (Etz) (Et,z)
20/0 dz/o f(uz(t)) dt

—pi(t)
L[>, > Py (Ef ) Ay (B z)?
:PS(H)+/ 7! Sdz/ fpz(t) L = dt,
! 2¢ Jo 0 (1:(0) — (1)
hence, recalling that P, (E},) = I(v(E},)), we get the thesis. O

The next lemma roughly says that if we know how asymmetric is a set
and we are given another set which is not too different (in the measure sense)
from the first one, then the asymmetry of the second set can be controlled
from below by the asymmetry of the first one.

Lemma 4.2. Let E,F C RN be two measurable sets such that

Y(FAE)

(4.10) 7

S K“A’Y(F)v

for some 0 < k < 1/2. Then

L ifv(E\F) =0,

where ¢, := {1 + 2k, ify(E\F)>0.

Proof. The case A,(F) =0 is trivial, so we can suppose that A (F) > 0.
We take a halfspace H such that v(H) = v(F) and

v(EAH)
V(E) 7

and the halfspace H' with v(H') = v(F) and such that H is contained in
H' or vice versa. We recall that

AV(E) =

VFAE) = |xr — xellL1
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and by using the triangle inequality we obtain

EAH) 'Y(F)<’V(FAH’) V(H'AH) V(FAE)>
V(E)

NG G
A(F) " AFAE)\ _ 2(F)
Zwm(*‘”(” 2 )27@)

where in the second inequality we have used the fact that

a(g) = 1ELH)

(1 - 26)A, (F),

V(H'AH) = |y(F) = ~(E)| < 7(FAE).

In order to conclude, we need to get a lower bound for the ratio y(F)/v(E).
If v(E'\ F) =0, we have

AF)  (F)
WE)  AENF) "

If v(E'\ F) > 0, we observe that

WF) V(F) - V(F) - 1
Y(E) ~AE\NF)+y(ENF) = y(FAE)+~(F) ~ 1+ rA,(F)

We conclude by recalling that the Gaussian Fraenkel asymmetry is always
smaller than 2. O

Now we prove a technical result similar to [7, Lemma 4.2]. It states that if
we are not going too far in the vertical direction, then the level sets of the
extension of the characteristic function of a set F are comparable to E itself.

Lemma 4.3. For a > 0 fized, the following implication holds:

if %gtgz and 0<z< <8a531133(E)>’
then
(4.11) Y(E\ {z e RN : Ug(z,z) > t}) < é
and
(4.12) v({z € RN : Up(z,2) >t} \ E) < é
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Proof. Fixed z € (0,00), we set
Bp.:={z € E:(1-Ug(z,z2) >26,P](E)az"}.

Then, by using the Markov-Chebychev inequality and (3.20)), we get

(4'13) ’Y(BE,Z) < 1/E(1 - UE(az)) d’)/ < é

~ 28,P](E)az®

We now take ¢ and z as in the statement. Then for every x € E such that
Ug(z,z) < t, we have

1
1-Ug(z,2) >1—t> 1 > 208 P](E)z*
that is
{z eRY : Up(x,2) <t}NE=E\{z eRY : Ug(x,2) >t} C Bp,..

By using (4.13]), we get (4.11]). Inequality (4.12)) can be obtained in the same
way replacing F with E°¢ and using Ugc =1 — Ug. g

Next proposition is an easy application of the previous Lemmas [£.2] and
and is one of the main ingredients in the proof of our Main Theorem.

Proposition 4.4. Fort € [1,2] and z € (0, 2], where

zp 1= <APY(E)’Y(E)>1,

728sPJ (E)
we have
(14) [1(Bez) = 1(B)] < 29(B)Ay(E)
and
(4.15) A(Brl) > 2 AL (E).

13
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Proof. Observe that by using (4.11)) and (4.12) in Lemmal[4.3|with the choice

we get

V(Et,zAE) 7(E \ Et,z) V(Et,z \ E)

vE) , ’Yl(E) ) v(E)

Finally, by triangle inequality we have
Y(E) = (B AE) <y(E.) <v(E) + (B AE),

thus by joining the last two estimates we get (4.14). We can now apply
Lemma [£.2] with x = 2/9, so we obtain

1—
1+

Ol
ot

Ay (Erz) > Ay(B) = 13A4,(E),

NelPe

and this concludes the proof. [l
5. Proof of the main theorem

Now our goal is to prove that

(5.1) DY(E) = P}(E) — P)(H) 2 CoynAy (E)*

where H is a halfspace such that v(H) = v(E) = m. We also observe that
if PJ(E) > 2P](H), then by using that A (E) < 2

Therefore, we reduce ourselves to considering the case
(5.2) P)(E) <2P](H).

We are now ready to prove our Main Theorem.

Proof of the Main Theorem. Since v(E) + v(E¢) =
we can assume with no loss of generality that v(E)

and PJ(E) = PJ(E°)
<3
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We set

o (A7<E>7<E> >i
T\ Pl HE))

by assumption (5.2), we have

[ A(EN(E)\*

where zg is defined in Proposition [£.4] By using Proposition [£.1]in conjunc-
tion with Proposition [£.4] we have

Ly, [ I(p-()
PAE) =PI > 5 [ [ () A (Bt
)

Lo [ (1)
> g0 [ e [ o)Ay
0

25 e [d I (t
> oA (B [t / Fls) e

25Ve g [ (1)
2 en (E)/O 2! dz/i 0 dt

dt

©
ST

)dt

where in the last inequality we used the fact that the function R 3 x +—

e(x) = f+ 5 s bounded from below by /e/2 and that f=eco® ! We
observe that by using and the fact that A,(E) < 2, for every t € [% 3
we get

13

(B,

or(B) <+(B)(1-24,8) < ) <) (14 54,(B)) < ¢

9 9
and so,

et) 2 min{ 16, €€ [2a(8). 2otB)] } =5 o

for every t € [1, 3] and for every z € [0, z1]. This in turn implies that
3

254/e “ s 4
P)(E) - P)(H) > 6%{%(,3),47(157)2/ 2! dz/
0 Y

A

N
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We estimate the inner integral in ¢ by using Jensen’s inequality

3 —1
/4 —u}zm dt > i</ —u;<t)dt> > %('v(E;z) —(Bs.)

4

W

-

By using (4.14) with ¢t = 1/4 and t = 3/4, we get

4

B2 2By <o(E) (14 5AE)) ~+(E) (1 4,(E))

In conclusion, we get

E <
PI(E) - P 2 PN AAE D0 [ 1y,
4 676c v(E) 4 Jo

32 5% Ay (E) 0y(B) Ve 2=
676c y(E) 16 2—s"!

U3 (1N Ve o (B
- 2 _ Y 2_1q ’7( )b
13<¢ 2 2 5 (BsPd(H))>

NN

and this concludes the proof. O

6. Further remarks and open problems

Some comments on the constant C,,, obtained in the Main Theorem
are in order: though it is quite explicit, unfortunately we only have an
upper bound for the constant ¢ (coming from the sharp quantitative
Gaussian isoperimetric inequality in [3]) and we have only an approx-
imation of the value of the fractional Gaussian perimeter of the halfs-
pace provided by Remark Moreover, the constant does not seem to
be stable as s — 0" or s — 1~ and the exponent 2/s of the asymme-
try does not seem to be sharp. Indeed, in complete similarity with the
Euclidean case proved in [27], we expect the optimal power to be 2 for
any s € (0,1) although the techniques we used do not lead to the ex-
pected sharp exponent even in the FEuclidean case, as one can see in
[29] for the fractional perimeter or in [7] for a nonlocal spectral func-
tional.

The fact that Cs , is independent of the dimension suggests to generalize
the result in infinite dimension, as usual in the framework of Gauss spaces,
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replacing RY with an infinite dimensional Wiener space. Unfortunately, at
the moment this is not possible using an argument of approximation via
cylindrical functions, even in the local case. Indeed, the proof of our result
relies on other papers where dimension-free inequalities are provided, such as
[3, [4]. Nevertheless, these results (as well as ours) do not extend directly to
the infinite dimensional case since the proofs use fine properties of sets with
finite perimeter and regularity results for almost minimizers of the perimeter
functional that are not available in infinite dimension.
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