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A B S T R A C T

The increasing interest in the deployment of truck and drone delivery systems leads to the definition of new
and complex vehicle routing problems. In this context, the flying sidekick traveling salesman problem (FS-
TSP) is the first truck-and-drone routing problem defined in the literature. Several variants appeared in the
last years differing in the operating conditions and the structure of the hybrid truck-and-drone delivery system.
Exact and heuristic solution methods have been proposed in the literature to solve these problems effectively.
However, the exact solution methods can generally solve only small-size instances due to the complexity of
these problems. On the other hand, heuristic solution methods are able to find feasible solutions with an
acceptable computational burden but without any guarantee of the quality of the solution. This work aims to
investigate the possibility of using data science and machine learning techniques to reduce the complexity of
solving an FS-TSP instance. The idea is to determine a good/optimal customer-to-vehicle assignment apriori
to reduce the number of decisions involved in the FS-TSP solution. The assignment is determined through the
classification of customers based on a subset of features specifically defined for the FS-TSP. This information
can be exploited by existing solution approaches for the FS-TSP to improve their performance. An extensive
computational campaign on benchmark instances is carried out with a twofold objective. On the one hand, we
aim to evaluate the impact of the features on customer classification. On the other hand, we intend to show
the relationship between classification and combinatorial optimization results by observing the effect of the
customer classification on the FS-TSP solution.
1. Introduction

Truck and drone delivery systems have received a lot of attention
from the scientific community in the last years due to the potential
benefits that they can lead to last mile logistics (LML). This kind of
hybrid system promises new levels of efficiency for the LML, which is
notoriously known as the most expensive part of the freight distribution
process. In this context, several tactical and operational problems need
to be addressed to deploy a hybrid system able to support and improve
LML operations (Chung, Sah, & Lee, 2020). Routing problems represent
one of the most investigated issues due to the synchronization re-
quirement between the two vehicles. In particular, the Flying Sidekick
Traveling Salesman Problem (FS-TSP) is the first truck and drone
routing problem studied in literature (Murray & Chu, 2015). It involves
designing the optimal route for a hybrid delivery system consisting in
a truck and a drone working in tandem, with the aim of minimizing
the delivery completion time. The FS-TSP assumptions can be briefly
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summarized as follows: the truck-and-drone system departs from and
returns to a central depot; every customer is visited exactly once, by
either the truck or the drone; the truck serves as a mobile depot for
the drone, supplying it with parcels and swapping its battery due to
the drone limited flight endurance. Furthermore, the drone is launched
from the truck to deliver to a single customer and subsequently returns
either to the truck or to the depot, in what is termed a ‘‘drone sortie’’.
For safety reasons, the drone cannot land and must hover if it has to
wait for the truck at a recovery location. The delivery completion time
is equal to the moment when both the truck and the drone return to
the depot after serving all customers.

Afterward, the literature on this topic exponentially increased with
several contributions introducing variants of the FS-TSP involving dif-
ferent problem assumptions and system operations and/or proposing
exact and heuristic solution methods for the FS-TSP or its variants. A
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complete review of the contributions on this topic is out of the scope of
this work. Thus, we refer the interested reader to the surveys (Madani
& Ndiaye, 2022; Moshref-Javadi & Winkenbach, 2021; Rojas Viloria,
Solano-Charris, Muñoz-Villamizar, & Montoya-Torres, 2021). However,
we point out that the proposed solution methods for the FS-TSP or its
variants generally present some drawbacks. In particular, exact solution
methods suffer from dimensional issues that make them impractical to
solve, even for small instances. On the other hand, heuristic solution
methods are able to determine a feasible solution with acceptable
computational burdens but often without any guarantee of the quality
of the solution. In the following, we will briefly outline the main
differences between the FS-TSP and its variants, and then we will focus
n the contributions that specifically tackle the FS-TSP. Regarding the

literature that introduces variants of the FS-TSP, these variants differ
from the FS-TSP with respect to the objective function (Ha, Deville,
Pham, & Hà, 2018; Tamke & Buscher, 2023), the drone capability to
land (de Freitas & Penna, 2020; Freitas, Penna, & Toffolo, 2023), the
number of customers a drone can serve in a single sortie (Mara, Rifai,
& Sopha, 2022; Masone, Poikonen, & Golden, 2022), the possibility of
launching and retrieving a drone at the same location (Agatz, Bouman,
& Schmidt, 2018; Boccia, Masone, Sforza, & Sterle, 2021d), the option
of multiple drone launches from the same spot (Boccia, Mancuso,
Masone, Sforza and Sterle, 2021; Chang & Lee, 2018), the availability
of multiple drones on a truck (Salama & Srinivas, 2022; Tiniç, Karasan,
Kara, Campbell, & Ozel, 2023), and the use of several truck-and-
drone systems for deliveries (Kuo, Lu, Lai, & Mara, 2022; Sacramento,
Pisinger, & Ropke, 2019).

Regarding contributions that focus on the FS-TSP, the majority of
studies present a FS-TSP formulation along with exact or heuristic so-
lution methods. Among the different exact solution approaches (Boccia,
Mancuso, Masone, & Sterle, 2023; Boccia, Masone, Sforza, & Sterle,
2021c; Dell’Amico, Montemanni, & Novellani, 2022; Roberti & Ruth-
mair, 2021; Schermer, Moeini, & Wendt, 2020), the state-of-the-art
is represented by the branch-and-cut and branch-and-price methods
proposed in Boccia et al. (2023) and Roberti and Ruthmair (2021),
respectively. These methods are able to optimally solve instances up
to 40 customers. On the other hand, concerning the heuristic solution
methods (Dell’Amico, Montemanni, & Novellani, 2021a, 2021b; Murray
& Chu, 2015; Yu, Lin, Jodiawan, & Lai, 2023), the state-of-the-art is the
algorithm based on branch-and-bound presented in Dell’Amico et al.
(2021a), being able to address instances with up to 200 customers.

In this work, we investigate the potential benefits of using data
science and machine learning techniques in conjunction with com-
binatorial optimization methods to solve the FS-TSP. The idea is to
dentify promising or good customer-to-vehicle assignments through
lassification methods. These assignments can be used to reduce the
ize and complexity of the FS-TSP instances. The ultimate goal is to
ffectively and efficiently solve the FS-TSP through solving a reduced
roblem.

The use of machine learning and combinatorial optimization is
nother cutting-edge topic (Bengio, Lodi, & Prouvost, 2021). Differ-
nt studies explore the benefits of combining these approaches in
ifferent ways (de Holanda Maia, Plastino, & Penna, 2018, 2020;
arimi-Mamaghan, Mohammadi, Meyer, Karimi-Mamaghan, & Talbi,
022; Martins, Vianna, Rosseti, Martins, & Plastino, 2018; Mazyavk-
na, Sviridov, Ivanov, & Burnaev, 2021). However, to the best of our
nowledge, only the study reported in Boccia, Mancuso, Masone and
terle (2021) investigates the possibility of using machine learning
echniques in combination with combinatorial operation specifically
or truck and drone routing problems. The authors propose seven
eatures directly inferred by the FS-TSP assumptions. Then, they use
he Scikit-learn package to build classification models on a defined
ata set. The classification results are then used to solve the FS-TSP.
n this work, from a methodological point of view, we extend this
tudy by defining a subset of new features that consider the topography
2

f the FS-TSP underlying graph, and by integrating feature selection b
nd classifier parameter tuning in the hybrid solution approach. On
his basis, we carry out an extensive computational campaign with a
wofold objective. On the one hand, we aim to determine the impact of
he features on customer classification, identifying the most important
ne. On the other hand, we intend to evaluate the relationship between
lassification and combinatorial optimization results and the impact of
he features and classification parameters on the FS-TSP solution.

The remainder of the paper is organized as follows: in Section 2,
e provide a brief description of the FS-TSP and the customer classifi-

ation solution approach proposed in Boccia, Mancuso, Masone, Sterle
2021); in Section 3, we present the features defined for the FS-TSP
ustomer classification; Section 4 is devoted to the experimentation
n the customer classification; Section 5 reports the experimentation
elated to the use of the results of the customer classification for the FS-
SP solution; finally, conclusions are given, and perspectives on future
orks on this topic are discussed in Section 6.

. FS-TSP description and customer classification approach

In this section, we first describe the FS-TSP and introduce the
orresponding notation used in the next section. Then, we discuss the
S-TSP customer classification and the related solution approach.

.1. Problem description and notation

The FS-TSP involves a truck and a drone working together to deliver
ackages to a set of customers, denoted by 𝐶. The route for the truck-
nd-drone system starts and ends at a depot, denoted by 𝑜. The truck
an perform two types of operations: serving customers and supporting
he drone in its deliveries. Therefore, let 𝑇 be the subset of customers
hat can be served by the truck. Generally, the truck is capable of
erving all customers, so 𝑇 is equal to 𝐶. In supporting the drone, the
ruck provides it the parcels for delivery to customers, launches the
rone, and then recollects it at the end of the drone sortie. For safety
easons, the drone is not permitted to land while awaiting the truck
rrival in a rendezvous location. The launch and retrieval operations
an be performed at the depot or at a customer location. The launch
nd rendezvous locations of a sortie must be distinct. Both launching
nd retrieval operations incur overhead times, indicated by 𝑆𝐿 and 𝑆𝑅,
espectively. Then, the truck also supports the drone by replacing its
attery since its capacity, expressed in terms of flight time and denoted
s 𝐷𝑡𝑙, is limited. Additionally, the drone expends energy during re-
rieval operations, hence the associated overhead time is accounted for
n the drone flight duration. Due to the drone technological limitations,
f a customer parcel exceeds the maximum payload, or if the flight time
equired to serve a customer surpasses the drone endurance, then the
rone cannot serve these customers. Accordingly, let 𝐷 represent the
ubset of customers serviceable by the drone.

In terms of the routes that the two types of vehicles can follow, the
ruck and the drone each have their own set of arcs they can traverse,
eferred to as 𝐴𝑇 and 𝐴𝐷, respectively. The drone arc set can be further
roken down into three subsets: 𝐴𝑇 , 𝐴𝐿

𝐷, and 𝐴𝑅
𝐷. The drone travels

n arcs of 𝐴𝑇 when is carried by the truck. Instead, it travels on arcs
f 𝐴𝐿

𝐷 (𝐴𝑅
𝐷) when it is launched from (retrieved by) the truck before

after) a delivery. The truck and drone can consider different distance
etrics (𝑑𝑖𝑗 ,∀(𝑖, 𝑗) ∈ 𝐴𝑇 and 𝛿𝑖𝑗 ,∀(𝑖, 𝑗) ∈ 𝐴𝐷) and have different speeds
𝑠 and 𝜎). Therefore, the truck and drone travel time can be different
indicated with 𝑡𝑖𝑗 and 𝜏𝑖𝑗 , respectively). The objective of the FS-TSP is
o minimize the time it takes for the truck and drone to complete all
eliveries and return to the depot.

Fig. 1 shows an example of a FS-TSP solution for a small instance.
ig. 1(a) presents the instance details with the depot represented by a
quare and customers by circles. Solid lines indicate arcs that the truck
an traverse in both directions, while dashed lines correspond to arcs
hat the drone can fly in both directions. Customer 1 cannot be serviced

y the drone, hence it is not connected by a dashed line to any other
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Fig. 1. Example of a FS-TSP solution.

node. Travel times are reported alongside the respective lines in time
units. For the sake of simplicity, we point out that overhead related to
launching and retrieving operations are set equal to 0. Fig. 1(b) reports
a feasible FS-TSP solution. In this solution, the drone departs from the
depot to serve customer 3, as the truck travels towards customer 1.
The drone is later collected by the truck at customer 2. We highlight
that since the drone reaches customer 2 before the truck, it will hover
until the truck arrives. The delivery ends with both the truck and drone
returning to the depot, with the drone on the truck, for a total delivery
completion time of 23 time units. It is important to note that the
feasibility of this solution depends on the drone endurance. If the drone
endurance is sufficient to cover its flight time, including the hovering
time at customer 2, the solution is feasible. If not, the solution will be
infeasible.

2.2. The FS-TSP customer classification approach

Three kinds of decisions are involved in solving a FS-TSP instance:
the subsets of customers served by the truck and the drone, respec-
tively; the launch and the rendezvous nodes of each drone sortie;
the sequence according to which the customers are served. However,
these decisions cannot be taken independently. Indeed, the drone is
not completely autonomous in its delivery operations due to its limited
payload and battery capacity. Therefore, the truck and the drone move-
ments have to be carefully coordinated (synchronized) to achieve the
advantages arising from the use of this hybrid delivery system. On this
basis, it is straightforward that the synchronization and coordination
between the vehicle represent the main issues when addressing the
FS-TSP.

In this context, customers demanding parcels whose weight exceeds
the drone maximum payload will be obviously served by the truck.
These customers will be referred to in the following as customers
’not eligible for drones’ (NED). Instead, we will refer to all the other
customers as ‘eligible for drones’ (ED). The NED customers require only
two kinds of decisions out of three due to their nature. Therefore, the
greater the percentage of NED customers, then the smaller the FS-TSP
solution space. In particular, if the percentage of NED customers is
equal to 100, then the optimal solution of the FS-TSP coincides with
the optimal solution of the Traveling Salesman Problem (TSP).

Generally, FS-TSP instances are characterized by 10%–20% of NED
customers. However, the minimum number of customers that will
be served by the truck is equal to |𝐶| − ⌈|𝐶|∕2⌉, being ⌈|𝐶|∕2⌉ the
maximum number of customers that the drone can serve in a FS-
TSP solution due to its assumptions. On this basis, the percentage of
customers that can be served by the truck is about 50%. However, it
should be noted that the number of customers served by the truck could
potentially be higher, as the number of customers the drone serves in
the optimal solution depends on customer locations and vehicle speeds.
Indeed, results reported in Boccia et al. (2021d) indicate that in the
majority of optimal solutions, the truck services between 80%–90% of
the customers.
3

Based on these observations, the FS-TSP customer classification
approach aims to determine in advance through machine learning
techniques if a customer is ED or NED in the optimal solution. The
idea is to reduce the solution space by fixing the value of the corre-
sponding decision variables and then solve reduced FS-TSP. The fixing
aim is to solve large-size instances by using exact solution methods or
commercial MILP solver that, without the fixing, would not be able to
address instances of that size. This approach is mainly based on the
features defined to characterize the customers. These features have to
consider problem aspects and system features that are not obvious and
can provide insights on the possible FS-TSP optimal solution. However,
as we will see in the computational experiments section on the FS-
TSP solution, an effective method that combines machine learning with
combinatorial optimization must also select an appropriate subset of
features for classification and opportunely determine the parameters
for the classification methods to further improve the performance of
the combinatorial optimization solution method.

3. Features for customer classification in the FS-TSP

In this section, we first recall the seven features described in Boccia,
Mancuso, Masone, Sterle (2021) and straightly based on the problem
assumptions and system operations. Then, we present the new subset
of features mainly based on the graph topography.

3.1. Features based on problem assumptions and system operations

The seven features used to classify customers for the FS-TSP were
chosen based on the problem assumptions and system operations:

• Feature I: related to the weight of the parcel. It is a binary variable
set to 1 if the parcel exceeds the maximum payload for the drone
and 0 otherwise.

• Feature II: measures the potential savings if a customer (denoted
as 𝑐) is not served. It is a continuous variable equal to the
percentage difference between the optimal TSP solution length
with and without 𝑐. Customers with large potential savings may
be good candidates for drone delivery to parallelize the process.
However, calculating this feature may be time-consuming or even
impossible, in which case the length of the TSP can be replaced
by a proxy that is easier to compute.

• Feature III: a measure of the customer centrality, modeled as a
continuous variable equal to the sum of the distances from 𝑐 to
all other customers divided by the sum of all pairwise distances
between customers. Customers with low centrality values may be
suitable for truck delivery.

• Features IV and V: identify customers that could be promising
launch and rendezvous locations for drone sorties. A direct fea-
sible drone sortie is one in which the drone travels from one
location (𝑖) to another (𝑗) via a third location (𝑘), the truck travels
directly between 𝑖 and 𝑗, and the total travel time for both the
drone and truck is less than drone endurance. Feature IV is an
integer variable counting the number of direct feasible drone
sorties involving a particular customer. In contrast, Feature V
counts the number of feasible sorties where at least one of the
launch or rendezvous locations is not eligible for drone delivery.
Customers with a high number of direct feasible drone sorties are
more likely to be used as launch or rendezvous locations in the
FS-TSP solution.

• Features VI and VII: related to the duration of the shortest and
longest drone paths that pass through a customer (𝑐), respectively.
These are continuous variables equal to the minimum and maxi-
mum values, respectively, of the sum of the drone distances from
all other customers to 𝑐 and from 𝑐 to all other customers. If the
shortest or longest path exceeds 𝐷𝑡𝑙, the corresponding feature
value will be set to a very large number.
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3.2. Feature based on the graph topography

The newly identified features are designed by observing the op-
timal solution of several FS-TSP instances varying different instance
arameters (e.g., vehicle speed, endurance). This analysis allows us to
dentify features that cannot be inferred by the problem assumption
r system operations. Two ideas form the basis of the new features: a
entral point of the customer network, referred to as barycenter, and
ustomer reachability. The barycenter will be denoted as 𝑔(𝐶) and its

position can be computed for the instances where the customers are
characterized by coordinates. Since truck and drone routing problems
arise from logistics applications in most of the literature instances,
this information is available. Therefore, indicating with 𝑥𝑝 and 𝑦𝑝 the
generic coordinates of a point 𝑝, 𝑝 ∈ R, or a node 𝑖, 𝑖 ∈ 𝐶 ∪ {𝑜}, of the
etwork, the expression of the coordinates of 𝑔(𝐶) is the following:

(𝑥𝑔(𝐶), 𝑦𝑔(𝐶)) =
(
∑

𝑐∈𝐶 𝑥𝑐
|𝐶|

,
∑

𝑐∈𝐶 𝑦𝑐
|𝐶|

)

(1)

The instances in the FS-TSP are generally characterized by a com-
lete graph (i.e., there is an arc for each pair of nodes of the graph).
herefore, each customer can reach the other customer in theory.
owever, drone endurance limits reachability when the two vehicles
perate in tandem. Therefore, we define the subsets 𝑅(𝑐, 𝜏∗),∀𝑐 ∈ 𝐶,
s the subsets of customers that are reachable by the drone within the
ravel time threshold 𝜏∗ from customer 𝑐, 𝑅(𝑐, 𝜏∗) = {𝑖 ∈ 𝐶 ⧵ {𝑐} ∶ 𝜏𝑖𝑐 ≤
∗}. Based on this notation, it is possible to introduce the new FS-TSP
ustomer features. Since the new features are not intended to replace
he basic features but instead used in combination with the former ones,
e will refer to them following the same enumeration. All the feature
xpressions are referred to a generic customer 𝑐, 𝑐 ∈ 𝐶.

.2.1. Feature VIII
It expresses the ratio between the truck travel time and the drone

ravel time from a customer to all the others. Feature VII is computed
s follows:
∑

𝑖∈𝐶 𝑡𝑖𝑐
∑

𝑖∈𝐶 𝜏𝑖𝑐
(2)

The idea is that a customer with a high value of this ratio is a promising
candidate to be served by the drone.

3.2.2. Feature IX
It highlights the centrality of the customer in the network by mea-

suring its weight into the determination of the barycenter. Its expression
is the following:
𝐸𝑢𝑐𝑑(𝑔(𝐶 ⧵ {𝑐}), 𝑔(𝐶))
∑

𝑖,𝑗∈𝐶 𝐸𝑢𝑐𝑑(𝑖, 𝑗)∕|𝐶|

2
, (3)

here the operator 𝐸𝑢𝑐𝑑(𝑎, 𝑏) indicates the Euclidean distance between
and 𝑏. The numerator expresses the distance between the barycenter

omputed with and without the customer 𝑐. The lower the numerator,
he more central the position of the customers. Therefore, it is more
ikely to be served by the truck. On the other hand, the denominator
xpresses the average euclidean distance between all the customers. It
s used to normalize the feature value.

.2.3. Feature X
It indicates the centrality of the customer, similar to Feature IX.

owever, it expresses the distance between the customer itself and the
arycenter compared to the other customers. It is computed as follows:

𝐸𝑢𝑐𝑑(𝑐, 𝑔(𝐶))
∑

𝑖∈𝐶⧵{𝑐} 𝐸𝑢𝑐𝑑(𝑐, 𝑖)∕(|𝐶| − 1)
(4)

The numerator is the euclidean distance between the customer and the
barycenter. The denominator, instead, is the average distance between
all the other customers and the barycenter. The higher the value of this
feature, the more peripheral the customer is compared to the others,
where a peripheral customer is a promising ED customer.
4

3.2.4. Feature XI
This feature is based on the idea of reachability. It counts the

customers reachable within the drone endurance. Its expression is the
following:

|𝑅(𝑐,𝐷𝑡𝑙)|
|𝐶|

(5)

The numerator is the number of customers reachable within the en-
durance. The denominator is used to normalize the value of the feature.
The idea is that customers characterized by a high value of this feature
are unlikely to be served by the drone since there are few customers
reachable within the drone endurance.

3.2.5. Feature XII
This feature indicates the reachability of a customer due to the

drone endurance weighted for the related distance from the other cus-
tomers. It is computed through the following mathematical expression:

∑

𝑖∈𝑅(𝑐,𝐷𝑡𝑙) 𝜏𝑖𝑐∕|𝑅(𝑐,𝐷𝑡𝑙)|
∑

𝑖,𝑗∈𝐶 𝜏𝑖𝑗∕|𝐶|

2
(6)

his feature compares the average distance between the customer 𝑐 and
he other customers within the endurance threshold with the average
istance of the network. If the feature value is low, the customer is
loser to customers reachable within the drone endurance than the
ther customers. Therefore, it could be convenient to serve it with the
rone.

.2.6. Features XIII and XIV
These two features are based on the same idea behind Features XI

nd XII, but instead of considering the 𝐷𝑡𝑙 as a threshold, we consider
he average drone euclidean travel time of the customer 𝑐 from all the
thers 𝜏𝑎𝑣𝑔(𝑐), 𝜏𝑎𝑣𝑔(𝑐) =

∑

𝑖∈𝐶 𝜏𝑖𝑐∕|𝐶|. On this basis, the two features can
e computed as follows:

|𝑅(𝑐, 𝜏𝑎𝑣𝑔(𝑐))|
|𝐶|

, (7)

∑

𝑖∈𝑅(𝑐,𝜏𝑎𝑣𝑔 (𝑐)) 𝜏𝑖𝑐∕|𝑅(𝑐, 𝜏𝑎𝑣𝑔(𝑐))|
∑

𝑖,𝑗∈𝐶 𝜏𝑖𝑗∕|𝐶|

2
, (8)

where expressions (7) and (8) correspond to Features XIII and XIV,
respectively. The motivation that leads to these features arises from
the observation that, in some instances, the endurance is too high with
respect to the average travel time, allowing all the customers to be
reached with a drone. However, as previously shown, there is a limit on
the number of customers a drone can serve. Therefore, customers that
are ‘‘nearer’’ than others will be more likely to be served by drone.

4. Customer classification experiments

This section presents and discusses the customer classification ex-
periments and the related results. The experiments have been per-
formed on an Intel(R) Core(TM) i7-6500U, 2.50 GHz, 16.00 GB of
RAM. The classification experiments have been implemented in Python
language through the use of the Scikit-learn package.

We first present the data set used for the classification experiments
in the following. Then, we briefly describe the classification models
considered in the experimentation. Finally, we present the customer
classification experiments and discuss the related results.
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4.1. Data set

The literature instances for truck-and-drone routing problems are
represented by the two test beds proposed in Murray and Chu (2015),
the three test beds in Agatz et al. (2018), the test bed in Poikonen,
Golden, and Wasil (2019), and the test bed in de Freitas and Penna
(2020). In particular, the two test beds proposed in Murray and Chu
(2015) have been used specifically for the FS-TSP. They consist of 72
instances with 10 customers and 120 with 20 customers, respectively.
Two different values of endurance (20 and 40 min) are considered
for both instances, leading to 144 and 240 FS-TSP instances. The
optimal solution of all the instances with 10 customers is known in the
literature. However, the optimal solution for different instances with
20 customers is still unknown when the present study is devised.

In our experiments, we have to classify a customer in ED or NED.
Therefore, each customer represents a single observation. We know
the classification of a customer in the FS-TSP only for the instances
solved to optimality. Therefore, only the instances with 10 customers
could be used as training and test sets for the customer classification.
On this basis, the size of our data set would be quite limited (1440
observations), being equal to the number of instances (144) multiplied
by the number of customers (10). Therefore, we considered the same
data set proposed in Boccia, Mancuso, Masone, Sterle (2021) for the
customer classification. The data set contains 2376 instances with 10
customers. These instances were generated coherently with the 10
customer instances proposed in Murray and Chu (2015). The customers
are located across a square area of 8 by 8 miles. Then, the depot
location is chosen among three possibilities: the origin (i.e., setting the
x- and y- coordinates to 0); the center of the customer area computed,
making the average of the customer x- and y-coordinates; the bottom of
the area computed making the average of the customer x-coordinates
and setting the y-coordinate to 0. Two percentage values are considered
for customers whose package exceeds the maximum drone payload
(10% and 20%). The truck and drone travel by considering a Manhattan
and a Euclidean metric, respectively. Only one speed is considered
for the truck (25 miles/h). On the other hand, three possible drone
speeds are considered (15, 25, and 35 miles/h). The drone endurance
was chosen to be either 20 or 40 min. The launch and rendezvous
setup times are both equal to one minute. For each combination of
these parameters, 66 different instances are generated, leading to a
total number of instances and customers/observations equal to 2376
and 23 760, respectively. Then, we compute the values of all fourteen
features for each customer. We point out that all the feature values
are centered and scaled based on the instance, as they are different
types and orders of magnitude. Finally, we determine if a customer is
ED or NED in the FS-TSP optimal solution by solving all the instances
through the column-and-row generation algorithm proposed in Boccia
et al. (2021c).

4.2. Classifiers

As discussed above, we used the classifiers implemented in the
Scikit-learn package (Pedregosa et al., 2011) for our experimentation
as a black box. In particular, we used the same seven classifiers con-
sidered in Boccia, Mancuso, Masone, Sterle (2021), namely: k-nearest
neighbors (KNN), linear support vector machine (LSV ), kernel support
vector machine (RSV ), neural networks (NNE), decision tree (DET ),
random forests (RAF ), adaptive boost algorithm (ADB). These classifiers
are widely known in literature; therefore, we provide a brief description
of each of them in the following.

The KNN belongs to the neighbors-based classification methods
(Goldberger, Hinton, Roweis, & Salakhutdinov, 2004). It is a type of
instance-based learning, or lazy learning, where the model only stores
the training data and does not build a general internal model. The KNN
classifier compares the new data point to the training data and finds
5

the k training points closest to it, according to a distance metric, to c
predict a new data point. The classifier then assigns the new data point
to the most common class among the k-nearest neighbors. The value of
k is a hyperparameter that is chosen by the user, and it determines the
number of neighbors that are considered when making a prediction.
The optimal choice of the 𝑘 value depends largely on the data set.
A large value of 𝑘 reduces the noise, while a small value makes the
classification boundaries less distinct.

Support vector machines (SVM) are classifiers based on the con-
cept of hyperplanes. A hyperplane ideally can linearly separate the
data points in a given dataset into different classes. This hyperplane
is chosen to have the maximum margin, or the maximum distance,
between the closest data points of each class. Once the hyperplane
is determined, new data points can be easily classified by assigning
them to the appropriate side of the hyperplane. The closest values
to the classification margin are known as support vectors. The most
commonly known SVM is a linear classifier (LSV ) that can predict the

embership of each input between two possible classifications using
traight lines as class boundaries (Wang, 2005).

If the data are not linearly separable, within the SVM is used the
ernel method. The idea behind the kernel method is to transform the
ata space in such a way that in the transformed space the data are
inearly separable. One of the most popular kernel method for the SVM
s the Radial Basis Function (RSV) (Amari & Wu, 1999).

Neural networks are computational models inspired by biological
eural networks capable of approximating nonlinear functional rela-
ionships between input and output variables. A neuron is represented
y a node, and a collection of nodes is referred to as a layer. Finally, the
ollection of interconnected layers forms the neural networks (Richard
Lippmann, 1991). The NNE implemented in the Scikit-learn package

elongs to the class of the Multi-layer Perceptron (MLP) algorithms
sing backpropagation. An MLP is a supervised learning algorithm that,
iven a set of features (representing the leftmost layer) and a target
the output layer), can learn a nonlinear function that can be used for
lassification by training on a dataset. The layers between the input
nd the output layers are known as hidden layers. The node output
s computed through a nonlinear function of its inputs. The weights
epresent the connections between nodes from adjacent layers in a
odel. The weights are modified as learning proceeds, representing the

trength of the connections.
A decision tree (DET ) is a non-parametric supervised learning

ethod used for classification. The basic idea is to break up a complex
lassification into a union of several simpler classifications through a
ultistage approach, hoping the final solution obtained this way would

esemble the intended desired solution (Friedl & Brodley, 1997). It
orks by constructing a tree-like model of decisions based on the input
ata, where each internal node represents a test on an attribute, each
ranch represents the outcome of the test, and each leaf node represents
class label. The decision tree classifier is trained by dividing the input
ata into subsets based on the values of the attributes and recursively
pplying the same process to each subset until the leaf nodes are
eached. This process is called recursive partitioning, and it results in
tree-like structure that can be used to make predictions on new data
oints.

The RAF are classifiers that are generated by the ensemble of
andomized decision trees (Pal, 2005). The prediction of the ensemble
s given as the averaged prediction of the individual classifiers. In
articular, each decision tree in the ensemble is built from a sample
rawn with replacement (i.e., a bootstrap sample) from the training
et. Moreover, when splitting each node during the tree construction,
he best split can be found considering all input features or just a
andom subset of them. These two sources of randomness are used to
vercome the overfitting issue that generally arises using individual
ecision trees.

The ADB is the popular boosting algorithm AdaBoost, first in-
roduced in Freund, Schapire, and Abe (1999). ADB belongs to the

ategory of ensemble classifiers. It is a combination of two key ideas:
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boosting and adaptive weighting. Boosting is a general method for
improving the performance of a machine learning algorithm by training
a series of ‘‘weak’’ learners, which are models that are only slightly
better than random guessing, and combining their predictions to form
a stronger, more accurate model. In the case of ADB, the weak learners
re decision trees trained on different input data subsets. Adaptive
eighting is a method for giving more emphasis to the data points

hat are harder to classify and less on the data points that are easy
o classify. In ADB, each decision tree is trained on a weighted version
f the input data. The weights are initially set to be equal for all data
oints. After each decision tree makes its prediction, the weights of the
ncorrectly classified data points are increased, and the weights of the
orrectly classified data points are decreased. This process is repeated
or a number of iterations, and the final classification is obtained
hrough a weighted sum (or majority vote) of the single classification
f the weak learners.

.3. Classification experiments

To assess the impact of different features on customer classification,
e conduct three distinct experiments. In the first, we evaluate the

mpact of the new features. Subsequently, considering that a large num-
er of features might introduce noise into the results (Tang, Alelyani,

Liu, 2014), we aim to identify a good subset of features for ef-
ective customer classification. Finally, we aim to determine a good
lassifier parameter configuration to enhance the performance of the
lassification process.

.3.1. Feature comparison
To assess the impact of the new features on customer classification,

e compared the results of the classifiers using the features proposed
n Boccia, Mancuso, Masone, Sterle (2021) (Feature I–Feature VII),
hose introduced in this study (Feature VIII–Feature XIV), and the
omplete set of features (Feature I–Feature XIV). For simplicity, we use
he default parameter setting for each classification model. Then, we
se a 10-fold cross-validation scheme for all the experiments on the
ata set with the 23 760 observations and compute different classifi-
ation metrics (Lever, 2016). In particular, we compute the accuracy,
recision, recall, and f1-score for each subset of features and classifier.
or the sake of completeness, we report for each metric the related
xpression:

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (9)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (10)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (11)

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

, (12)

here TP, TN, FP, and FN indicate true positive, true negative, false
ositive, and false negative, respectively. We point out that in our
xperiment, a TP is a customer classified as NED and served by the
ruck in the FS-TSP optimal solution. A TN is a customer classified as
D and served by the drone in the optimal solution. An FP is a customer
lassified as NED but served by the drone in the optimal solution.
inally, an FN is a customer classified as ED but served by the truck
n the optimal solution. The results of the customer classification are
eported in Table 1.

On average, it is evident that when considering only the new
eatures, only the KNN classifier improves its performance compared
o the feature subset I–VII. This can be explained by considering that
he new features were developed taking into account FS-TSP subtle
spects not covered by the previous features. Thus, they are intended
o integrate rather than replace them. Indeed, we can observe that five
6

lassifiers out of seven with all the features improve their performance
Table 1
Impact of the new features on the classifier performance.

Classifier Score Features I–VII Features VIII–XIV Features I–XIV

KNN

Accuracy 0.858 0.860 0.853
Precision 0.680 0.694 0.678
Recall 0.584 0.562 0.568
f1-score 0.616 0.604 0.603

LSV

Accuracy 0.862 0.830 0.869
Precision 0.780 0.758 0.793
Recall 0.455 0.248 0.494
f1-score 0.557 0.359 0.592

RSV

Accuracy 0.860 0.827 0.849
Precision 0.716 0.658 0.708
Recall 0.532 0.368 0.473
f1-score 0.597 0.442 0.545

DET

Accuracy 0.865 0.829 0.869
Precision 0.691 0.617 0.712
Recall 0.603 0.438 0.622
f1-score 0.635 0.493 0.648

RAF

Accuracy 0.878 0.846 0.888
Precision 0.767 0.729 0.802
Recall 0.598 0.438 0.612
f1-score 0.654 0.516 0.676

NNE

Accuracy 0.861 0.825 0.863
Precision 0.712 0.663 0.699
Recall 0.563 0.382 0.601
f1-score 0.612 0.448 0.634

ADB

Accuracy 0.861 0.825 0.863
Precision 0.732 0.669 0.726
Recall 0.571 0.369 0.566
f1-score 0.608 0.434 0.610

compared to the feature subset I–VII. In particular, we can observe
that RAF classifier is the best classifier showing the highest accuracy,
precision, and f1-score values. The DET classifier shows the highest
value of recall. Therefore, we can confirm that, as also shown in Boccia,
Mancuso, Masone, Sterle (2021), decision tree classifiers perform well
in customer classification. However, using a larger number of features
only sometimes leads to an improvement in the classification perfor-
mance, as expected (Hua, Xiong, Lowey, Suh, & Dougherty, 2005).
Indeed, the KNN and RSV show better performance with the features
I–VII.

4.3.2. Feature selection
Based on the previous results, we observed that simply considering

all the features does not necessarily yield better results than using a
subset of them. Therefore, we run an additional experiment to deter-
mine a good subset of features for customer classification. To this end,
we use the sequential feature selection algorithm implemented in the
Scikit-learn package (Ferri, Pudil, Hatef, & Kittler, 1994).

For completeness, we recall that sequential feature selection is a
type of algorithm used to select a subset of features from a larger
set of features in a dataset. It is called ‘‘sequential’’ because it works
by iteratively adding (forward) or removing (backward) features from
the subset based on some performance criterion. Forward selection
starts with an empty set of features and adds one at a time. Backward
selection starts with the complete set of features and removes features
one at a time. The sequential feature selection algorithm implemented
in the Scikit-learn package uses the KNN classifier as default with 𝑘
qual to 4. In our experiment, we use four different setups:

• forward selection with 𝑘 = 4 (F-4NN);
• backward selection with 𝑘 = 4 (B-4NN);
• forward selection with 𝑘 determined automatically by the algo-

rithm (F-kNN);
• backward selection with 𝑘 determined automatically by the algo-
rithm (B-kNN).
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Table 2
Classification results after the feature selection.

Classifier Score F-4NN B-4NN F-kNN B-kNN

KNN

Accuracy 0.896 0.901 0.901 0.897
Precision 0.759 0.777 0.779 0.760
Recall 0.701 0.719 0.718 0.714
f1-score 0.720 0.738 0.738 0.730

LSV

Accuracy 0.852 0.868 0.869 0.869
Precision 0.800 0.791 0.798 0.794
Recall 0.366 0.476 0.475 0.478
f1-score 0.489 0.586 0.585 0.588

RSV

Accuracy 0.855 0.876 0.873 0.874
Precision 0.761 0.759 0.756 0.755
Recall 0.440 0.574 0.561 0.564
f1-score 0.534 0.64 0.631 0.632

DET

Accuracy 0.857 0.869 0.875 0.871
Precision 0.740 0.694 0.724 0.700
Recall 0.468 0.618 0.62 0.628
f1-score 0.558 0.645 0.657 0.654

RAF

Accuracy 0.858 0.887 0.888 0.886
Precision 0.753 0.801 0.799 0.796
Recall 0.469 0.598 0.606 0.598
f1-score 0.555 0.667 0.672 0.665

NNE

Accuracy 0.854 0.872 0.872 0.872
Precision 0.737 0.737 0.744 0.740
Recall 0.471 0.579 0.571 0.574
f1-score 0.550 0.637 0.634 0.633

ADB

Accuracy 0.852 0.867 0.867 0.865
Precision 0.715 0.72 0.726 0.712
Recall 0.465 0.589 0.587 0.579
f1-score 0.544 0.636 0.633 0.627

Table 3
Feature determined by each selection setting.

Feature F-4NN B-4NN F-kNN B-kNN

I ✓ ✓ ✓

II ✓ ✓ ✓

III ✓ ✓ ✓ ✓

IV
V
VI ✓ ✓ ✓ ✓

VII
VIII ✓ ✓ ✓ ✓

IX ✓

X ✓ ✓

XI ✓

XII ✓

XIII
XIV ✓

The feature selection is repeated for all the setups until the accuracy
improves by at least 0.01.

The classification results after the feature selection are reported in
Table 2.

The results show that all the setups determine similar improve-
ments. However, on average, the F-kNN setting determines the best
performance for all the classifiers. Moreover, the lowest accuracy value
is equal to 13.3%, lower than the lowest accuracy determined in Boccia,
Mancuso, Masone, Sterle (2021) (14.2%). We can also observe that the
KNN classifier performs best. This result can be explained considering
that KNN is the classifier used within the feature selection. The features
determined at the end of the feature selection for each setup are
reported in Table 3.

We can observe that the F-4NN setup selects 3 features while all
the others select 7 features. Moreover, we can observe that features
III, VI, and VIII are selected in all the setups. Instead, Features IV, V,
and XIII are not selected by any setup. Finally, we also point out that
there are both new and old features in all the setups. In particular,
the best setups select at least one feature based on the barycenter and
7

Fig. 2. Performance of KNN for different numbers of neighbors (K).

the customer reachability. Therefore, the classification results show
that the proposed features allows to improve the FS-TSP customer
classification process.

4.3.3. Classifier tuning
The previous experiments were conducted using the default pa-

rameter configurations for the classifiers, as our primary focus was
evaluating the impact of features on the classification process. In this
subsection, we present an experiment assessing how classification re-
sults vary with different classifier parameter configurations. For this
experiment, we selected the KNN classifier and the features chosen by
the F-kNN setup, as they yielded the best classification results in the
previous experiment. As mentioned earlier, the main hyperparameter
for the KNN classifier is the number of neighbors (𝐾). Generally, a
suitable value for 𝐾 is the square root of the sample size; however,
the optimal value depends on the specific dataset in use (Zhang, Li,
Zong, Zhu, & Wang, 2017). Hence, we conduct several experiments,
varying the value of 𝐾 between 1 and 2376 (which represents 10%
of the sample size). The results are depicted in Fig. 2, with the x-axis
representing the value of 𝐾 and the 𝑦-axis showing the results for the
different classification metrics in percentage.

We note that the accuracy is relatively stable across different values
of 𝐾, with a small variation between its minimum value of 89.88%
and maximum value of 90.62%. In contrast, precision exhibits a slightly
greater variability than accuracy, with values spanning from 77.07% to
81.30%. The recall, however, has a narrower range, from a minimum
of 70.47% to a maximum of 72.57%. The f1-score similarly ranges be-
tween a minimum of 73.25% and a maximum of 74.94%. Concluding, it
can be observed that best results align with values similar to the square
root of the sample size. Moreover, as expected, performance tends to
decline with values of 𝐾 that are either too small or excessively large.

5. FS-TSP experiments

The results of the customer classification cannot be used to directly
evaluate the impact on the FS-TSP in terms of the quality of the
resulting solution. Indeed, the effects of the customer classification on
the FS-TSP solution are the following:

• a TP reduces the solution space without a loss of the optimality;
• a TN has no effect on the solution space and, as a consequence,

on the optimality;
• an FP reduces the solution space with a loss of optimality;
• an FN does not reduce the solution space, so there is no loss of

optimality.

Therefore, it is possible to determine the FS-TSP optimal solution
even with an accuracy lower than 1. On the other hand, a high accuracy
value does not necessarily guarantee a good FS-TSP solution.
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In this section, we present and discuss the computational results
of the experimentation performed to evaluate the impact of the new
features and the classification parameter tuning in terms of FS-TSP
olution. This experimentation consists in solving FS-TSP instances
odified using the results of the customer classification. The objective

s to investigate the benefits of the new features on the FS-TSP solution
n terms of objective function value and computation times. For this
xperimentation, we considered medium- and large-sized instances
aken from the literature. The medium-sized instances consist of the
0-customer instances presented in Murray and Chu (2015). The large-
ized instances, introduced in de Freitas and Penna (2020), are an
daptation of a subset of instances from the TSPLIB (Reinelt, 1991) for
he FS-TSP, with the number of customers ranging from 51 to 200.

In the following two sections, we outline the experimental setup and
iscuss the computational results for each test bed.

.1. FS-TSP experiments on medium-sized instances

Each customer in the FS-TSP instances is characterized by a binary
arameter that is equal to 1 if the drone cannot serve it, 0 otherwise.
his parameter indicates if the customer parcel exceeds the drone max-

mum payload. In our approach, we exploit this parameter to include
he results of the customer classification into the FS-TSP solution. The
iterature instances considered for this experimentation consist of 120
nstances with 20 customers, where each instance can be characterized
y two 𝐷𝑡𝑙 values (20 and 40 min). In particular, for each instance and
lassification, we generate a modified instance where each customer is
et as ED or NED according to the classification results. For the customer
lassification, we considered the KNN as a classifier, the one with
he best performance in the previous classification experimentation.
oreover, the KNN is the classifier showing on average the best FS-
SP results in Boccia, Mancuso, Masone, Sterle (2021). Then, we select
hree feature subsets for classification: one that only considers the
ew features (referred to hereafter as New), one that includes all the
eatures (referred to as All), and one derived from the F-kNN feature
election (denoted as Sel). For these feature subsets, the KNN classifier

is employed with the default value of 𝐾 in the Scikit-learn package,
which is 𝐾 = 5. Additionally, we introduced a classification setup based
n the tuning experiments conducted in the previous section (labeled
s Tun). For this setup, we employed the features resulting from the
-kNN feature selection and the KNN classifier set at 𝐾 = 369, which

yielded the maximum value for the accuracy metric.
On this basis, we generate two versions of each instance, one for

each 𝐷𝑡𝑙, for each subset of features and classifier parameter configura-
tion, resulting in a total of 960 instances. Then, we solved the modified
FS-TSP instances using the same solution method considered in Boccia,
Mancuso, Masone, Sterle (2021) to ensure a consistent comparison.
Specifically, we used the column-and-row generation approach pro-
posed in Boccia et al. (2021c), with a time limit of 1 h, employing Cplex
12.7 with default setting as MILP solver. All experiments were carried
out on an Intel(R) Core(TM) i7-6500U, 2.50 GHz, with 16.00 GB of
RAM. Subsequently, we compared these results with the best-known
upper bounds for these instances reported in Boccia et al. (2021c) and
Dell’Amico et al. (2022). Moreover, for the sake of completeness, we
reported the best results from Boccia, Mancuso, Masone, Sterle (2021)
(denoted as Lit) where the features I–VII were first proposed and tested.
We recall that these results were obtained using the KNN classifier with
default parameter settings.

The results of the FS-TSP experiments on the instances with 𝐷𝑡𝑙
equal to 20 min are reported in Tables 4 and 5. Table 4 shows the
results in terms of quality of the FS-TSP solution. The results are
grouped in three sets based on the depot location (center, edge, and
origin) in the instances. Therefore, each row gives an average value
calculated over 40 instances. For each classification, we report the
average percentage difference (Diff%), the percentage of solutions with
8

an objective value equal to or better than the best known in the r
Table 4
Quality of the FS-TSP solution with 𝐷𝑡𝑙 = 20.

Features Diff% BES%

Lit New All Sel Tun Lit New All Sel Tun

Center 3.13 8.34 3.86 3.04 4.11 5.00 0.00 0.00 0.00 5.00
Edge 1.48 5.61 2.29 1.58 1.99 12.50 0.00 12.50 10.00 12.50
Origin 2.00 3.81 2.50 2.02 2.45 0.00 0.00 2.50 2.50 0.00
Average 2.20 5.92 2.88 2.21 2.85 5.83 0.00 5.00 4.17 5.83

Table 5
Running time on the instances with 𝐷𝑡𝑙 = 20.

Features Running time TL%

Lit New All Sel Tun Lit New All Sel Tun

Center 26.38 1.00 21.26 156.73 101.42 0.00 0.00 0.00 2.50 2.50
Edge 151.48 1.67 139.08 258.18 135.21 2.50 0.00 2.50 2.50 2.50
Origin 5.15 1.28 10.30 11.10 7.09 0.00 0.00 0.00 0.00 0.00
Average 61.00 1.32 56.88 142.00 81.24 0.83 0.00 0.83 1.67 1.67

literature (BES%). We point out that the Diff% is computed as Diff% =
(UB-BUB)/BUB ⋅ 100, where UB is the objective value of the solution
etermined by the proposed approach and BUB is the best upper bound
n literature.

The results show that by considering the New classification we
btain the largest Diff%. This confirms that these features, due to their
ature, have to be used in combination with other features. However,
e recall that in terms of classification, the New features showed better

esults than both Lit and All. Additionally, we can observe that the Sel
nd Lit classifications have a similar impact on the FS-TSP solution
ith an average Diff% of about 2.20. However, the Lit classification
erforms better on the edge group of instances. In contrast, the Sel
lassification performs better on the center instances. These results can
e explained by considering that new features, mainly based on the
nstance topography, allow to take into account elements not consid-
red by the Lit features. Subsequently, we can observe that by only
onsidering all the features, i.e. the All classification, does not yield
etter results, since it shows an average Diff% of 2.88. Indeed, as for
he customer classification, a large feature subset might introduce noise
n the classification and, as a result, in the FS-TSP solution. Finally,
t is worth noting that even when using the same subset of features,
djusting the classifier parameters can lead to different results in terms
f Diff%. Specifically, the Tun classification shows a slightly higher
iff% compared to the Sel one.

Concerning the BES%, we can observe that the Lit and Tun clas-
ifications show slightly better results than the other classifications.
owever, the All and the Sel classifications perform better on the origin
roup instances. Moreover, unlike for the Diff%, the All classification
erforms better than the Sel one since the first is able to determine
he best solution on the 5% of the instances versus the 4.17% of the
atter. These results show that the new features used in combination
ith other features can improve the FS-TSP quality obtainable with the
roposed approach.

Table 5 shows the running time results. In particular, we report
he average running time in seconds and the percentage of modified
nstances not solved to optimality within the time limit (TL%).

Concerning the running time results, the New classification is the
astest, while the Sel classification is the slowest. In particular, we note
hat the average running time for the New classification is at least an
rder of magnitude less than that of the others, partially justifying its
igher Diff%. On the other hand, in terms of instances solved within
he time limit, all the classifications show similar results. Only, the Sel
nd Tun classifications are slightly worse, being unable to solve just one
nstance of the center group within the time limit.

Tables 6 and 7 report the results on the instances with 𝐷𝑡𝑙 equal
o 40 in terms of quality of the FS-TSP solution and running time,
espectively.
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Table 6
Quality of the FS-TSP solution with 𝐷𝑡𝑙 = 40.

Features Diff% BES%

Lit New All Sel Tun Lit New All Sel Tun

Center 2.34 14.13 4.76 4.45 4.38 15.00 0.00 17.50 17.50 12.50
Edge 3.86 10.33 1.77 1.74 1.85 20.00 0.00 37.50 30.00 30.00
Origin 1.87 13.56 4.18 3.46 1.84 25.00 2.50 22.50 17.50 30.00
Average 2.69 12.67 3.57 3.22 2.68 20.00 0.83 25.83 21.67 24.17

The results on the instances with 𝐷𝑡𝑙 equal to 40 show that, on
verage, the Tun classification performs slightly better than the others
n terms of Diff%. Moreover, we can observe that on the edge group
f instances, the All and the Sel classifications show the lowest Diff%.

These results show the effectiveness of the new features of taking into
account some significant aspects for the FS-TSP solution quality, not
considered by the feature Lit. The results confirm these impacts also
in terms of BES%. Indeed, the Tun classification exhibits the highest
percentage of best solutions for the origin instance group, the Sel for the
center instance group, and the All for both the center and edge instance
groups. In particular, the All classification determines, on average, the
highest BES% (25.83).

Regarding the running time, on average, the New classification out-
performs the other classifications. However, the corresponding Diff%
suggests a trade-off between running time and the Diff% when em-
ploying the New classification. Instead, the Tun classification, which
shows the smallest average Diff% on these instances, also maintains a
easonable average running time when compared to the Lit, All, and Sel
lassifications. These trends are further confirmed when looking at the
esults in terms of TL%.

In conclusion, the overall results highlight the substantial impact
f the proposed features on the FS-TSP solution. Furthermore, we note
hat, by utilizing feature selection and classifier parameter tuning, the
resented method can effectively tackle FS-TSP instances. However, as

previously discussed, there is not clear evidence pointing to a particular
subset of features or a parameter setting that universally outperforms
the others across all instances. Therefore, a further investigation of
these aspects is necessary.

5.2. FS-TSP experiments on large-sized instances

In this section, we evaluate the performance of the proposed ap-
proach on large-sized instances. The literature instances considered for
this experimentation consists of 24 instances with up to 200 customers,
with each instance having a 𝐷𝑡𝑙 of 40 min. To address these FS-TSP
nstances, we employed the same approach used in the experimentation
n medium-sized instances. However, we only considered the Tun clas-
ification, as the experimentation on medium-sized instances showed
hat it yielded better results compared to the others.

Therefore, for each instance, we generate a modified version where
ach customer is designated as ED or NED based on the results of the
un classification. We then addressed the modified FS-TSP instances
sing the column-and-row generation approach proposed in Boccia
t al. (2021c), setting a time limit of 1 h and using Cplex 12.7 with
ts default settings as MILP solver. All experiments were conducted on
n Intel(R) Core(TM) i7-6500U, 2.50 GHz, equipped with 16.00 GB of
AM.

Subsequently, we compared these results with the upper bound gen-
rated by the column-and-row generation technique proposed in Boccia
t al. (2021c), without using the classification approach, and with the
est-known upper bounds for these instances reported in Dell’Amico
t al. (2021a). The first comparison shows the impact of the classifi-
ation process on both the quality and the computational time of the
S-TSP solution method. The second comparison aims to highlight the
ffectiveness of the proposed methodology by comparing it with the
9

est heuristic for the FS-TSP available in the literature, to the best of a
ur knowledge. Lastly, it should be noted that we used the solution
ethod from Boccia et al. (2021c) to maintain consistency with the
revious experimentation. However, we point out that we could have
pted for any FS-TSP solution method that is capable of exploiting the

outcomes of the classification process.
Table 8 presents the results of our experimentation. The first column

lists the instance name. The successive two columns report the upper
bounds obtained from the solution methods proposed in Boccia et al.
(2021c) and Dell’Amico et al. (2021a), denoted as BMS21 and DMN21,
respectively. The third and fourth columns provide the Diff% between
he proposed method and both BMS21 and DMN21. Specifically, Diff%
s computed as Diff% = (UBML-UBX)∕𝑚𝑎𝑥{UBML,UBX}, where UBML
epresents the upper bound determined by the proposed approach, and
BX is the upper bound obtained through the solution method 𝑋, with
being either BMS21 or DMN21. Then, the final two columns indicate

he running times for DMN21 and our proposed method. We have
hosen not to include the running time for BMS21 as, for every instance,
he solution method was stopped due to the 1-h time limit.

Observing the results, we notice that the proposed approach en-
ances the upper bound determined by BMS21 for nearly all instances.
nly in two cases does the proposed method yield the same upper
ound as BMS21. However, it is worth noting that our approach
ever yields an upper bound greater than that determined by BMS21
cross any instances. This indicates that the proposed method improves
he performance of BMS21 for large-sized instances, which the exact
olution method struggles to tackle due to the high dimensionality.
hese results highlight the potential of the proposed hybrid approach
o enhance the effectiveness of a combinatorial optimization solution
ethod.

When comparing our method with DMN21, the average Diff% is
qual to 15.40. Nonetheless, this value is biased by instances not solved
ithin the time limit. By excluding those instances, the Diff% drops to
.12. Additionally, we can observe that for 5 instances, the proposed
pproach is able to determine the best upper bound known in literature
or those instances. In terms of execution time, our approach on average
uns just about an order of magnitude longer than DMN21. However, in
ne instance, it is even faster than DMN21. In conclusion, these results
nderscore that the proposed approach can also be suitable employed
s a heuristic method for solving the FS-TSP.

. Conclusion

In this work, we study the benefit arising from the use of machine
earning techniques for combinatorial optimization problems. In partic-
lar, we investigate the impact of a customer classification into ED and
ED on a solution of a truck-and-drone routing problem known in the

iterature as FS-TSP. The idea is to use this customer classification to
educe the solution space of FS-TSP and thus improve the performance
f the existing solution method. Unlike the previous study, we have de-
eloped original customer features based mainly on graph topography
nd have incorporated both feature selection and classifier parameter
uning into the hybrid solution approach. We have validated the impact
f these new features through twofold experimentation. First, we eval-
ate the effect of the new features and the classifier parameter setting
n customer classification. To this end, different classification methods,
eature subsets, and classifier parameter configurations are tested. The
esults show that the new features can improve the performance of
ll the tested classification methods. In particular, a subset of features
onsisting of new and old features results shows the best results. Then,
e investigate the impact of the resulting classification on the FS-TSP

olution in terms of the quality of the solution and running times. On
he one hand, the results confirm that the new features can improve
he performance of a combinatorial optimization method for the FS-TSP
cross various benchmark instances, and that this hybrid approach can

lso be effectively employed as a heuristic method.
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Table 7
Running time with 𝐷𝑡𝑙 = 40.
Features Running time TL%

Lit New All Sel Tun Lit New All Sel Tun

Center 692.26 1.15 777.80 1110.40 711.43 15.00 0.00 15.00 22.50 15.00
Edge 774.04 1.02 1898.86 1061.93 609.93 20.00 0.00 27.50 27.50 12.50
Origin 1018.28 1.24 816.48 955.14 730.10 25.00 0.00 15.00 20.00 15.00
Average 2484.58 1.14 3493.14 3127.47 683.82 20.00 0.00 19.17 23.33 14.17
C

C

Table 8
Results on the large-sized instances.

Instances Upper bound Diff% Running time

BMS21 DMN21 BMS21 DMN21 DMN21 Tun

berlin52 746.25 199.75 −72.03 4.28 2.90 1836.97
bier127 12 806.40 3505.40 −71.38 4.37 569.60 780.34
ch130 1508.49 184.52 −78.43 43.29 387.40 3600
d198 838.44 461.23 0.00 44.99 482.60 3600
eil51 43.80 13.45 −69.29 0.00 0.00 57.92
eil76 61.30 16.90 −72.43 0.00 0.00 137.50
kroA100 5928.00 540.81 −89.91 9.59 225.40 393.92
kroA150 8970.75 717.44 −91.60 4.76 546.00 3600
kroA200 11 528.90 832.10 −80.48 63.02 139.80 3600
kroB150 8464.25 694.06 −90.26 15.84 670.20 3600
kroB200 10 328.90 813.49 −82.91 53.92 153.00 3600
kroC100 5706.70 564.28 −88.77 11.93 519.20 475.19
kroD100 4482.75 560.14 −86.21 9.41 674.20 368.66
kroE100 5734.20 589.02 −88.97 6.85 211.00 364.99
lin105 1069.20 387.62 −48.97 28.96 217.70 3600
pr107 1743.57 1044.11 −34.70 8.29 249.00 1014.35
pr124 2361.20 1620.23 −30.26 1.61 8.70 1030.98
pr136 7736.80 2525.62 −64.00 9.32 234.6 3600
pr144 2628.61 1676.75 −36.21 0.00 28.8 598.35
pr152 4493.50 1981.94 −55.20 1.54 10.2 1540.34
rat99 76.10 37.45 −50.79 0.00 0.00 390.52
rat195 126.90 71.50 0.00 43.66 0.00 3600
rd100 1605.44 221.53 −85.64 3.92 163.00 3590.75
st70 105.45 21.00 −80.09 0.00 0.00 249.53
Average −64.52 15.40 228.90 1884.60

On the other hand, the results show that there is not a straight
elationship between classification and combinatorial optimization re-
ults. Future extensions of this study could consider using combinatorial
ptimization methods to select the subset of features for the customer
lassification (Boccia, Masone, Sforza, & Sterle, 2017). Moreover, new
eatures can be developed to account for other FS-TSP aspects that are

still unexplored. Finally, it would be interesting to investigate the use
of similar hybrid methods based on machine learning techniques in
combination with other approaches to evaluate the resulting benefits
in different application fields (Capocasale, Gotta, & Perboli, 2023;
Capocasale & Perboli, 2022).
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