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We present a general methodology to evaluate the mass moments of two-dimensional domains 
and axisymmetric solids made of functionally graded materials. The approach developed in 
the paper is based on the sequence of two steps. First, the original domain integrals are 
converted to integrals extended to the relevant boundary by exploiting Gauss theorem. Second, for 
domains having a polygonal or circular shape, the boundary integrals are evaluated analytically 
by providing algebraic expressions that depend upon the parameters defining the density 
distribution, the position vectors of the vertices of the polygonal domain or the initial and 
ending points of an arbitrary circular sector, respectively. While the first step refers to moments 
of arbitrary order, the second step is limited to the most useful quantities for engineering 
applications, i.e. generalised mass, static moment and inertia tensor. The formulas derived in 
the paper are validated by means of examples retrieved from the specialised literature for which 
analytical results are available or have been specifically derived by the authors. Finally, in order 
to ascertain the computational savings entailed by the use of the proposed analytical formulas 
with respect to numerical techniques, the mass moments of a longitudinal section of a human 
femure, made of a functionally graded material and characterised by a linear density distribution, 
have been computed.

1. Introduction

Functionally Graded Materials (FGMs) are materials obtained by combining different mechanical properties that exhibit special 
functionalities. For this reason, they have been commonly applied in the engineering sciences in the last thirty years, such as 
aerospace, civil, construction and electronics.

The possibility of designing and manufacturing composite materials in a quite arbitrary way has more recently allowed for the use 
of FGM in orthopaedic implants and bone studies [1], graphene platelets [2], and so on. Furthermore, FGMs have been instrumental 
in analysing the free vibration and buckling behaviour of Euler-Bernoulli columns [3] and plates [4].

In this respect, the evaluation of geometric properties, such as mass, static moment, and inertia tensor (also called moments 
of order 0, 1, and 2), is crucial for analysing mechanical systems and designing two- (2D) and three-dimensional (3D) engineering 
components [5,6]; for instance, the determination of the centre of gravity plays a paramount role in statics [7,8] and dynamics [9,10], 
both for 2D and 3D applications contexts.
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Let Ω be a domain having a mass density 𝜚 and 𝑃 an arbitrary point of Ω with coordinates 𝑥, 𝑦 in a Cartesian reference frame 
{𝑂, 𝐞1, 𝐞2} where 𝑂 is a generic point and 𝐞1, 𝐞2 are orthogonal unit vectors. Denoting by 𝝆= 𝑥 𝐞1 + 𝑦 𝐞2 the position vector of 𝑃 , the 
mass moments of Ω of order 𝑘, 𝑘 being a non-negative integer, are defined by

𝐉(𝑘),𝜚2Ω = ∫
Ω

𝜚(𝝆) [⊗𝝆, 𝑘] d𝐴, (1)

where the symbol [⊗𝝆, 𝑘] stands for

[⊗𝝆, 𝑘] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if 𝑘 = 0,
𝝆 if 𝑘 = 1,
𝝆⊗ 𝝆 if 𝑘 = 2,
. . . . . . . . . . . . . . . . . . . . . .

𝝆⊗ 𝝆⊗⋯⊗ 𝝆

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑘 times

if 𝑘 > 2.

Analogously, we shall denote by

𝐉(𝑘),𝜚
axΩ = 2𝜋 ∫

Ω

𝜚(𝝆) [⊗𝝆, 𝑘] (𝝆 ⋅ 𝐛) d𝐴, (2)

the 𝑘-th mass moment of axisymmetric solids in which the direction orthogonal to the axis of revolution is defined by the unit vector 
𝐛. Explicit formulas for the analytical computation of (1) and (2) will be presented only for 𝑘 = 0, 𝑘 = 1 and 𝑘 = 2 since they represent 
the most frequent cases in the applications.

Despite their importance, the evaluation of these properties for domains having arbitrary shape is not always a trivial task, even 
for homogeneous 2D domains, i.e. domains characterised by a constant density. In fact, the evaluation of the geometric properties 
is usually presented in the literature in terms of domain integrals, which requires an analytical procedure that, apart from simple 
geometrical shapes such as rectangle, circle, and so on, can seldom be pursued.

The approach exploited till now to compute generalised mass moments, i.e. mass moments of solids having an inhomogeneous 
density, has been the use of numerical methods such as the Monte Carlo technique or the finite element method. In the last case the 
original domain is decomposed into standard elemental regions like triangles or quadrangles and Gauss integration is used.

More recently, Ochiai has presented in [11,12] a procedure for computing the mass moments of inhomogeneous domains based 
on the boundary element method [13], wherein the original domain integrals have been rephrased as boundary integral equations 
discretised by constant or linear elements; this required the solution of a linear system of equations for computing the interpolation 
parameters.

A much more effective approach for computing mass moments is based on the transformation of the original domain integral into 
a boundary integral by means of Gauss theorem although the relevant details are rarely presented in books, a remarkable exception 
being [14], and are limited to papers [15] or web pages. Subsequently, mass moments expressed in terms of boundary integrals are 
evaluated analytically for the domains of greater interest in the applications such as the circular or polygonal ones. Of particular 
importance are these last ones since any 2D domain can be approximated by a polygonal shape.

The same approach has been successfully exploited in several engineering applications in which complex domain integrals need to 
be efficiently computed. We mention, among others, the elastic-plastic response of concrete sections [16], the ultimate limit analysis 
of reinforced concrete sections [17–19], the evaluation of displacement, strain and stress fields in elastic half-spaces loaded on their 
surface by thermal actions [20] or by arbitrary distributions of surface pressures [21–23]. Further applications refer to bifurcation 
analysis of isotropic elastic solids [24–27], to geodesy [28,29] and to domains with small voids as in the case of porous materials [30,

31]. More recently Gauss theorem has been applied to solve the Eshelby inclusion problem both for two-dimensional [32] and three-

dimensional [33] elastic domains.

Motivated by the previous considerations, we present an approach, based on Gauss theorem, to analytically compute the mass 
moments of functionally graded 2D domains and axisymmetric solids having arbitrary shape. For polygons and circular sectors, this 
leads to analytical formulas, thus completely avoiding the need to discretise the domain, as in the finite element method, or solve 
a linear system of equations, as in [11,12]. Specifically, the formulas derived in the paper depend upon the parameters defining 
the non-constant mass density and geometric quantities. These are the coordinates of the vertices for polygonal domains while, for 
circular sectors, the radius, the anomalies of the segments defining the sector and the coordinates of the relevant endpoints.

We limit ourselves to computing the 0th-order (mass), 1st-order (static moment), and 2nd-order (inertia tensor) mass moments of 
polygons and circular sectors although the approach presented in the paper can be applied to generalised mass moments of arbitrary 
order, i.e. to integrals (1) and (2) for 𝑘 > 2. In addition, the algorithm for computing the 3rd-order mass moment of homogeneous 
circular sectors is presented.

The main advantage of analytically evaluating the mass moments of functionally graded 2D domains and axisymmetric solids lies 
in the time saving that can be achieved for linear [34] and nonlinear structural analyses [35,36]; especially in this last case, change 
in the geometric or material properties obliges to continuously update the computation of the mass moments required to carry out 
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the iterations intrinsic to the nonlinear structural problems. As proved in Subsec. 9.3, even for a much simpler linear analysis, the 
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use of the analytical formulas derived in the paper reduces the overall computational effort by orders of magnitude with respect to 
that associated with the use of quadrature formulas.

The paper is organised as follows. A brief overview of the geometric properties of homogeneous domains and their evaluation by 
means of boundary integrals is presented in Sec. 2.

The mass moments of 2D domains and axisymmetric solids characterised by polynomial, exponential and polynomial quadratic 
density distributions are expressed as boundary integrals in Secs. 3 and 4, respectively, by exploiting differential identities derived 
in specific Sections included as Supplementary Material (SM). The analytical evaluation of the relevant boundary integrals by means 
of algebraic expressions is explicitly carried out in Secs. 5 and 6 for polygonal domains.

The same procedure is repeated in Secs. 7 and 8 for 2D domains and axisymmetric solids shaped as circular sectors by considering 
density varying along a radial direction either linearly or quadratically.

Finally, the proposed approach is validated in Sec. 9 by comparing the results prompting from the application of the formulas 
derived in the paper with an analytical or numerical evaluation of the domain integrals.

2. Mass moments of homogeneous 2D domains

To illustrate the rationale of the approach developed in the body of the paper, it is convenient to preliminarily address the 
computation of the basic geometric properties 𝐉(0)2Ω, 𝐉(1)2Ω and 𝐉(2)2Ω of homogeneous 2D domains, i.e. the quantities (1) when 𝜚(𝝆) = 1
and setting in turn 𝑘 = 0, 𝑘 = 1 and 𝑘 = 2. To this end, we recall the following result [14]:

Proposition 2.1. For a homogeneous 2D domain Ω it turns out to be

𝐉(𝑘)2Ω = 1
2 + 𝑘 ∫

𝜕Ω

[⊗𝝆, 𝑘] (𝝆 ⋅ 𝐧) d𝑠 = 1
2 + 𝑘

𝐉(𝑘)2𝜕Ω, (3)

where 𝜕Ω is the boundary of Ω and 𝐧 is the unit normal pointing outwards. The proof follows from Eq. (A.8) in the SM 1 included 
as Supplementary Material for this paper.

According to the previous result, we can evaluate the geometric properties of 2D domains by simply computing line integrals. In 
fact, applying Eq. (3) one has

𝐴 = ∫
Ω

d𝐴 = 1
2 ∫
𝜕Ω

𝝆 ⋅ 𝐧d𝑠 = 1
2
𝐉(0)2𝜕Ω, (4a)

𝐬𝑂 = ∫
Ω

𝝆d𝐴 = 1
3 ∫
𝜕Ω

(𝝆 ⋅ 𝐧) 𝝆d𝑠 = 1
3
𝐉(1)2𝜕Ω, (4b)

𝐉𝑂 = ∫
Ω

𝝆⊗ 𝝆d𝐴 = 1
4 ∫
𝜕Ω

(𝝆 ⋅ 𝐧) (𝝆⊗ 𝝆) d𝑠 = 1
4
𝐉(2)2𝜕Ω, (4c)

that provide very useful expressions for the area A (𝑘 = 0), static moment 𝐬𝑂 (𝑘 = 1) and inertia tensor 𝐉𝑂 (𝑘 = 2) of homogeneous 
2D domains.

Actually, in the frequent case of polygonal domains, the aforementioned mass moments can be computed analytically by means 
of expressions depending upon the vectors 𝝆𝑖, 𝝆𝑖+1 that collect the coordinates of the vertices 𝑖 and 𝑖 + 1, endpoints of the 𝑖-th side, 
and the relevant unit normal 𝐧𝑖, see, e.g., Fig. 1. In particular, denoting by 𝑠𝑖 the curvilinear abscissa along the 𝑖-th side having origin 
at 𝑖-th vertex, we set 𝜆𝑖 = 𝑠𝑖∕𝑙𝑖, where 𝑙𝑖 is the length of the 𝑖-th side, and

𝝆(𝑠𝑖(𝜆𝑖)) = 𝝆̃(𝜆𝑖) = 𝝆𝑖

(
1 − 𝜆𝑖

)
+ 𝝆𝑖+1 𝜆𝑖;

furthermore,

𝐧𝑖 =
(
𝝆𝑖+1 − 𝝆𝑖

)⟂
‖𝝆𝑖+1 − 𝝆𝑖‖ =

Δ𝝆⟂
𝑖

𝑙𝑖
,

where the symbol ⟂ represents the clockwise rotated of the vector Δ𝝆𝑖 so that 𝐧𝑖 points outwards Ω. This convention is a consequence 
of numbering the vertices of 𝜕Ω in a counter-clockwise sense.

A simple example of the previous path of reasoning is represented by the algebraic counterpart of the formulas (4). Although the 
relevant expressions are available in the literature [14] it is instructive to report them explicitly since the formulas derived later for 
arbitrary density distributions represent their generalisation.

In particular, observing that

𝝆̃(𝜆𝑖) ⋅ 𝐧𝑖 = 𝝆𝑖 ⋅
Δ𝝆⟂

𝑖

𝑙𝑖
=

𝝆𝑖 ⋅ 𝝆
⟂
𝑖+1

𝑙𝑖
, (5)
252

it turns out to be
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Fig. 1. A polygonal domain.

𝐴 = 1
2
𝐉(0)2𝜕Ω = 1

2

𝑛∑
𝑖=1

𝑐𝑖,

𝐬𝑂 = 1
3
𝐉(1)2𝜕Ω = 1

6

𝑛∑
𝑖=1

𝑐𝑖 (𝝆𝑖 + 𝝆𝑖+1),

𝐉𝑂 = 1
4
𝐉(2)2𝜕Ω = 1

12

𝑛∑
𝑖=1

𝑐𝑖

[
𝐏𝑖 +

1
2
𝐏𝑖,𝑖+1 + 𝐏𝑖+1

]
,

(6)

where it has been set

𝑐𝑖 = 𝝆𝑖 ⋅ 𝝆
⟂
𝑖+1, 𝐏𝑖,𝑖+1 = 𝝆𝑖 ⊗ 𝝆𝑖+1 + 𝝆𝑖+1 ⊗ 𝝆𝑖, 𝐏𝑖 = 𝝆𝑖 ⊗ 𝝆𝑖, (7)

while the expression of 𝐏𝑖+1 directly stems from that of 𝐏𝑖 .

The notation just introduced will be particularly useful in the sequel to provide compact expressions of the generalised mass 
moments associated with complex density distributions.

3. Functionally graded 2D domains: expressions for boundary integrals

Aim of this Section is to express the mass moments (1) by means of boundary integrals for

∙ a polynomial density distribution

𝜚pln(𝝆) =
𝑚∑

𝑞=0
𝐶𝑞 (𝝆 ⋅ 𝐚)𝑞 , (8)

where 𝐶0, 𝐶1, … , 𝐶𝑚 are real coefficients, 𝑚 is a non-negative integer and 𝐚 is a unit vector defining the direction along which the 
density is varying.

∙ an exponential density distribution

𝜚exp(𝝆) = 𝑒𝛼 𝝆⋅𝐚, (9)

where 𝛼 is a real coefficient.

∙ a polynomial quadratic density distribution

𝜚plq(𝝆) =
𝑚∑

𝑞=0
𝐶𝑞 (𝝆 ⋅ 𝝆)𝑞 =

𝑚∑
𝑞=0

𝐶𝑞 ‖𝝆‖2 𝑞. (10)

In particular, we are going to derive formulas analogous to (6) in which both the constant 𝑐𝑖 and the quantities 𝝆𝑖, 𝝆𝑖+1, 𝐏𝑖, 𝐏𝑖,𝑖+1
and 𝐏𝑖+1 will be scaled by further constants depending upon the order of the moment to be computed and the coefficients defining 
the density distribution.

All formulas derived in the sequel are based upon suitable applications of Gauss theorem and the relevant proofs are included in 
the Supplementary Material section which the interested reader is referred to.

3.1. Polynomial density distribution

The integrals (1) specialise as follows

𝐉(𝑘),pln =
𝑚∑

𝐶𝑞 (𝝆 ⋅ 𝐚)𝑞 [⊗𝝆, 𝑘] d𝐴,
253

2Ω
𝑞=0

∫
Ω
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so that, introducing the notation

𝐷(𝑘𝑗)
𝑝 =

𝐶𝑞

𝑝+ 𝑘+ 𝑗
, (11)

where 𝑝 (𝑗) is a non-negative (positive) integer, the following result can be profitably invoked:

Proposition 3.1. Let Ω be a 2D domain characterised by a polynomial density expressed by the formula (8). The 𝑘-order moment can be 
expressed as an integral extended to the boundary 𝜕Ω by means of the formula

𝐉(𝑘),pln

2Ω =
𝑚∑

𝑞=0
𝐷(𝑘2)

𝑞 ∫
𝜕Ω

(𝝆 ⋅ 𝐚)𝑞 (𝝆 ⋅ 𝐧) [⊗𝝆, 𝑘] d𝑠 =
𝑚∑

𝑞=0
𝐷(𝑘2)

𝑞
𝐉(𝑘),pln

2𝜕Ω . (12)

The previous identity, whose proof can be inferred from Eq. (B.1) in the SM 2, can be specialised in a straightforward manner 
to the cases of greater interest, that is 𝑘 = 0, 𝑘 = 1 and 𝑘 = 2, although the relevant expressions can also be obtained directly from 
Eqs. (B.2), (B.3) and (B.4), respectively.

The boundary integrals associated with the specialisation of formula (12), namely

𝐉(0),pln

2𝜕Ω = ∫
𝜕Ω

(𝝆 ⋅ 𝐚)𝑞 (𝝆 ⋅ 𝐧) d𝑠, (13a)

𝐉(1),pln

2𝜕Ω = ∫
𝜕Ω

(𝝆 ⋅ 𝐚)𝑞 (𝝆 ⋅ 𝐧) 𝝆d𝑠, (13b)

𝐉(2),pln

2𝜕Ω = ∫
𝜕Ω

(𝝆 ⋅ 𝐚)𝑞 (𝝆 ⋅ 𝐧) (𝝆⊗ 𝝆) d𝑠, (13c)

are explicitly computed in Sec. 5 and reported in Eqs. (23), (25) and (27) for polygonal domains.

3.2. Exponential density distribution

According to (9), formula (1) specialises to

𝐉(𝑘),exp

2Ω = ∫
Ω

𝑒𝛼 𝝆⋅𝐚 [⊗𝝆, 𝑘] d𝐴,

for which it is advantageous to exploit the following result

Proposition 3.2. Assuming that Ω is a functionally graded 2D domain characterised by an exponential density distribution (9), the 𝑘-order 
moment can be expressed as a function of integrals extended to the boundary 𝜕Ω by means of the formula

𝐉(𝑘),exp

2Ω =
⎡⎢⎢⎣∫𝜕Ω 𝑒𝛼𝝆⋅𝐚 [⊗𝝆, 𝑘]⊗ 𝐧d𝑠

⎤⎥⎥⎦ 𝐚
𝛼
−𝐀

(
𝐉(𝑘−1),exp

2Ω ,… ,𝐉(0),exp

2Ω

)
= 𝐉(𝑘),exp

2𝜕Ω
𝐚
𝛼
−𝐀

(
𝐉(𝑘−1),exp

2Ω ,… ,𝐉(0),exp

2Ω

)
, (14)

where 𝐀 is a tensor function, depending on lower-order mass moments, that is null for 𝑘 = 0.

The previous result, that follows from identity (B.6), basically states that the mass moment of order 𝑘 ≥ 1 can be obtained by 
computing only boundary integrals since each one of the lower order moments 𝐉(𝑘−1),exp

2Ω can in turn be computed by means of 
boundary integrals.

Specifically, invoking formula (B.14), (B.15) and (B.16) in the SM 2 as well as formulas (A.1l) and (A.1m) in the SM 1, one has

𝐉(0),exp

2Ω =
⎡⎢⎢⎣∫𝜕Ω 𝑒𝛼𝝆⋅𝐚 𝐧d𝑠

⎤⎥⎥⎦ ⋅ 𝐚𝛼 , (15a)

𝐉(1),exp

2Ω =
⎡⎢⎢⎣∫𝜕Ω 𝑒𝛼𝝆⋅𝐚 (𝝆⊗ 𝐧) d𝑠

⎤⎥⎥⎦ 𝐚
𝛼
− 𝐉(0),exp

2Ω
𝐚
𝛼
, (15b)

𝐉(2),exp

2Ω =
⎡⎢⎢⎣∫𝜕Ω 𝑒𝛼𝝆⋅𝐚 (𝝆⊗ 𝝆⊗ 𝐧) d𝑠

⎤⎥⎥⎦ 𝐚
𝛼
− 𝐉(1),exp

2Ω ⊗
𝐚
𝛼
− 𝐚

𝛼
⊗ 𝐉(1),exp

2Ω . (15c)

The specialisation of the previous formulas to the case of polygonal domains is detailed in Sec. 5, while the analytical formulas 
254

for their evaluation are reported in Eqs. (30), (32) and (34).
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3.3. Polynomial quadratic density distribution

Invoking (10), formula (1) provides

𝐉(𝑘),plq

2Ω =
𝑚∑

𝑞=0
𝐶𝑞 ∫

Ω

(𝝆 ⋅ 𝝆)𝑞 [⊗𝝆, 𝑘] d𝐴,

so that the identity (B.18) yields

Proposition 3.3. Given a 2D domain Ω having a polynomial density specified by Eq. (10), the 𝑘-order moment can be computed by means 
of boundary integrals defined by

𝐉(𝑘),plq

2Ω =
𝑚∑

𝑞=0
𝐷

(𝑘2)
2 𝑞 ∫

𝜕Ω

(𝝆 ⋅ 𝝆)𝑞 (𝝆 ⋅ 𝐧) [⊗𝝆, 𝑘] d𝑠 =
𝑚∑

𝑞=0
𝐷

(𝑘2)
2 𝑞

𝐉(𝑘),plq

2𝜕Ω .

Hence, for the cases of greater interest, e.g. 𝑘 = 0, 1, 2, one has

𝐉(0),plq

2Ω =
𝑚∑

𝑞=0
𝐷

(02)
2 𝑞 ∫

𝜕Ω

(𝝆 ⋅ 𝝆)𝑞 (𝝆 ⋅ 𝐧) d𝑠, (16a)

𝐉(1),plq

2Ω =
𝑚∑

𝑞=0
𝐷

(12)
2 𝑞 ∫

𝜕Ω

(𝝆 ⋅ 𝝆)𝑞 (𝝆 ⋅ 𝐧) 𝝆d𝑠, (16b)

𝐉(2),plq

2Ω =
𝑚∑

𝑞=0
𝐷

(22)
2 𝑞 ∫

𝜕Ω

(𝝆 ⋅ 𝝆)𝑞 (𝝆 ⋅ 𝐧) (𝝆⊗ 𝝆) d𝑠, (16c)

and the analytical evaluation of the boundary integrals for polygonal domains will be addressed in Sec. 5. For the reader’s conve-

nience, the relevant formulas can be found in Eqs. (36).

4. Functionally graded axisymmetric solids: expressions for boundary integrals

In the following Subsections, we derive the expressions for boundary integrals of the generalised mass moments (2) for axisym-

metric solids endowed with the density functions reported in Sec. 3.

Indeed, the formulas derived in the previous Section are valid for axisymmetric solids as well, apart from the constant 2 𝜋, as long 
as 𝐚 coincides with the unit vector 𝐛 orthogonal to the axis of revolution. However, for greater generality, we shall assume 𝐚 ≠ 𝐛.

4.1. Polynomial density distribution

The 𝑘-order mass moment of an axisymmetric domain characterised by a polynomial density distribution expressed by Eq. (8) is 
defined as

𝐉(𝑘),pln

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐶𝑞 ∫
Ω

(𝝆 ⋅ 𝐚)𝑞 (𝝆 ⋅ 𝐛) [⊗𝝆, 𝑘] d𝐴.

For its computation, the following result is beneficial:

Proposition 4.1. Assuming Ω to be a functionally graded axisymmetric domain, characterised by a polynomial density defined by Eq. (8), 
the 𝑘-order moment can be represented as a function of integrals that are extended to the boundary 𝜕Ω

𝐉(𝑘),pln

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷(𝑘3)
𝑞 ∫

𝜕Ω

(𝝆 ⋅ 𝐚)𝑞 (𝝆 ⋅ 𝐛) (𝝆 ⋅ 𝐧) [⊗𝝆, 𝑘] d𝑠 = 2𝜋

𝑚∑
𝑞=0

𝐷(𝑘3)
𝑞 𝐉(𝑘),pln

ax𝜕Ω . (17)

The proof follows from Eq. (C.1) in the SM 3, the constant 𝐷(𝑘3)
𝑞 being defined in (11). The previous identity can be specialised 

to the most important cases, namely 𝑘 = 0, 𝑘 = 1 and 𝑘 = 2, in the following way

𝐉(0),pln

ax𝜕Ω = ∫
𝜕Ω

(𝝆 ⋅ 𝐚)𝑞 (𝝆 ⋅ 𝐛) (𝝆 ⋅ 𝐧) d𝑠, (18a)

𝐉(1),pln = (𝝆 ⋅ 𝐚)𝑞 (𝝆 ⋅ 𝐛) (𝝆 ⋅ 𝐧) 𝝆d𝑠, (18b)
255

ax𝜕Ω ∫
𝜕Ω
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𝐉(2),pln

ax𝜕Ω = ∫
𝜕Ω

(𝝆 ⋅ 𝐚)𝑞 (𝝆 ⋅ 𝐛) (𝝆 ⋅ 𝐧) (𝝆⊗ 𝝆) d𝑠. (18c)

In addition, the previous integrals are computed explicitly in Sec. 6 and reported in Eqs. (37), (40) and (42) for axisymmetric 
polygonal solids.

4.2. Exponential density distribution

The mass moment of order-𝑘, defined by

𝐉(𝑘),exp

axΩ = 2𝜋 ∫
Ω

𝑒𝛼𝝆⋅𝐚 (𝝆 ⋅ 𝐛) [⊗𝝆, 𝑘] d𝐴,

can be expressed in terms of boundary integrals on account of the following

Proposition 4.2. Under the assumption that Ω is a functionally graded axisymmetric domain, characterised by an exponential density 
distribution (9), the 𝑘-order moment can be expressed as a function of integrals that are extended to the boundary 𝜕Ω by means of

𝐉(𝑘),exp

axΩ = 2𝜋

⎡⎢⎢⎣∫𝜕Ω 𝑒𝛼𝝆⋅𝐚 (𝝆 ⋅ 𝐛) [⊗𝝆, 𝑘]⊗ 𝐧d𝑠
⎤⎥⎥⎦ 𝐚

𝛼
−𝐀

(
2𝜋 𝐉(𝑘),exp

2Ω ,𝐉(𝑘−1),exp

axΩ ,… ,𝐉(0),exp

axΩ

)
=

= 2𝜋 𝐉(𝑘),exp

ax𝜕Ω
𝐚
𝛼
−𝐀

(
2𝜋 𝐉(𝑘),exp

2Ω ,𝐉(𝑘−1),exp

axΩ ,… ,𝐉(0),exp

axΩ

)
,

where the tensor function 𝐀 is dependent both on the lower-order mass moments and on the moment 𝐉(𝑘),exp

2Ω defined in Eq. (14).

The proof of the previous proposition can be derived from Eq. (C.6) in the SM 3. Accordingly, the expressions for the mass 
moments of order 𝑘 = 0, 1, 2 of axisymmetric solids are given by

𝐉(0),exp

axΩ = 2𝜋

{⎡⎢⎢⎣∫𝜕Ω 𝑒𝐚𝐛 𝐧d𝑠
⎤⎥⎥⎦ ⋅ 𝐚𝛼 − 𝐉(0),exp

2Ω

( 𝐚
𝛼
⋅ 𝐛
)}

, (19a)

𝐉(1),exp

axΩ = 2𝜋

{⎡⎢⎢⎣∫𝜕Ω 𝑒𝐚𝐛 (𝝆⊗ 𝐧) d𝑠
⎤⎥⎥⎦ 𝐚

𝛼
− 𝐉(1),exp

2Ω

( 𝐚
𝛼
⋅ 𝐛
)}

− 𝐉(0),exp

axΩ
𝐚
𝛼
, (19b)

𝐉(2),exp

axΩ = 2𝜋

{⎡⎢⎢⎣∫𝜕Ω 𝑒𝐚𝐛 (𝝆⊗ 𝝆⊗ 𝐧) d𝑠
⎤⎥⎥⎦ 𝐚

𝛼
− 𝐉(2),exp

2Ω

( 𝐚
𝛼
⋅ 𝐛
)}

− 𝐉(1),exp

axΩ ⊗
𝐚
𝛼
− 𝐚

𝛼
⊗ 𝐉(1),exp

axΩ , (19c)

in which 𝑒𝐚𝐛 = 𝑒𝛼 𝝆⋅𝐚 (𝝆 ⋅ 𝐛) while 𝐉(0),exp

2Ω , 𝐉(1),exp

2Ω , 𝐉(2),exp

2Ω are defined in Eqs. (15).

Furthermore, the aforementioned integrals are explicitly computed in Sec. 6 and presented in Eqs. (44), (45), and (46) for 
axisymmetric polygonal solids.

4.3. Polynomial quadratic density distribution

The 𝑘-order mass moment of an axisymmetric domain endowed with the density distribution (10) is defined as

𝐉(𝑘),plq

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐶𝑞 ∫
Ω

(𝝆 ⋅ 𝝆)𝑞 (𝝆 ⋅ 𝐛) [⊗𝝆, 𝑘] d𝐴.

The mass moment can be converted to the sum of integrals extended to the boundary 𝜕Ω by invoking the identity (C.13) estab-

lished in the SM 3. Hence, one can state the following

Proposition 4.3. Given an axisymmetric domain Ω having the polynomial quadratic density distribution specified by Eq. (10), the 𝑘-order 
moment can be computed as

𝐉(𝑘),plq

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷
(𝑘3)
2 𝑞 ∫

𝜕Ω

(𝝆 ⋅ 𝝆)𝑞 (𝝆 ⋅ 𝐛) (𝝆 ⋅ 𝐧) [⊗𝝆, 𝑘] d𝑠.
256

Accordingly, one has
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𝐉(0),plq

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷
(03)
2 𝑞 ∫

𝜕Ω

(𝝆 ⋅ 𝝆)𝑞 (𝝆 ⋅ 𝐛) (𝝆 ⋅ 𝐧) d𝑠,

𝐉(1),plq

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷
(13)
2 𝑞 ∫

𝜕Ω

(𝝆 ⋅ 𝝆)𝑞 (𝝆 ⋅ 𝐛) (𝝆 ⋅ 𝐧) 𝝆d𝑠,

𝐉(2),plq

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷
(23)
2 𝑞 ∫

𝜕Ω

(𝝆 ⋅ 𝝆)𝑞 (𝝆 ⋅ 𝐛) (𝝆 ⋅ 𝐧) (𝝆⊗ 𝝆) d𝑠.

(20)

The above-mentioned integrals are explicitly evaluated in Sec. 6 and presented in Eqs. (47) for the significant case of axisymmetric 
polygonal solids.

5. Evaluation of boundary integrals for functionally graded polygonal domains

The formulas developed in the previous Sections have allowed us to prove that the domain integrals involved in the definition of 
the generalised mass moments can be expressed as a function of boundary integrals, i.e. integrals extended to the boundary of the 
original domain.

Aim of this Section is to show how the boundary integrals can be evaluated analytically by means of algebraic formulas depending 
solely upon the coefficients appearing in the density function and the coordinates of the vertices defining the boundary 𝜕Ω of a 
polygonal domain Ω, see, e.g., Fig. 1.

Denoting by 𝑛 the number of vertices of 𝜕Ω, by 𝜕Ω𝑖 the generic side of 𝜕Ω and assuming that the vertices are numbered 
consecutively by traversing the boundary of Ω in counter-clockwise sense, the integral of a generic function 𝑓 defined on 𝜕Ω can be 
computed as follows

∫
𝜕Ω

𝑓 (𝑠) d𝑠 =
𝑛∑

𝑖=1
∫
𝜕Ω𝑖

𝑓 (𝑠𝑖) d𝑠𝑖 =
𝑛∑

𝑖=1

𝑙𝑖

∫
0

𝑓 (𝑠𝑖) d𝑠𝑖 =
𝑛∑

𝑖=1

1

∫
0

𝑓 (𝜆𝑖) d𝜆𝑖 𝑙𝑖, (21)

where 𝑓 = 𝑓◦𝑠.

For the cases of interest, the function 𝑓 is given by tensor expressions depending upon the vector 𝝆 spanning the 𝑖-th side and 
the relevant unit normal 𝐧𝑖.

5.1. Polynomial density

Let us assume that the polygonal domain Ω is endowed with a polynomial density distribution given by (8) and that the boundary 
integrals 𝐉(0),pln

2𝜕Ω , 𝐉(1),pln

2𝜕Ω and 𝐉(2),pln

2𝜕Ω defined in Eqs. (13) need to be evaluated.

Accordingly, we make use of the following result

(
𝝆̃(𝜆𝑖) ⋅ 𝐚

)𝑞 = 𝑞∑
𝑟=0

(
𝑞

𝑟

) (
𝝆𝑖 ⋅ 𝐚

)𝑞−𝑟 (1 − 𝜆𝑖

)𝑞−𝑟 (
𝝆𝑖+1 ⋅ 𝐚

)𝑟
𝜆𝑟
𝑖 =

𝑞∑
𝑟=0

(
𝑞

𝑟

)
𝑎
𝑞−𝑟
𝑖

(
1 − 𝜆𝑖

)𝑞−𝑟
𝑎𝑟
𝑖+1 𝜆

𝑟
𝑖 , (22)

stemming from the Binomial Theorem, so that (13a) yields

𝐉(0),pln

2𝜕Ω = 1
𝑞 + 1

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑎
𝑞−𝑟
𝑖

𝑎𝑟
𝑖+1, (23)

the coefficient 𝑐𝑖 being defined in Eq. (7). Hence, on account of (12), it turns out to be

𝐉(0),pln

2Ω =
𝑚∑

𝑞=0
𝐷𝑃 (2)

𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑎
𝑞−𝑟
𝑖

𝑎𝑟
𝑖+1, (24)

where

𝐷𝑃 (𝑗)
𝑞 =

𝐶𝑞

(𝑞 + 1) (𝑞 + 2)…(𝑞 + 𝑗)
= 𝐶𝑞 𝑃

(𝑗)
1∕𝑞,

and 𝑗 is a positive integer.

Furthermore, the boundary integral 𝐉(1),pln

2𝜕Ω in (13b) becomes

𝐉(1),pln

2𝜕Ω = 𝑃
(2)
1∕𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑎
𝑞−𝑟
𝑖

𝑎𝑟
𝑖+1 [(𝑞 − 𝑟+ 1)𝝆𝑖 + (𝑟+ 1)𝝆𝑖+1], (25)
257

so that, recalling (12), the associated domain integral 𝐉(1),pln

2Ω is given by
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𝐉(1),pln

2Ω =
𝑚∑

𝑞=0
𝐷𝑃 (3)

𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑎
𝑞−𝑟
𝑖

𝑎𝑟
𝑖+1

[ 1∏
𝑞−𝑟

𝝆𝑖 +
1∏
𝑟

𝝆𝑖+1

]
. (26)

Finally, we infer from (13c) that

𝐉(2),pln

2𝜕Ω = 𝑃
(3)
1∕𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑎
𝑞−𝑟
𝑖

𝑎𝑟
𝑖+1

[ 2∏
𝑞−𝑟

𝐏𝑖 +
1∏

𝑞−𝑟

1∏
𝑟

𝐏𝑖,𝑖+1 +
2∏
𝑟

𝐏𝑖+1

]
. (27)

In conclusion, invoking Eq. (12), the domain integral 𝐉(2),pln

2Ω can be expressed as follows

𝐉(2),pln

2Ω =
𝑚∑

𝑞=0
𝐷𝑃 (4)

𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑎
𝑞−𝑟
𝑖

𝑎𝑟
𝑖+1

[ 2∏
𝑞−𝑟

𝐏𝑖 +
1∏

𝑞−𝑟

1∏
𝑟

𝐏𝑖,𝑖+1 +
2∏
𝑟

𝐏𝑖+1

]
. (28)

5.2. Exponential density

In the sequel the line integrals in (15) are evaluated as a function of the coordinates of the vertices of a domain Ω having an 
arbitrary polygonal shape. The mass moments can be evaluated by using the transformation (21), formula (5) and integrating by 
parts. Specifically, it turns out to be

𝐉(0),exp

2Ω =
𝑛∑

𝑖=1

𝑒𝛼 𝑎𝑖 − 𝑒𝛼 𝑎𝑖+1

𝛼 (𝑎𝑖 − 𝑎𝑖+1)
Δ𝝆⟂

𝑖 ⋅
𝐚
𝛼

iff 𝑎𝑖 ≠ 𝑎𝑖+1, (29)

where 𝑎𝑖 and 𝑎𝑖+1 have been defined in (22).

The generic addend of the sum in formula (29) is not defined when 𝑎𝑖 = 𝑎𝑖+1, i.e. when the 𝑖-th side of the polygon is orthogonal 
to the vector 𝐚 along which the density varies. Along this special side (𝑆𝑆) the quantity 𝑒𝛼𝝆⋅𝐚 is constant so that the contribution to 
the integral (15a) provided by 𝑆𝑆 becomes

∫
𝑆𝑆

𝑒𝛼 𝝆⋅𝐚 𝐧d𝑠 = 𝑒𝛼 𝑎𝑖 ∫
𝑆𝑆

𝐧d𝑠 = 𝑒𝛼 𝑎𝑖 Δ𝝆⟂
𝑆𝑆

,

since the constant 𝑒𝛼𝝆⋅𝐚 attains the same value whatever is the vector considered along 𝑆𝑆 . Accordingly, formula (29) is conveniently 
reformulated as follows

𝐉(0),exp

2Ω =
𝑛∑

𝑖=1

⎧⎪⎨⎪⎩
𝑒𝛼 𝑎𝑖 − 𝑒𝛼 𝑎𝑖+1

𝛼 (𝑎𝑖 − 𝑎𝑖+1)
Δ𝝆⟂

𝑖
⋅
𝐚
𝛼

iff 𝑎𝑖 ≠ 𝑎𝑖+1,

𝑒𝛼 𝑎𝑖 Δ𝝆⟂
𝑖 ⋅

𝐚
𝛼

iff 𝑎𝑖 = 𝑎𝑖+1.

(30)

In order to evaluate the integral 𝐉(1),exp

2Ω in Eq. (15b), it is convenient to introduce the following notation

𝑒
(𝑐)
(𝑖)𝑑,𝑓 = 𝑒𝛼 𝑎𝑖 [𝛼 𝑑 (𝑎𝑖 − 𝑎𝑖+1) − 𝑓 ]𝑐 , 𝑒

(𝑐)
−(𝑖)𝑑,𝑓 = 𝑒𝛼 𝑎𝑖 [𝛼 𝑑 (𝑎𝑖+1 − 𝑎𝑖) − 𝑓 ]𝑐 ,

𝑒
(𝑐)
(𝑖+1)𝑑,𝑓 = 𝑒𝛼 𝑎𝑖+1 [𝛼 𝑑 (𝑎𝑖 − 𝑎𝑖+1) − 𝑓 ]𝑐 , 𝑒

(𝑐)
−(𝑖+1)𝑑,𝑓 = 𝑒𝛼 𝑎𝑖+1 [𝛼 𝑑 (𝑎𝑖+1 − 𝑎𝑖) − 𝑓 ]𝑐 ,

where 𝑐, 𝑑 and 𝑓 are integers.

Assuming 𝑎𝑖 ≠ 𝑎𝑖+1 the contribution provided by the 𝑖-th side to the boundary integral in Eq. (15b) becomes

𝐉(1),exp

2𝜕Ω𝑖
= [(Ψ1 𝝆𝑖 +Ψ2 𝝆𝑖+1)⊗Δ𝝆⟂

𝑖 ]
𝐚
𝛼
, 𝑎𝑖 ≠ 𝑎𝑖+1,

where

Ψ1 =
𝑒𝛼 𝑎𝑖+1 + 𝑒

(1)
(𝑖)1,1

𝛼 2(𝑎𝑖 − 𝑎𝑖+1)2
, Ψ2 =

𝑒𝛼 𝑎𝑖 + 𝑒
(1)
−(𝑖+1)1,1

𝛼 2(𝑎𝑖 − 𝑎𝑖+1)2
, 𝑎𝑖 ≠ 𝑎𝑖+1. (31)

Whereas, should it be 𝑎𝑖 = 𝑎𝑖+1, one can infer

𝐉(1),exp

2𝜕Ω𝑆𝑆
= 𝑒𝛼 𝑎𝑖

2
[
(𝝆𝑖 + 𝝆𝑖+1)⊗Δ𝝆⟂

𝑖

] 𝐚
𝛼
, 𝑎𝑖 = 𝑎𝑖+1.

Hence, introducing the quantity

𝐉(1),exp

2𝜕Ωtbs
=
⎧⎪⎨⎪⎩
𝐉(1),exp

2𝜕Ω𝑖
iff 𝑎𝑖 ≠ 𝑎𝑖+1,

𝐉(1),exp

2𝜕Ω𝑆𝑆
iff 𝑎𝑖 = 𝑎𝑖+1,
258

it turns out to be
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𝐉(1),exp

2Ω =
𝑛∑

𝑖=1
𝐉(1),exp

2𝜕Ωtbs
− 𝐉(0),exp

2Ω
𝐚
𝛼
, (32)

where 𝐉(0),exp

2Ω is given by (30).

If 𝑎𝑖 ≠ 𝑎𝑖+1, the evaluation of the boundary integral in (15c) along the 𝑖-th side of 𝜕Ω is provided by

𝐉(2),exp

2𝜕Ω𝑖
=
{[

𝐏𝑖Ψ3 + 𝐏𝑖,𝑖+1 Ψ4 + 𝐏𝑖+1Ψ5

]
⊗Δ𝝆⟂

𝑖

}
𝐚
𝛼
,

where 𝐏𝑖, 𝐏𝑖,𝑖+1 and 𝐏𝑖+1 are defined in (7) and

Ψ3 =
𝑒
(2)
(𝑖)1,0 + 2 (𝑒(1)−(𝑖)1,−1 − 𝑒𝛼 𝑎𝑖+1 )

𝛼 3(𝑎𝑖 − 𝑎𝑖+1)3
, Ψ4 =

𝑒
(1)
(𝑖)1,2 + 𝑒

(1)
(𝑖+1)1,−2

𝛼 3(𝑎𝑖 − 𝑎𝑖+1)3
, Ψ5 =

−𝑒
(2)
(𝑖+1)1,0 − 2 (𝑒(1)(𝑖+1)1,−1 − 𝑒𝛼 𝑎𝑖 )

𝛼 3(𝑎𝑖 − 𝑎𝑖+1)3
. (33)

On the contrary, when 𝑎𝑖 = 𝑎𝑖+1, one has

𝐉(2),exp

2𝜕Ω𝑆𝑆
=
{

𝑒𝛼 𝑎𝑖

3

[
𝐏𝑖 +

1
2
𝐏𝑖,𝑖+1 + 𝐏𝑖+1

]
⊗Δ𝝆⟂

𝑖

}
𝐚
𝛼
.

Thus, setting

𝐉(2),exp

2𝜕Ωtbs
=
⎧⎪⎨⎪⎩
𝐉(2),exp

2𝜕Ω𝑖
iff 𝑎𝑖 ≠ 𝑎𝑖+1,

𝐉(2),exp

2𝜕Ω𝑆𝑆
iff 𝑎𝑖 = 𝑎𝑖+1,

one has

𝐉(2),exp

2Ω =
𝑛∑

𝑖=1
𝐉(2),exp

2𝜕Ωtbs
− 𝐉(1),exp

2Ω ⊗
𝐚
𝛼
− 𝐚

𝛼
⊗ 𝐉(1),exp

2Ω , (34)

where 𝐉(1),exp

2Ω is supplied in (32).

5.3. Polynomial quadratic density distribution

Let us now consider a polygonal domain Ω of arbitrary shape endowed with the density distribution (10). To provide a compact 
representation of the ensuing results we set

𝑢𝑖 = ‖𝝆𝑖‖2, 𝑣𝑖 = 𝝆𝑖 ⋅ 𝝆𝑖+1, 𝑤𝑖 = ‖𝝆𝑖+1‖2,
and we observe that[

𝝆̃(𝜆𝑖) ⋅ 𝝆̃(𝜆𝑖)
]𝑞 = [𝑢𝑖 (1 − 𝜆𝑖

)2 + 2𝑣𝑖

(
1 − 𝜆𝑖

)
𝜆𝑖 +𝑤𝑖 𝜆

2
𝑖

]𝑞
.

Invoking the trinomial expansion, the previous equation becomes

[
𝝆̃(𝜆𝑖) ⋅ 𝝆̃(𝜆𝑖)

]𝑞 = 𝑞∑
𝑟=0

𝑟∑
𝑗=0

(
𝑞

𝑟

)(
𝑟

𝑗

)
𝑢
𝑗
𝑖
2𝑟−𝑗 𝑣

𝑟−𝑗
𝑖

𝑤
𝑞−𝑟
𝑖

(
1 − 𝜆𝑖

)𝑟+𝑗
𝜆
2 𝑞−𝑟−𝑗
𝑖

.

For its repeated use in the paper, it is also convenient to introduce the following notation

𝑑𝑖 =
(
𝑞

𝑟

)(
𝑟

𝑗

)
𝑢
𝑗
𝑖
𝑣
𝑟−𝑗
𝑖

𝑤
𝑞−𝑟
𝑖

2𝑟−𝑗 , 𝑓
𝑟𝑗𝑏2𝑞𝑐
2𝑞𝑎 = (𝑟+ 𝑗 + 𝑏)! (2 𝑞 − 𝑟− 𝑗 + 𝑐)!

(2 𝑞 + 𝑎)!
, (35)

where 𝑎, 𝑏, 𝑐, 𝑗, 𝑟 and 𝑞 are non-negative integers.

Using the transformation (21), formula (5) and the notation defined in (7), one finally has for the integrals in (16)

𝐉(0),plq

2Ω =
𝑚∑

𝑞=0
𝐷

(02)
2 𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑟∑
𝑗=0

𝑑𝑖 𝑓
𝑟𝑗02𝑞0
2𝑞1 ,

𝐉(1),plq

2Ω =
𝑚∑

𝑞=0
𝐷

(12)
2 𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑟∑
𝑗=0

𝑑𝑖

(
𝑓

𝑟𝑗12𝑞0
2𝑞2 𝝆𝑖 + 𝑓

𝑟𝑗02𝑞1
2𝑞2 𝝆𝑖+1

)
,

𝐉(2),plq =
𝑚∑

𝐷
(22)

𝑛∑
𝑐

𝑞∑ 𝑟∑
𝑑
(
𝑓

𝑟𝑗22𝑞0 𝐏 + 𝑓
𝑟𝑗12𝑞1 𝐏 + 𝑓

𝑟𝑗02𝑞2 𝐏
)
.

(36)
259
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6. Evaluation of boundary integrals for functionally graded axisymmetric polygonal solids

In this Section, we show how to evaluate analytically the boundary integrals defined in Sec. 4 in the relevant case of axisymmetric 
polygonal solids, i.e. solids obtained by rotating a polygonal domain around an axis of symmetry.

6.1. Polynomial density

Let us assume that the axisymmetric polygonal solid Ω is endowed with a polynomial density distribution given by (8) and that 
the boundary integrals 𝐉(0),pln

ax𝜕Ω , 𝐉(1),pln

ax𝜕Ω and 𝐉(2),pln

ax𝜕Ω defined in Eqs. (18) need to be computed.

Following a path of reasoning completely similar to that illustrated in Subsection 5.1, we have from (18a)

𝐉(0),pln

ax𝜕Ω = 𝑃
(2)
1∕𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑎
𝑞−𝑟
𝑖

𝑎𝑟
𝑖+1

[
(𝑞 − 𝑟+ 1)𝑏𝑖 + (𝑟+ 1)𝑏𝑖+1

]
, (37)

where it has been set

𝑏𝑖 = 𝝆𝑖 ⋅ 𝐛 𝑏𝑖+1 = 𝝆𝑖+1 ⋅ 𝐛. (38)

Hence, on account of (17), it turns out to be

𝐉(0),pln

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷𝑃 (3)
𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑎
𝑞−𝑟
𝑖

𝑎𝑟
𝑖+1

[ 1∏
𝑞−𝑟

𝑏𝑖 +
1∏
𝑟

𝑏𝑖+1

]
. (39)

Analogously, the boundary integral 𝐉(1),pln

ax𝜕Ω in (18b) becomes

𝐉(1),pln

ax𝜕Ω = 𝑃
(3)
1∕𝑞 𝐒

(1),pln

ax𝜕Ω = 𝑃
(3)
1∕𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑎
𝑞−𝑟
𝑖

𝑎𝑟
𝑖+1

[(
𝑏𝑖

2∏
𝑞−𝑟

+ 𝑏𝑖+1

1∏
𝑞−𝑟

1∏
𝑟

)
𝝆𝑖 +

(
𝑏𝑖

1∏
𝑞−𝑟

1∏
𝑟

+ 𝑏𝑖+1

2∏
𝑟

)
𝝆𝑖+1

]
, (40)

so that, recalling (17), the associated domain integral 𝐉(1),pln

axΩ is given by

𝐉(1),pln

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷𝑃 (4)
𝑞 𝐒(1),pln

ax𝜕Ω . (41)

Finally, we infer from (18c) that

𝐉(2),pln

ax𝜕Ω = 𝑃
(4)
1∕𝑞 𝐒

(2),pln

ax𝜕Ω = 𝑃
(4)
1∕𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑎
𝑞−𝑟
𝑖

𝑎𝑟
𝑖+1

[(
𝑏𝑖

3∏
𝑞−𝑟

+ 𝑏𝑖+1

2∏
𝑞−𝑟

1∏
𝑟

)
𝐏𝑖

+

(
𝑏𝑖

2∏
𝑞−𝑟

1∏
𝑟

+ 𝑏𝑖+1

1∏
𝑞−𝑟

2∏
𝑟

)
𝐏𝑖,𝑖+1 +

(
𝑏𝑖

1∏
𝑞−𝑟

2∏
𝑟

+ 𝑏𝑖+1

3∏
𝑟

)
𝐏𝑖+1

]
,

(42)

so that formula (17) yields

𝐉(2),pln

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷𝑃 (5)
𝑞 𝐒(2),pln

ax𝜕Ω . (43)

6.2. Exponential density

Consider an axisymmetric polygonal solid Ω with an exponential density distribution given by equation (9). We are going to 
compute the boundary integrals 𝐉(0),exp

axΩ , 𝐉(1),exp

axΩ and 𝐉(2),exp

axΩ as defined in the formula (19). To this end, we first introduce the 
following notation

𝜀𝑖𝑙 = 𝑏𝑖Ψ𝑙 𝜀(𝑖+1)𝑙 = 𝑏𝑖+1 Ψ𝑙 𝑙 = 1,… ,9,

where 𝑏𝑖, 𝑏𝑖+1 are defined in (38), Ψ1, … , Ψ5 are obtained from (31) and (33) while Ψ6, … , Ψ9 are given by:

Ψ6 =
𝑒
(3)
(𝑖)1,0 − 3 𝑒

(2)
(𝑖)1,0 + 6 (𝑒(1)(𝑖)1,1 + 𝑒𝛼 𝑎𝑖+1 )

𝛼4 (𝑎𝑖 − 𝑎𝑖+1)4
, Ψ7 =

𝑒
(2)
(𝑖)1,0 + 2 𝑒

(1)
−(𝑖)2,−3 + 2 𝑒

(1)
−(𝑖+1)1,3

𝛼4 (𝑎𝑖 − 𝑎𝑖+1)4
, Ψ8 =

𝑒
(2)
(𝑖+1)1,0 + 2 𝑒

(1)
(𝑖+1)2,−3 + 2 𝑒

(1)
(𝑖)1,3

𝛼4 (𝑎𝑖 − 𝑎𝑖+1)4
,

Ψ9 =
𝑒
(3)
−(𝑖+1)1,0 − 3 𝑒

(2)
(𝑖+1)1,0 + 6 (𝑒𝛼 𝑎𝑖 + 𝑒

(1)
−(𝑖+1)1,1)

𝛼4 (𝑎𝑖 − 𝑎𝑖+1)4
,

260

provided that 𝑎𝑖 ≠ 𝑎𝑖+1.
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Hence, setting

𝐉(0),exp

ax𝜕Ω𝑖
= (𝜀𝑖1 + 𝜀(𝑖+1)2)Δ𝝆⟂

𝑖
⋅
𝐚
𝛼

iff 𝑎𝑖 ≠ 𝑎𝑖+1, 𝐉(0),exp

ax𝜕Ω𝑆𝑆
= 𝑒𝛼 𝑎𝑖

2
(
𝑏𝑖 + 𝑏𝑖+1

)
Δ𝝆⟂

𝑖
⋅
𝐚
𝛼

iff 𝑎𝑖 = 𝑎𝑖+1,

and

𝐉(0),exp

ax𝜕Ωtbs
=
⎧⎪⎨⎪⎩
𝐉(0),exp

ax𝜕Ω𝑖
iff 𝑎𝑖 ≠ 𝑎𝑖+1,

𝐉(0),exp

ax𝜕Ω𝑆𝑆
iff 𝑎𝑖 = 𝑎𝑖+1,

it turns out to be

𝐉(0),exp

axΩ = 2𝜋

[
𝑛∑

𝑖=1
𝐉(0),exp

ax𝜕Ωtbs
− 𝐉(0),exp

2Ω

( 𝐚
𝛼
⋅ 𝐛
)]

, (44)

where 𝐉(0),exp

2Ω is provided by (30).

In order to evaluate 𝐉(1),exp

axΩ in (19b) we preliminarily set

𝐉(1),exp

ax𝜕Ω𝑖
=
{[

(𝜀𝑖3 + 𝜀(𝑖+1)4)𝝆𝑖 + (𝜀𝑖4 + 𝜀(𝑖+1)5)𝝆𝑖+1

]
⊗Δ𝝆⟂

𝑖

} 𝐚
𝛼

iff 𝑎𝑖 ≠ 𝑎𝑖+1,

𝐉(1),exp

ax𝜕Ω𝑆𝑆
=
{

𝑒𝛼 𝑎𝑖

3

[
𝑏𝑖 𝝆𝑖 + 𝑏𝑖+1 𝝆𝑖+1 +

1
2
(
𝑏𝑖 𝝆𝑖+1 + 𝑏𝑖+1 𝝆𝑖

)]
⊗Δ𝝆⟂

𝑖

}
𝐚
𝛼

iff 𝑎𝑖 = 𝑎𝑖+1,

and

𝐉(1),exp

ax𝜕Ωtbs
=
⎧⎪⎨⎪⎩
𝐉(1),exp

ax𝜕Ω𝑖
iff 𝑎𝑖 ≠ 𝑎𝑖+1,

𝐉(1),exp

ax𝜕Ω𝑆𝑆
iff 𝑎𝑖 = 𝑎𝑖+1.

We thus have

𝐉(1),exp

axΩ = 2𝜋

[
𝑛∑

𝑖=1
𝐉(1),exp

ax𝜕Ωtbs
− 𝐉(1),exp

2Ω

( 𝐚
𝛼
⋅ 𝐛
)]

− 𝐉(0),exp

axΩ
𝐚
𝛼
, (45)

where 𝐉(1),exp

2Ω and 𝐉(0),exp

axΩ are given by (32) and (44) respectively.

It is also useful to introduce the following notation

𝐀𝑖 = 𝜀𝑖6 𝐏𝑖 + 𝜀𝑖7 𝐏𝑖,𝑖+1 + 𝜀𝑖8 𝐏𝑖+1, 𝐁𝑖 = 𝜀(𝑖+1)7 𝐏𝑖 + 𝜀(𝑖+1)8 𝐏𝑖,𝑖+1 + 𝜀(𝑖+1)9 𝐏𝑖+1, 𝐂𝑖 =
𝑒𝛼 𝑎𝑖

4
𝑏𝑖

(
𝐏𝑖 +

1
3
𝐏𝑖,𝑖+1 +

1
3
𝐏𝑖+1

)
,

𝐃𝑖 =
𝑒𝛼 𝑎𝑖

4
𝑏𝑖+1

(1
3
𝐏𝑖 +

1
3
𝐏𝑖,𝑖+1 + 𝐏𝑖+1

)
.

Hence, setting

𝐉(2),exp

ax𝜕Ω𝑖
=
[(
𝐀𝑖 +𝐁𝑖

)
⊗Δ𝝆⟂

𝑖

] 𝐚
𝛼
, 𝐉(2),exp

ax𝜕Ω𝑆𝑆
=
[(
𝐂𝑖 +𝐃𝑖

)
⊗Δ𝝆⟂

𝑖

] 𝐚
𝛼
,

𝐉(2),exp

ax𝜕Ωtbs
=
⎧⎪⎨⎪⎩
𝐉(2),exp

ax𝜕Ω𝑖
iff 𝑎𝑖 ≠ 𝑎𝑖+1,

𝐉(2),exp

ax𝜕Ω𝑆𝑆
iff 𝑎𝑖 = 𝑎𝑖+1,

one finally arrives at

𝐉(2),exp

axΩ = 2𝜋

[
𝑛∑

𝑖=1
𝐉(2),exp

ax𝜕Ωtbs
− 𝐉(2),exp

2Ω

( 𝐚
𝛼
⋅ 𝐛
)]

−
(
𝐉(1),exp

axΩ ⊗
𝐚
𝛼
+ 𝐚

𝛼
⊗ 𝐉(1),exp

axΩ

)
, (46)

where 𝐉(2),exp

2Ω and 𝐉(1),exp

axΩ are provided by (34) and (45) respectively.

6.3. Polynomial quadratic density distribution

In the case of axisymmetric solids with a polynomial quadratic density distribution as defined in equation (10) one has, recall-
261

ing (20)
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Fig. 2. A circular sector.

𝐉(0),plq

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷
(03)
2 𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑟∑
𝑗=0

𝑑𝑖

[
𝑓

𝑟𝑗12𝑞0
2𝑞2 𝑏𝑖 + 𝑓

𝑟𝑗02𝑞1
2𝑞2 𝑏𝑖+1

]
,

𝐉(1),plq

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷
(13)
2 𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑟∑
𝑗=0

𝑑𝑖

{[
𝑓

𝑟𝑗22𝑞0
2𝑞3 𝑏𝑖 + 𝑓

𝑟𝑗12𝑞1
2𝑞3 𝑏𝑖+1

]
𝝆𝑖 +

[
𝑓

𝑟𝑗12𝑞1
2𝑞3 𝑏𝑖 + 𝑓

𝑟𝑗02𝑞2
2𝑞3 𝑏𝑖+1

]
𝝆𝑖+1

}
,

𝐉(2),plq

axΩ = 2𝜋

𝑚∑
𝑞=0

𝐷
(23)
2 𝑞

𝑛∑
𝑖=1

𝑐𝑖

𝑞∑
𝑟=0

𝑟∑
𝑗=0

𝑑𝑖

{[
𝑓

𝑟𝑗32𝑞0
2𝑞4 𝑏𝑖 + 𝑓

𝑟𝑗22𝑞1
2𝑞4 𝑏𝑖+1

]
𝐏𝑖 +

[
𝑓

𝑟𝑗22𝑞1
2𝑞4 𝑏𝑖 + 𝑓

𝑟𝑗12𝑞2
2𝑞4 𝑏𝑖+1

]
𝐏𝑖,𝑖+1

+
[
𝑓

𝑟𝑗12𝑞2
2𝑞4 𝑏𝑖 + 𝑓

𝑟𝑗02𝑞3
2𝑞4 𝑏𝑖+1

]
𝐏𝑖+1

}
,

(47)

where the constants 𝑐𝑖 and 𝑑𝑖 are defined in (7) and (35), respectively, while 𝑏𝑖 and 𝑏𝑖+1 in (38).

7. Functionally graded circular sectors

Let be a domain having the shape of a circular sector of radius 𝑅 and amplitude 𝛽 − 𝛼, see, e.g., Fig. 2. The centre 𝐶 of the 
circle from which is extracted is identified by the position vector 𝝆𝐶 , whereas the starting and ending points of the arc are located 
by the position vectors designated as 𝝆𝑖 and 𝝆𝑗 , respectively.

Therefore, a generic point 𝑃 belonging to is identified by the position vector

𝝆 = 𝝆𝐶 + 𝑟𝐧𝜃, 𝑟 ∈ [0,𝑅], (48)

where 𝐧𝜃 = [cos𝜃 sin𝜃]𝑇 and 𝜃 ∈ [𝛼, 𝛽].
We are interested to express the mass moments (1) by means of boundary integrals for density varying along the radial direction 

from 𝝆𝐶 . Specifically, we shall consider

∙ a linear density distribution

𝜚lin(𝝆) = ‖𝝆− 𝝆𝐶‖ = ‖Δ𝝆𝐶‖, (49)

∙ a quadratic density distribution

𝜚qua(𝝆) = ‖Δ𝝆𝐶‖2. (50)

In particular, by applying Gauss theorem, we shall derive analytical formulas for the mass moments of functionally graded circular 
sectors depending upon the anomalies of the segments defining the sector and the coordinates of the relevant endpoints.

The derivation of such formulas requires, as an intermediate step, the knowledge of the mass moments referred to homogeneous 
circular sectors. For this reason, they are explicitly computed in the next subsection.

7.1. Mass moments of homogeneous circular sectors

Invoking (4a) one has

𝐴 = 1
2 ∫
𝜕

𝝆 ⋅ 𝐧d𝑠 = 1
2

[
∫
𝑠𝑠𝑖

𝝆 ⋅ 𝐧d𝑠+ ∫
𝜕 𝑖

𝝆 ⋅ 𝐧𝜃 d𝑠+ ∫
𝑠𝑠𝑗

𝝆 ⋅ 𝐧d𝑠
]
,

where 𝑠𝑠𝑖 (𝑠𝑠𝑗) denotes the side of the circular sector connecting 𝐶 and the vertex 𝑖 (𝑗) while 𝜕 𝑖 is the arc connecting the vertices 
262
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Denoting by 𝜆𝑚 the parameter describing the generic point along the sides 𝑠𝑠𝑖 and 𝑠𝑠𝑗, i.e. 𝝆̃(𝜆𝑚) = 𝝆𝐶 + 𝜆𝑚 (𝝆𝑚 − 𝝆𝐶 ), 𝑚 = 𝑖 (𝑗), 
the first and third integral in the formula above are given by

∫
𝑠𝑠𝑚

𝝆 ⋅ 𝐧d𝑠 =
1

∫
0

𝝆̃(𝜆𝑚) ⋅ 𝐧𝑚 d𝜆𝑚 𝑅 =𝑅𝝆𝐶 ⋅ 𝐧𝑚

where 𝐧𝑚 is the unit normal to the side 𝑠𝑠𝑚, 𝑚 = 𝑖, 𝑗.

Furthermore, it turns out to be

𝝆𝜃 = 𝝆𝐶 +𝑅𝐧𝜃 ‖𝝆− 𝝆𝐶‖ =𝑅 d𝑠 =𝑅 d𝜃, (51)

along the arc 𝜕 𝑖; hence, denoting by 𝐍(1)
𝜃

the integral of 𝐧𝜃 along the arc, a quantity evaluated in formula (D.1) of the SM 4, one 
has

𝐴 = 𝑅

2

[ 𝛽

∫
𝛼

𝝆𝐶 ⋅ 𝐧𝜃 d𝜃 +𝑅

𝛽

∫
𝛼

d𝜃 +

1

∫
0

𝝆̃(𝜆𝑖) ⋅ 𝐧𝑖 d𝜆𝑖 +

1

∫
0

𝝆̃(𝜆𝑗 ) ⋅ 𝐧𝑗 d𝜆𝑗

]
= 𝑅

2

[
𝑅 (𝛽 − 𝛼) + 𝝆𝐶 ⋅

(
𝐍(1)

𝜃
+ 𝐧𝑖 + 𝐧𝑗

)]
= 𝑅2

2
(𝛽 − 𝛼),

since it is easy to show that 𝐍(1)
𝜃

+ 𝐧𝑖 + 𝐧𝑗 = 𝐨 where 𝐨 is the null vector.

Analogously, introducing the notation

𝑛𝑠𝝆 = 𝝆 ⋅ 𝐧𝑠, 𝑛𝐶𝑠𝝆 = 𝝆𝐶 ⋅ 𝐧𝑠 𝑠 = 𝑖, 𝑗, 𝜃, (52)

one has from formula (4b)

𝐬 = 1
3 ∫
𝜕

(𝝆 ⋅ 𝐧) 𝝆d𝑠 = 1
3

[
∫
𝑠𝑠𝑖

𝑛𝑖𝝆 𝝆d𝑠+ ∫
𝜕 𝑖

𝑛𝜃𝝆 𝝆𝜃 d𝑠+ ∫
𝑠𝑠𝑗

𝑛𝑗𝝆 𝝆d𝑠
]
=

= 𝑅

3

[ 𝛽

∫
𝛼

(𝑛𝐶𝜃𝝆 +𝑅)𝝆𝜃 d𝜃 +

1

∫
0

𝑛𝐶𝑖𝝆 𝝆̃(𝜆𝑖) d𝜆𝑖 +

1

∫
0

𝑛𝐶𝑗𝝆 𝝆̃(𝜆𝑗 ) d𝜆𝑗

]
=

= 𝑅

3

{
𝑅 (𝛽 − 𝛼)𝝆𝐶 +𝑅𝐍(2)

𝜃
𝝆𝐶 +𝑅2𝐍(1)

𝜃
+ 1

2
[
𝑛𝐶𝑖𝝆Δ𝝆𝑖𝐶 + 𝑛𝐶𝑗𝝆Δ𝝆𝑗𝐶

]}
,

(53)

where the rank-two tensor 𝐍(2)
𝜃

is reported in the formula (D.2) of the SM 4 and it has been set

Δ𝝆𝑚𝐶 =
(
𝝆𝑚 − 𝝆𝐶

)
𝑚 = 𝑖, 𝑗. (54)

Finally, setting

𝝆
(2)
𝑠 = 𝑛𝑠𝝆 𝝆⊗ 𝝆 𝑠 = 𝑖, 𝑗, 𝜃,

𝐏𝑚𝐶 = 𝝆𝐶 ⊗Δ𝝆𝑚𝐶 +Δ𝝆𝑚𝐶 ⊗ 𝝆𝐶 𝑚 = 𝑖, 𝑗,

𝐍(2)
𝑚𝑐 = 𝑛𝐶𝑚𝝆

[1
2
𝐏𝑚𝐶 + 1

3
Δ𝝆𝑚𝐶 ⊗Δ𝝆𝑚𝐶

]
𝑚 = 𝑖, 𝑗,

formula (4c) yields

𝐉 = 1
4 ∫
𝜕

(𝝆 ⋅ 𝐧) (𝝆⊗ 𝝆) d𝑠 = 1
4

[
∫
𝑠𝑠𝑖

𝝆
(2)
𝑖

d𝑠+ ∫
𝜕 𝑖

𝝆
(2)
𝜃

d𝑠+ ∫
𝑠𝑠𝑗

𝝆
(2)
𝑗

d𝑠
]
=

= 𝑅

4

[ 𝛽

∫
𝛼

(𝑛𝐶𝜃𝝆 +𝑅) (𝝆𝜃 ⊗ 𝝆𝜃) d𝜃 +

1

∫
0

𝑛𝐶𝑖𝝆 (𝝆̃(𝜆𝑖)⊗ 𝝆̃(𝜆𝑖)) d𝜆𝑖 +

1

∫
0

𝑛𝐶𝑗𝝆 (𝝆̃(𝜆𝑗 )⊗ 𝝆̃(𝜆𝑗 )) d𝜆𝑗

]
,

(55)

so that one has

𝐉 = 𝑅

4

[
𝑅 (𝛽 − 𝛼)

(
𝝆𝐶 ⊗ 𝝆𝐶

)
+𝑅 (𝝆𝐶 ⋅𝐍(1)

𝜃
+𝑅)

(
𝝆𝐶 ⊗𝐍(1)

𝜃
+𝐍(1)

𝜃
⊗ 𝝆𝐶

)
+𝑅2𝐍(3)

𝜃
𝝆𝐶 +𝑅3𝐍(2)

𝜃
+𝐍(2)

𝑖𝑐
+𝐍(2)

𝑗𝑐

]
,
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where the expression of the rank-three tensor 𝐍(3)
𝜃

can be found in the formula (D.3) of the SM 4.
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7.2. Radially linear density distribution

In this case we need to evaluate the integrals

𝐉(0),lin2 = ∫ ‖Δ𝝆𝐶‖d𝐴,

𝐉(1),lin2 = ∫ ‖Δ𝝆𝐶‖𝝆d𝐴,

𝐉(2),lin2 = ∫ ‖Δ𝝆𝐶‖ (𝝆⊗ 𝝆) d𝐴;

to get the result we shall replace 𝝆 by Δ𝝆𝐶 + 𝝆𝐶 in the evaluation of the 𝐉(1),lin2 and 𝐉(2),lin2 .

Upon specialisation of the differential identity (E.5) in the SM 5 one has

𝐉(0),lin2 = 1
3 ∫
𝜕

‖Δ𝝆𝐶‖Δ𝝆𝐶 ⋅ 𝐧d𝑠 = 𝑅

3 ∫
𝜕 𝑖

Δ𝝆𝐶 ⋅ 𝐧𝜃 𝑅d𝜃 = 𝑅2

3

𝛽

∫
𝛼

𝑅d𝜃 = 𝑅3

3
(𝛽 − 𝛼), (56)

since Δ𝝆𝐶 ⋅ 𝐧 = 0 along the sides 𝑠𝑠𝑖 and 𝑠𝑠𝑗.

The mass moment 𝐉(1),lin2 can also be written in the following way

𝐉(1),lin2 = ∫ ‖Δ𝝆𝐶‖Δ𝝆𝐶 d𝐴+ 𝝆𝐶 𝐉(0),lin2 = 𝐜 + 𝝆𝐶 𝐉(0),lin2 , (57)

so that one infers from the identity (E.5), specialised to the case 𝑘 = 1, that

𝐜 = 1
4 ∫

𝜕

‖Δ𝝆𝐶‖ [⊗Δ𝝆𝐶 , 2]𝐧d𝑠 = 1
4 ∫

𝜕 𝑖

‖Δ𝝆𝐶‖ [⊗Δ𝝆𝐶 , 2]𝐧𝜃 d𝑠 =
𝑅4

4

𝛽

∫
𝛼

𝐧𝜃 d𝜃 = 𝑅4

4
𝐍(1)

𝜃
. (58)

Analogously, one has

𝐉(2),lin2 =𝐂 + 𝝆𝐶 ⊗ 𝐜 + 𝐜 ⊗ 𝝆𝐶 +
(
𝝆𝐶 ⊗ 𝝆𝐶

)
𝐉(0),lin2 , (59)

where one infers from the identity (E.5) for 𝑘 = 2 that

𝐂 = ∫ ‖Δ𝝆𝐶‖ [⊗Δ𝝆𝐶 , 2] d𝐴 = 1
5 ∫

𝜕

‖Δ𝝆𝐶‖ [⊗Δ𝝆𝐶 , 3
]
𝐧d𝑠 = 1

5 ∫
𝜕 𝑖

‖Δ𝝆𝐶‖ [⊗Δ𝝆𝐶 , 3
]
𝐧𝜃 d𝑠 =

𝑅5

5

𝛽

∫
𝛼

𝐧𝜃 ⊗ 𝐧𝜃 d𝜃 =

= 𝑅5

5
𝐍(2)

𝜃
.

(60)

7.3. Radially quadratic density distribution

Recalling (50) the following integrals are required

𝐉(0),qua

2 = ∫ ‖Δ𝝆𝐶‖2 d𝐴,

𝐉(1),qua

2 = ∫ ‖Δ𝝆𝐶‖2 𝝆d𝐴,

𝐉(2),qua

2 = ∫ ‖Δ𝝆𝐶‖2 (𝝆⊗ 𝝆) d𝐴.

By using the differential identity (E.6) and applying Gauss theorem, one arrives at

𝐉(0),qua

2 = 1
4 ∫
𝜕

‖Δ𝝆𝐶‖2 𝑛Δ𝝆𝐶
d𝑠 = 1

4

𝛽

∫
𝛼

𝑅4 d𝜃 = 𝑅4

4
(𝛽 − 𝛼), (61)
264
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𝐉(1),qua

2 = 1
5 ∫
𝜕

‖Δ𝝆𝐶‖2 Δ𝝆𝐶 𝑛Δ𝝆𝐶
d𝑠+ ∫ ‖Δ𝝆𝐶‖2 𝝆𝐶 d𝐴 = 𝑅5

5
𝐍(1)

𝜃
+ 𝐉(0),qua

2 𝝆𝐶 , (62)

in which the expression of 𝐍(1)
𝜃

is provided by Eq. (D.1) and that of 𝐉(0),qua

2 by Eq. (61).

Finally, by using the differential identity (E.6) for 𝑘 = 2, the following expression is obtained

𝐉(2),qua

2 = 1
6 ∫
𝜕

‖Δ𝝆𝐶‖2 [⊗Δ𝝆𝐶 , 2]𝑛Δ𝝆𝐶
d𝑠+ 𝐉(1),qua

2 ⊗ 𝝆𝐶 + 𝝆𝐶 ⊗ 𝐉(1),qua

2 − 𝐉(0),qua

2 (𝝆𝐶 ⊗ 𝝆𝐶 ) =

= 𝑅6

6
𝐍(2)

𝜃
+ 𝐉(1),qua

2 ⊗ 𝝆𝐶 + 𝝆𝐶 ⊗ 𝐉(1),qua

2 − 𝐉(0),qua

2 (𝝆𝐶 ⊗ 𝝆𝐶 ),

(63)

where 𝐍(2)
𝜃

is reported in Eq. (D.2) while 𝐉(0),qua

2 and 𝐉(1),qua

2 are provided by Eqs. (61) and (62), respectively.

8. Functionally graded axisymmetric circular solids

Let us now consider axisymmetric solids obtained by rotating circular sectors around an axis of symmetry. A linear or quadratic 
variation of density along the radial direction starting from 𝝆𝐶 is assumed.

8.1. Radially linear density distribution

Recalling formula (2) and the expression (49), we are now led to computing the following integrals

𝐉(0),lin
ax

= 2𝜋 ∫ ‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛) d𝐴, (64a)

𝐉(1),lin
ax

= 2𝜋 ∫ ‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛) 𝝆d𝐴, (64b)

𝐉(2),lin
ax

= 2𝜋 ∫ ‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛) (𝝆⊗ 𝝆) d𝐴. (64c)

Setting

𝑛Δ𝝆𝐶
=Δ𝝆𝐶 ⋅ 𝐧, 𝑛𝜃Δ𝝆𝐶

=Δ𝝆𝐶 ⋅ 𝐧𝜃,

the differential identity (F.1) of the SM 5 yields

𝐉(0),lin
ax

= 2𝜋

3 ∫
𝜕

‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛) 𝑛Δ𝝆𝐶
d𝑠− 2𝜋

3
𝐜 ⋅ 𝐛 = 2𝜋

3 ∫
𝜕 𝑖

‖Δ𝝆𝐶‖ (𝝆𝜃 ⋅ 𝐛
)
𝑛𝜃Δ𝝆𝐶

d𝑠− 2𝜋

3
𝐜 ⋅ 𝐛,

where the expression of 𝐜 is reported in Eq. (58).

Hence, by invoking Eq. (51), one finally arrives at

𝐉(0),lin
ax

= 2𝜋

[
𝑅3

3
(
𝝆𝐶 ⋅ 𝐛

)
(𝛽 − 𝛼) + 𝑅4

4

(
𝐍(1)

𝜃
⋅ 𝐛
)]

, (65)

in which 𝐍(1)
𝜃

is provided in Eq. (D.1).

To compute 𝐉(1),lin
ax

we notice that its expression in Eq. (64b) is amenable to the following equivalent form

𝐉(1),lin
ax

= 2𝜋 ∫ ‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛) d𝐴𝝆𝐶 + 2𝜋 ∫ ‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛) Δ𝝆𝐶 d𝐴 = 𝐉(0),lin
ax

𝝆𝐶 + 2𝜋 ∫ ‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛) Δ𝝆𝐶 d𝐴,

where 𝐉(0),lin
ax

is evaluated in Eq. (65).

Using the differential identity (F.2) to transform the last integral in the previous equation, one obtains

𝐉(1),lin
ax

= 2𝜋

4 ∫
𝜕

‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛)
[
⊗Δ𝝆𝐶 , 2

]
𝐧d𝑠− 2𝜋

4

⎡⎢⎢⎣∫ ‖Δ𝝆𝐶‖ [⊗Δ𝝆𝐶 , 2
]
d𝐴
⎤⎥⎥⎦ 𝐛+ 𝐉(0),lin

ax
𝝆𝐶 =

= 𝜋

2 ∫
𝜕 𝑖

‖Δ𝝆𝐶‖ (𝝆𝜃 ⋅ 𝐛
) [

⊗Δ𝝆𝐶 , 2
]
𝐧𝜃 d𝑠−

𝜋

2
𝐂 𝐛+ 𝐉(0),lin

ax
𝝆𝐶 ,
265

in which the tensor 𝐂 is defined in Eq. (60).
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Finally, by virtue of Eq. (51), one arrives at

𝐉(1),lin
ax

= 2𝜋

[
𝑅4

4
(
𝝆𝐶 ⋅ 𝐛

)
𝐍(1)

𝜃
+ 𝑅5

5
𝐍(2)

𝜃
𝐛
]
+ 𝐉(0),lin

ax
𝝆𝐶 , (66)

where the order two tensor 𝐍(2)
𝜃

is given by Eq. (D.2).

To evaluate 𝐉(2),lin
ax

it is convenient to set

𝐉Gax = 𝝆𝐶 ⊗ 𝐉(1),lin
ax

+ 𝐉(1),lin
ax

⊗ 𝝆𝐶 − 𝐉(0),lin
ax

(
𝝆𝐶 ⊗ 𝝆𝐶

)
,

so that application of the differential identity (F.3) yields

𝐉(2),lin
ax

= 2𝜋 ∫ ‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛)
[
⊗Δ𝝆𝐶 , 2

]
d𝐴+ 𝝆𝐶 ⊗

(
𝐉(1),lin

ax
− 𝐉(0),lin

ax
𝝆𝐶

)
+
(
𝐉(1),lin

ax
− 𝐉(0),lin

ax
𝝆𝐶

)
⊗ 𝝆𝐶 + 𝐉(0),lin

ax

(
𝝆𝐶 ⊗ 𝝆𝐶

)
=

= 2𝜋

5 ∫
𝜕

‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛)
[
⊗Δ𝝆𝐶 , 3

]
𝐧d𝑠− 2𝜋

5

⎡⎢⎢⎣∫ ‖Δ𝝆𝐶‖ (𝝆 ⋅ 𝐛)
[
⊗Δ𝝆𝐶 , 3

]
d𝐴
⎤⎥⎥⎦ 𝐛+ 𝐉Gax =

= 2𝜋

5 ∫
𝜕 𝑖

‖Δ𝝆𝐶‖ (𝝆𝜃 ⋅ 𝐛
) [

⊗Δ𝝆𝐶 , 2
]
𝑛𝜃Δ𝝆𝐶

d𝑠− 𝜋

15

⎡⎢⎢⎣∫𝜕 ‖Δ𝝆𝐶‖ [⊗Δ𝝆𝐶 , 4
]
𝐧d𝑠

⎤⎥⎥⎦ 𝐛+ 𝐉Gax,

where 𝐉(0),lin
ax

, 𝐉(1),lin
ax

have been computed in Eqs. (65), (66) and use has been made of the differential identity (E.5).

Finally, by invoking Eqs. (48) and (51) one arrives at

𝐉(2),lin
ax

= 2𝜋

[
𝑅5

5
(
𝝆𝐶 ⋅ 𝐛

)
𝐍(2)

𝜃
+ 𝑅6

6
𝐍(3)

𝜃
𝐛
]
+ 𝐉Gax, (67)

where 𝐍(3)
𝜃

is an order three tensor whose matrix representation can be found in Eq. (D.3).

8.2. Radially quadratic density distribution

In this case, based on (50), the following integrals are needed:

𝐉(0),qua

ax
= 2𝜋 ∫ ‖Δ𝝆𝐶‖2 (𝝆 ⋅ 𝐛) d𝐴,

𝐉(1),qua

ax
= 2𝜋 ∫ ‖Δ𝝆𝐶‖2 (𝝆 ⋅ 𝐛) 𝝆d𝐴,

𝐉(2),qua

ax
= 2𝜋 ∫ ‖Δ𝝆𝐶‖2 (𝝆 ⋅ 𝐛) (𝝆⊗ 𝝆) d𝐴.

By virtue Eq. (F.4), one has

𝐉(0),qua

ax
= 2𝜋

4 ∫
𝜕

‖Δ𝝆𝐶‖2 (𝝆 ⋅ 𝐛) 𝑛Δ𝝆𝐶
d𝑠− 2𝜋

20

[
∫
𝜕

‖Δ𝝆𝐶‖2 Δ𝝆𝐶 𝑛Δ𝝆𝐶
d𝑠
]
⋅ 𝐛 = 2𝜋

[
𝑅4

4
(
𝝆𝐶 ⋅ 𝐛

)
(𝛽 − 𝛼) + 𝑅5

5
𝐍(1)

𝜃
⋅ 𝐛
]
, (68)

where use has been made of the identity (E.6) for 𝑘 = 1 and the vector 𝐍(1)
𝜃

is provided in Eq. (D.1).

By invoking first Eq. (F.5) and then Eq. (E.6) for 𝑘 = 2, it turns out to be

𝐉(1),qua

ax
= 2𝜋

5 ∫
𝜕

‖Δ𝝆𝐶‖2 (𝝆 ⋅ 𝐛) Δ𝝆𝐶 𝑛Δ𝝆𝐶
d𝑠+ 2𝜋 ∫ ‖Δ𝝆𝐶‖2 (𝝆 ⋅ 𝐛) d𝐴𝝆𝐶 − 𝜋

15

[
∫
𝜕

‖Δ𝝆𝐶‖2 [⊗Δ𝝆𝐶 , 2
]
𝑛Δ𝝆𝐶

d𝑠
]
𝐛 =

= 2𝜋

[
𝑅5

5
(𝝆𝐶 ⋅ 𝐛)𝐍(1)

𝜃
+ 𝑅6

6
𝐍(2)

𝜃
𝐛
]
+ 𝐉(0),qua

ax
𝝆𝐶 ,

(69)
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in which 𝐍(1)
𝜃

and 𝐍(2)
𝜃

are supplied in Eqs. (D.1) and (D.2), respectively, while 𝐉(0),qua

ax
is evaluated in Eq. (68).
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Table 1

Algebraic formulas for computing mass moments of 2D domains and axisymmetric solids having density distribu-

tions (8)-(10).

Density distributions
2D domains Axisymmetric solids

Polygons Circular sectors Polygons Circular sectors

Polynomial (24), (26) and (28) - (39), (41) and (43) -

Exponential (30), (32) and (34) - (44), (45) and (46) -

Polynomial quadratic (36) - (47) -

Radially linear - (56), (57) and (59) - (65), (66) and (67)

Radially quadratic - (61), (62) and (63) - (68), (69) and (70)

Finally, it follows from Eq. (F.6) that

𝐉(2),qua

ax
= 2𝜋

6 ∫
𝜕

‖Δ𝝆𝐶‖2 (𝝆 ⋅ 𝐛)
[
⊗Δ𝝆𝐶 , 2

]
𝑛Δ𝝆𝐶

d𝑠− 2𝜋

42

[
∫
𝜕

‖Δ𝝆𝐶‖2 [⊗Δ𝝆𝐶 , 3
]
𝑛Δ𝝆𝐶

d𝑠
]
𝐛

+ 𝐉(1),qua

ax
⊗ 𝝆𝐶 + 𝝆𝐶 ⊗ 𝐉(1),qua

ax
− 𝐉(0),qua

ax

(
𝝆𝐶 ⊗ 𝝆𝐶

)
=

= 2𝜋

[
𝑅6

6
(𝝆𝐶 ⋅ 𝐛)𝐍(2)

𝜃
+ 𝑅7

7
𝐍(3)

𝜃
𝐛
]
+ 𝐉(1),qua

ax
⊗ 𝝆𝐶 + 𝝆𝐶 ⊗ 𝐉(1),qua

ax
− 𝐉(0),qua

ax

(
𝝆𝐶 ⊗ 𝝆𝐶

)
,

(70)

where the expression of 𝐍(2)
𝜃

can be found in Eq. (D.2), that of 𝐍(3)
𝜃

in Eq. (D.3), while 𝐉(0),qua

ax
and 𝐉(1),qua

ax
are given by formulas (68)

and (69), respectively.

9. Numerical applications

The formulas presented in the previous sections are verified both analytically and numerically by considering examples taken 
from [11,12] and additional ones proposed by the authors autonomously.

Specifically, denoting by (⋅)anl and (⋅)num the analytical and numerical evaluations of the three mass moments, we compute the 
quantities

𝜖(𝑘) =
‖𝐉(𝑘)

anl
− 𝐉(𝑘)num‖‖𝐉(𝑘)
anl
‖ , (71)

to establish accuracy and reliability of the proposed formulas.

For readers comfort references to the formulas derived in the paper are summarised in Table 1.

9.1. Abat-jour domain

Let us consider a domain having the abat-jour shape shown in Fig. 3. The cross-section containing the axis of symmetry is 
composed of a quarter circle ( ) and L-shaped polygon ( ); we assume

𝜚(𝝆) =
⎧⎪⎨⎪⎩
𝑒𝛼
(
𝝆⋅𝐞2

)
if 𝝆 ∈ ,‖𝝆− 𝝆𝐶‖2 if 𝝆 ∈ ,

where 𝛼 = 1∕10 and [𝐞2] = [0, 1]𝑇 .

Notice that the density varies along a direction 𝐚 = 𝐞2 different from that orthogonal to the axis of rotation, i.e. 𝐛 = 𝐞1.

Hence, the mass moments can be expressed as:

𝐉(0),exp

axΩ + 𝐉(0),qua

ax

2𝜋
= ∫ 𝑒𝛼

(
𝝆⋅𝐞2

) (
𝝆 ⋅ 𝐞1

)
d𝐴+ ∫ ‖𝝆− 𝝆𝐶‖2 (𝝆 ⋅ 𝐞1

)
d𝐴,

𝐉(1),exp

axΩ + 𝐉(1),qua

ax

2𝜋
= ∫ 𝑒𝛼

(
𝝆⋅𝐞2

) (
𝝆 ⋅ 𝐞1

)
𝝆d𝐴+ ∫ ‖𝝆− 𝝆𝐶‖2 (𝝆 ⋅ 𝐞1

)
𝝆d𝐴,

𝐉(2),exp

axΩ + 𝐉(2),qua

ax

2𝜋
= ∫ 𝑒𝛼

(
𝝆⋅𝐞2

) (
𝝆 ⋅ 𝐞1

)
(𝝆⊗ 𝝆) d𝐴+ ∫ ‖𝝆− 𝝆𝐶‖2 (𝝆 ⋅ 𝐞1

)
(𝝆⊗ 𝝆) d𝐴.
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Fig. 3. Abat-jour domain and its density distributions having laws specified in Eqs. (9) and (50).

The previous integrals over the L-polygon [quarter circle] can be computed by using Eqs. (19) [(68), (69) and (70)].

The analytical evaluation of the three mass moments is given by

[𝐉(0),exp

axΩ + 𝐉(0),qua

ax
]anl = 10𝜋

(
3975 + 24 10

√
𝑒+ 𝑒

)
,

[𝐉(1),exp

axΩ + 𝐉(1),qua

ax
]anl = 𝜋

⎡⎢⎢⎢⎣
20
3

(
−125 + 124 10

√
𝑒+ 𝑒+ 12500𝜋

)
20
3

(
85375 − 324 10

√
𝑒
) ⎤⎥⎥⎥⎦ ,

[𝐉(2),exp

axΩ + 𝐉(2),qua

ax
]anl = 𝜋

⎡⎢⎢⎢⎣
5
21

(
21
(
624 10

√
𝑒+ 𝑒

)
+ 7986875

)
𝐽12

𝐽21
40
7

(
1441250 + 7602 10

√
𝑒+ 175 𝑒

)⎤⎥⎥⎥⎦ ,

𝐽12 = 𝐽21 =
40
21

(
625 (807 + 700𝜋) − 3906 10

√
𝑒
)
,

providing the following relative errors:

𝜖(0) = 0,

𝜖(1) ≈ 2.4471 × 10−16,

𝜖(2) ≈ 2.3994 × 10−16.

The results obtained do agree with the analytical evaluation of the mass moments, except for the machine precision.

9.2. Torus with a rounded square annulus cross-section

Let us consider the torus having the rounded square annulus cross-section depicted in Fig. 4. As it has been assumed in [12], 
the density distribution increases with a constant rate, from 1 kg/cm3 on the inner side of the cross-section to 6 kg/cm3 on the 
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outer side, along the radial direction starting from the centre of gravity. Specifically, decomposing the rounded square annulus into 



Applied Mathematical Modelling 129 (2024) 250–274D. Pellecchia, N. Vaiana, S. Sessa et al.

Fig. 4. Torus with a rounded square annulus cross-section having linear density distribution.

subdomains, as illustrated in Fig. 4(c), one can write

𝜚(𝝆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6 − 5
3
(
𝝆 ⋅ 𝐞2

)
if 𝝆 ∈ Σ1,

−19 + 5
3
(
𝝆 ⋅ 𝐞1

)
if 𝝆 ∈ Σ2,

−32
3

+ 5
3
(
𝝆 ⋅ 𝐞2

)
if 𝝆 ∈ Σ3,

43
3

− 5
3
(
𝝆 ⋅ 𝐞1

)
if 𝝆 ∈ Σ4,

1 + 5
𝑅
‖𝝆− 𝝆𝐶1

‖ if 𝝆 ∈Ω1,

1 + 5
𝑅
‖𝝆− 𝝆𝐶2

‖ if 𝝆 ∈Ω2,

1 + 5
𝑅
‖𝝆− 𝝆𝐶3

‖ if 𝝆 ∈Ω3,

1 + 5
𝑅
‖𝝆− 𝝆𝐶4

‖ if 𝝆 ∈Ω4,

where 𝑅 = 3, [𝝆𝐶1
] = [8, 3]𝑇 , [𝝆𝐶2

] = [12, 3]𝑇 , [𝝆𝐶3
] = [12, 7]𝑇 and [𝝆𝐶4

] = [8, 7]𝑇 .

Hence, making reference to the subdomain Ω1 as an example, the mass moments read as follows on account of formulas (18), 
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(65), (66) and (67)
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𝐉(0),lin
ax

2𝜋
= ∫
Ω1

𝝆d𝐴 ⋅ 𝐞1 +
5
3 ∫
Ω1

‖𝝆− 𝝆𝐶‖ (𝝆 ⋅ 𝐞1
)
d𝐴 = 𝐬 ⋅ 𝐞1 +

5
3 ∫
Ω1

‖𝝆− 𝝆𝐶‖ (𝝆 ⋅ 𝐞1
)
d𝐴,

𝐉(1),lin
ax

2𝜋
=
⎡⎢⎢⎢⎣∫Ω1

(𝝆⊗ 𝝆) d𝐴
⎤⎥⎥⎥⎦ 𝐞1 +

5
3 ∫
Ω1

‖𝝆− 𝝆𝐶‖ (𝝆 ⋅ 𝐞1
)
𝝆d𝐴 = 𝐉 𝐞1 +

5
3 ∫
Ω1

‖𝝆− 𝝆𝐶‖ (𝝆 ⋅ 𝐞1
)
𝝆d𝐴,

𝐉(2),lin
ax

2𝜋
=
⎡⎢⎢⎢⎣∫Ω1

(𝝆⊗ 𝝆⊗ 𝝆) d𝐴
⎤⎥⎥⎥⎦ 𝐞1 +

5
3 ∫
Ω1

‖𝝆− 𝝆𝐶‖ (𝝆 ⋅ 𝐞1
)
(𝝆⊗ 𝝆) d𝐴 = 𝐉(3) 𝐞1 +

5
3 ∫
Ω1

‖𝝆− 𝝆𝐶‖ (𝝆 ⋅ 𝐞1
)
(𝝆⊗ 𝝆) d𝐴,

where 𝐬 and 𝐉 have been computed in Eqs. (53) and (55), while 𝐉(3) is computed using Eq. (G.13) of the SM 7. For rectangular 
domains such as Σ1 reference can be made to Eqs. (39), (41), and (43).

Analytical expressions for the mass moments with respect to the reference frame depicted in Fig. 4 are as follows:

[𝐉(0)]anl = 60𝜋(56 + 13𝜋),

[𝐉(1)]anl =
⎡⎢⎢⎣
1
2
𝜋(75592 + 16629𝜋)

300𝜋(56 + 13𝜋)

⎤⎥⎥⎦ ,
[𝐉(2)]anl =

⎡⎢⎢⎢⎣
15𝜋 (30792 + 6229𝜋) 5

2
𝜋(75592 + 16629𝜋)

5
2
𝜋(75592 + 16629𝜋) 5𝜋(25192 + 4929𝜋)

⎤⎥⎥⎥⎦ ,
and yield the following relative errors:

𝜖(0) = 0,

𝜖(1) = 0,

𝜖(2) ≈ 1.8927 × 10−16;

this confirms the accuracy of the formulas derived in the paper if compared with the results outlined in [12].

9.3. Longitudinal section of a human femure

As a final example, we consider the longitudinal section, obtained by a scan of a human femure, for which a functionally graded 
variation of density has been assumed with a direction tilt of forty-five degrees along the bone, as illustrated in Fig. 5(a); specifically, 
the mass density reads

𝜚(𝝆 ⋅ 𝐚) = 𝐶0 +𝐶1 (𝝆 ⋅ 𝐚) ,

where [𝐚] = [1∕
√
2, 1∕

√
2]𝑇 , 𝐶0 = 13∕(500 × 103) [kg/cm3] and 𝐶1 = 13∕(500 × 103) [kg/cm4].

Recalling Eq. (13), the generalised mass moments are given by

𝐉(0),pln

2Ω = 𝐶0 𝐴+
𝐶1
2 ∫

𝜕Ω

(𝝆 ⋅ 𝐚) (𝝆 ⋅ 𝐧) d𝑠,

𝐉(1),pln

2Ω = 𝐶0 𝐬+
𝐶1
3 ∫

𝜕Ω

(𝝆 ⋅ 𝐚) (𝝆 ⋅ 𝐧) 𝝆d𝑠,

𝐉(2),pln

2Ω = 𝐶0 𝐉+
𝐶1
4 ∫

𝜕Ω

(𝝆 ⋅ 𝐚) (𝝆 ⋅ 𝐧) (𝝆⊗ 𝝆) d𝑠,

where 𝐴, 𝐬 and 𝐉 are the mass moments associated with the femur supposed to be homogeneous. The geometry of the femur has 
been assigned by approximating its boundary by means of a polygon with sixty-one sides and the generalised mass moments have 
been computed by exploiting Eqs. (23), (25) and (27).

To make a comparison of the analytical results with the numerical ones, a finite element model of the femure has been considered 
by subdividing the longitudinal section of the femur into triangular elements, see, e.g., Fig. 5(b). The red dots visible in the figure 
represent the position of the Gauss points associated with a given order of the quadrature rule. Needless to say, the number of 
triangular elements and the order of quadrature have direct consequence on the accuracy of the solution and computing time, 
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especially in nonlinear analyses in which meshing of the domain needs to be continuously updated due to changes of the geometry.
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Fig. 5. Longitudinal section of a human femure having a linear density distribution.

Fig. 6. Contour maps in logarithmic scale of the relative error for the inertia tensor (a) and computational time ratio (b), as a function of the number of triangular 
elements and Gauss points.

To ascertain the accuracy and computational demand of the proposed approach with respect to a numerical one we have computed 
the relative error 𝜖(2) defined in (71) for the inertia tensor and evaluated the total computational time ratio (𝑡𝑐𝑡𝑟) associated with the 
proposed formulation (PF) and Gauss quadrature (GQ)

𝑡𝑐𝑡𝑟 =
𝑡𝑐𝑡𝐺𝑄

𝑡𝑐𝑡𝑃𝐹

.

The quantities 𝜖(2) and 𝑡𝑐𝑡𝑟 are plotted in Fig. 6(a) and (b), respectively, against the number of triangular elements and Gauss 
points for each element.

The warmer colours in Fig. 6(a) indicate regions where 𝜖(2) reaches its maximum value, signifying the least accuracy in evaluating 
the inertia tensor. To achieve a value of 𝜖(2) for the inertia tensor obtained numerically, 𝜖(2)num = 1.0610 × 10−14, comparable to that 
obtained with the analytical formulas, whose order of magnitude is 10−16, a minimum of sixty-seven triangular elements is required 
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to discretise the human femur, using four Gauss points for each triangular element.
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However, considering that 𝑡𝑐𝑡𝑃𝐹 ≈ 0.0019 seconds, it becomes apparent from Fig. 6(b) that the Gauss quadrature method is 
notably slower than the proposed formulas. This difference amounts to at least two orders of magnitude, assuming a minimum 
requirement of sixty-seven triangular elements with four Gauss points per element to discretise the human femur. The outcomes 
remain largely the same even if one opts for a reduced number of triangular elements and a single Gauss point, albeit at the cost of 
a reduced accuracy in computing mass moments.

Please notice that the analyses have been run on a computer having an AMD Ryzen™ 3 3250U processor and CPU at 2.60 GHz 
with 8 GB of RAM.

10. Conclusions

The mass moments of functionally graded 2D domains and axisymmetric solids endowed with polynomial and exponential density 
distributions have been computed analytically by means of algebraic formulas in case of polygonal domains and circular sectors. 
Besides the coefficients defining the density variation, the formulas derived in the paper are expressed as a function of the coordinates 
of the vertices that define the polygonal domains while, for circular sectors, as a function of the anomalies of the segments defining 
the sector and the coordinates of the relevant endpoints.

Numerical examples, including cases sourced from [11,12] as well as some others specifically devised by the authors, have been 
used to validate the generality, accuracy and computational efficiency of the proposed formulation with respect to those based upon 
integral equations [11,12], that require the solution of a linear system of equations, the finite element method or the use of a Monte 
Carlo technique [37].

In particular, the longitudinal section of a human femure, having a complex geometry and made of functionally graded material 
exhibiting a linear density distribution, has been used to compare the overall efficiency of the proposed approach, in terms of 
accuracy and computational time, with respect to that entailed by the finite element method.

It has been shown that at least sixty-seven triangular elements and four Gauss points per element are required to achieve an 
accuracy comparable to that of the analytical formulas, although the computational time increased by two orders of magnitude.

Actually, the computational time required by the proposed approach basically depends on the number of points used to approx-

imate the boundary of the domain by a polygon, while, even neglecting the time required to mesh the domain, that required by 
the finite element method depends upon the number of elements used to discretise the domain and the quadrature rule adopted 
for each element. In particular, the number of elements do significantly increase for domains characterised by larger aspect ratios, 
what makes the proposed approach even more convenient for the applications since only the boundary of the domain needs to be 
considered.

Time savings entailed by the analytical formulas obtained in the paper become even greater for nonlinear structural analyses since, 
at each iteration, it is required an updating of the mass moments associated with changes in the geometric or material properties of 
the domain.

Hence, the methodology illustrated in the paper is characterised by simplicity, straightforward implementation and applicability 
to objects made of functionally graded materials such as those produced by modern 3D printing technology and widely used in 
aerospace, automobile, biomedical and defence areas. For instance, modelling the behaviour of functionally graded beams and 
solids, for which variations in the Young modulus are assumed [34–36,38], does not require a new computational scheme for 
integral expressions of the generalised stiffness matrices.

The application of the proposed approach to functionally graded beams and to three-dimensional solids endowed with further 
density distributions will be addressed in forthcoming papers.
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