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The complete measurement of the quantum state of two correlated photons requires reconstructing the amplitude and
phase of the biphoton wavefunction. We show how, by means of spatially resolved single photon detection, one can
infer the spatial structure of biphotons generated by spontaneous parametric down conversion. In particular, a spa-
tially resolved analysis of the second-order correlations allows us to isolate the moduli of the pump and phase-matching
contributions to the two-photon states. When carrying this analysis on different propagation planes, the free-space
propagation of pump and phase-matching is observed. This result allows us, in principle, to gain enough information
to also reconstruct the phase of the pump and the phase-matching and thus the full biphoton wavefunction. We show
this in different examples where the pump is shaped as a superposition of orbital angular momentum modes or as a
smooth amplitude with a phase structure with no singularities. The corresponding phase structure is retrieved employ-
ing maximum likelihood or genetic algorithms. These findings have potential applications in fast, efficient quantum
state characterization that does not require phase locking of the unknown source with a reference biphoton. © 2024

Optica PublishingGroup under the terms of theOpticaOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.527661

1. INTRODUCTION

The tomography of quantum states plays a fundamental role in
modern quantum technologies [1–5]. At the same time, such a task
can be particularly challenging when dealing with systems of many
particles and/or many degrees of freedom [6,7]. If a projective
measurement approach is adopted, with no prior information, the
number of required measurements scales quadratically with the
dimensionality of the Hilbert space [1]. The case of the reconstruc-
tion of high-dimensional two-photon states is of particular interest
given their applications in fundamental quantum mechanics
[8–11], high-dimensional quantum communications [12,13], and
quantum imaging [14]. As an alternative to projective approaches
based on mode sorting, recent works introduced the possibility
of exploiting variations of classical interferometric techniques for
directly reconstructing the spatial structure of phase and amplitude
of an unknown biphoton state [15]. This approach is practically
faster and more reliable than traditional methods thanks to the
use of time-stamping cameras [16–18], which is proving to be a
promising resource for quantum optics experiments [15,19–27].
However, interferometric approaches will require the phase lock-
ing of the reference biphoton state with the unknown one, a task
which can be harder to achieve in cases where the unknown source
is not easily accessible. It is thus desirable to have the possibility
of obtaining the phase structure of the unknown biphoton from
measurements that do not require any control of the source. Here,

we propose a method based on measuring the spatial coincidence
distribution in different propagation planes and reconstructing
the phase of the biphoton employing phase retrieval algorithms.
Non-interferometric phase retrieval is emerging as an interesting
tool in quantum imaging applications [27,28].

We demonstrate how the analysis of coincidence images
allows us to extract the square moduli, hereafter referred to as
“intensities,” of the two complex functions that contribute to the
biphoton state: the pump and the phase-matching. Intriguingly,
in the case of free-space propagation, this separation can be per-
formed in any plane perpendicular to the average propagation
direction, here identified with the z axis. The intensity of the
extracted pump (phase-matching) function in a given plane
z= z0 + d is related to the pump (phase-matching) in z= z0

by paraxial propagation through a distance d/2—or, equiva-
lently, assuming the pump and phase-matching functions to have
half the wavelength of the biphoton state. Retrieving pump and
phase-matching intensities at different planes and knowing their
relationship opens the possibility of reconstructing the phase of
these fields and, thus, the full biphoton wavefunction. We show,
theoretically and experimentally, how to isolate the pump and
phase-matching intensities from coincidence images. Therefore,
we give some examples of their phase reconstruction based on
the exploitation of maximum likelihood approaches and genetic
algorithms. The latter are used in cases where the convenient modal
decomposition—e.g., Zernike polynomial expansion of the pump
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phase—does not have an analytical expression for the field propa-
gation. Last, we give an example of a more complex situation where
a sharp image is encoded in the pump’s phase.

2. THEORY

Consider a two-photon state with fixed wavelengths and polariza-
tions, in a paraxial propagation regime. In this case, assuming the
z axis corresponds to the mean propagation direction, the system
can be described in terms of the probabilities of photons passing
through the transverse position X= (x , y ) in a given plane. The
quantum state is thus described in terms of the creation operators
â †

X. Defining the transverse position eigenstate as |X〉 := â †
X|0〉,

with |0〉 the vacuum state, a general biphoton state is given by

|9〉 =

∫∫
9(Xi ,Xs )|Xi 〉 ⊗ |Xs〉dXi dXs , (1)

where 9(Xi ,Xs ) is called the biphoton wavefunction. The
indices i and s denote, conventionally, idler and signal photons,
respectively. Equation (1) is a representation of the state in a basis
of transverse coordinates eigenstates for a given value of z. The
free-space propagation of the biphoton wavefunction from z to
z′ is

9 ′(X′i ,X′s )=
∫∫

G1z(X′i ,Xi )G1z(X′s ,Xs )

×9(Xi ,Xs )dXi dXs , (2)

where G1z(X′,X) is a free-space propagator through the distance
1z= z′ − z and X′ = (x ′, y ′) are the transverse coordinates in the
plane z′. For paraxial fields, the free-space propagation is described
in terms of the Fresnel propagator

Gz(X′,X)=
i
λz

e ikz exp

(
−i

π

λz
(X′ −X)2

)
. (3)

A common and interesting case is given by correlated biphoton
states with the following wavefunction:

9(Xi ,Xs )= Ep

(
Xi +Xs

2

)
φ

(
Xi −Xs

2

)
. (4)

In particular, in the case of biphotons generated via sponta-
neous parametric down conversion (SPDC) in Type-I crystals,
Ep is the spatial, slowly varying amplitude of the pump laser,
and φ is the phase-matching function [29,30]. This structure
simplifies the propagation of the biphoton wavefunction sig-
nificantly. Performing the change of variables R= (Xi +Xs )/2,
1= (Xi −Xs )/2 [24], and expanding the squares (X′ −X)2 in
the Fresnel propagator, it is straightforward to verify that

Gz(X′i ,Xi )Gz(X′s ,Xs )=
1

4
e ikzGz/2(R′,R)Gz/2(1

′,1). (5)

This allows one to separate the four-dimensional (4D) integral
describing the SPDC propagation in free space into the product of
two bidimensional integrals:

9 ′(R′,1′)=N
∫

G1z/2(R′,R)Ep(R)dR

×

∫
G1z/2(1

′,1)φ(1)d1, (6)

whereN is a normalization constant. Thus, the propagated bipho-
ton wavefunction has the structure 9 ′(R′,1′)= E ′p(R′)φ′(1

′),
where E ′p and φ′ are obtained applying a single Fresnel propagator
on the functions Ep and φ. It is important to emphasize that the
propagation of Ep and φ must be evaluated for 1z/2 if 1z is the
propagation distance considered for the biphoton state.

Experimentally, from spatially resolved coincidence detection,
one can extract the pump and phase-matching contributions
in each measurement plane. Coincidence detection with event
based cameras allows us to retrieve the 4D function C(Xi ,Xs )=

|9(Xi ,Xs )|
2. From C one can easily extract useful information

expressed by 2D functions, such as the spatial correlations in the
x and y coordinates, which are defined as the marginal distri-
butions Cx (xi , xs ) :=

∫∫
dy i dy s C(Xi ,Xs ) and Cy (y i , y s ) :=∫∫

dxi dxs C(Xi ,Xs ). An example of spatial correlations on SPDC
in an intermediate propagation plane is shown in Figs. 1(a) and
1(b). Another quantity of interest is what we denote as a coincidence
image, which is defined by integrating over one of the two photon’s
coordinates, e.g., Cs (xs , y s ) :=

∫∫
dxi dy iC(Xi ,Xs ). As can be

seen in Fig. 1(c), the coincidence image shape depends on both the
pump and phase-matching functions, displayed in Fig. 1(d) and
1(e), respectively. The latter can be extracted by applying filters on
the coincidence distribution before integrating on the signal pho-
ton’s coordinates. In particular, we consider post-selected coincidence
images of the form

C±(Xs ) :=

∫∫
d2XiC(Xi ,Xs )δ(Xi ∓ (Xs − 2c)). (7)

0 4.4

4.4

0

xs (mm)

x i
(m
m
)

0 4.4

4.4

0

ys(mm)

y i
(m
m
)

0 4.4

4.4

0

x (mm)

y
(m
m
)

0 4.4

4.4

0

x (mm)

y
(m
m
)

0 4.4

4.4

0

x (mm)

y
(m
m
)

(b)

(a)

(c)

(d)

(e)

0

0.2

0.4

0.6

0.8

1.0

0

1

0

0.2

0.4

0.6

0.8

1.0

0

1

0

0.2

0.4

0.6

0.8

1.0

0

1

0

0.2

0.4

0.6

0.8

1.0

0

1

0

0.2

0.4

0.6

0.8

1.0

0

1

𝒞!

𝒞"

𝒞#

𝒞$

𝒞%

Fig. 1. 2D distributions extracted from the coincidences. Panels (a)
and (b) show an example of spatial correlations obtained integrating
a measured coincidence distribution along the y and x coordinates of
signal and idler photon, respectively. (c) The coincidence distribution
in the signal path is shown. The shape of this distribution depends both
on the pump and phase-matching contributions. These can be isolated
post-selecting on either correlations or anti-correlations, i.e., calculating
(d) C+ and (e) C−, respectively.
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From Eqs. (1) and (6), it is straightforward to see that, in any propa-
gation plane, the post-selected coincidence images yield the pump
and phase-matching squared moduli:

C+(Xs, c)= |Ep(Xs − c)|2|φ(c)|2, (8)

C−(Xs, c)= |φ(−Xs + c)|2|Ep(c)|2. (9)

Apart from a constant shift c, the post-selected coincidences give
patterns that are spatially distributed as the pump and the phase-
matching intensity, respectively. Here, we considered a generic case
in which correlations and anti-correlations are chosen with a con-
stant offset c. This allows for increasing the statistics without the
need for long exposure times in the experiment—see the following
section and Supplement 1, Fig. S1.

Since this result holds true for any z, we can extract the indi-
vidual functions of the pump Ep(z) and phase-matching φ(z)
that contribute to the biphoton state and observe how these func-
tions propagate in free space. By examining the distributions of
the pump and phase-matching functions in different planes, it is
possible to obtain information on their phase structure without the
need for interferometric or tomographic measurements.

3. EXPERIMENTAL RESULTS

We observed the free-space propagation of the pump and phase-
matching contribution of an SPDC state generated in a 0.5 mm
thick Type-I BBO crystal pumped by a pulsed 405 nm laser beam
(pulse duration 150 fs, repetition rate 80 MHz). A liquid crystal
spatial light modulator (LC-SLM) was used to shape the spatial
structure of the pump laser. A conceptual scheme of the experi-
ment is sketched in Fig. 2(a), while the detailed setup is described
in Section 5. Idler and signal photons can be separated in two
different paths—with 50% probability—by a non-polarizing
beamsplitter and imaged on two regions of a time-stamping

camera (Timepix3D) [16,18,31]. If the spatial distributions
of the idler and signal do not overlap on the camera sensor, one
can choose two regions of interest (ROIs), defined as the groups
of pixels hit by the idler and signal photons, respectively. The
time-stamping resolution of the Timepix3D is less than 10 ns
and allows us to extract coincidences between pixels contained
in the ROIs, C(Xi ,Xs). From the 4D coincidence distribution
it is possible to extract marginals, e.g., the spatial correlations
along x : Cx (xi , xs )=

∑
yi ,y s

C(xi , y i , xs , y s ). Alternatively,
2D sections of the 4D coincidence pattern can be extracted. As
shown by Eqs. (8) and (9), this allows us to obtain the intensity
distributions |Ep(X− c)|2 and |φ(−X+ c)|2, where the con-
stant c can be chosen at will. To fully exploit the accumulated
data, one can sum up the intensities obtained for each value of c
after appropriately shifting each distribution by ±c. Indeed, we
have that

∑
c C+(X+ c)= |Ep(X)|2

∑
c |φ(c)|

2
= |Ep(X)|2

and
∑

c C−(X+ c)= |φ(X)|2
∑

c |Ep(c)|2 = |φ(X)|2, where in
the last equalities we assumed that Ep and φ are normalized to 1.
In this way, it is possible to achieve smooth reconstructions from
data obtained with a few minutes of exposure (see Supplement 1,
Fig. S1, Visualization 1 and Visualization 2). A first example of
the reconstruction is shown in Figs. 2(b) and 2(c) for the case of
a Gaussian pump. The analysis was carried out in two different
propagation planes at distances z1 = 7.5 cm and z2 = 34.5 cm
from the image plane of the crystal. The spatial correlations show
the evolution from a spatially correlated state (signal and idler
photon are localized in roughly the same transverse position) to a
spatially anti-correlated state (signal and idler photons are localized
in opposite transverse positions with respect to the biphoton state
propagation axis). The correlations do not appear particularly
sharp in these two planes. However, their width is of the order of
a single pixel in the crystal image plane (an example is shown in
Supplement 1, Fig. S3). The extracted pump intensities display
the expected Gaussian distribution (slightly narrower in z2 due
to a wavefront curvature of the pump laser on the crystal plane).

(a)

(b) (c)

Fig. 2. Experimental layout and coincidence analysis. (a) Simplified sketch of the experimental setup. A pump laser (central wavelength 405nm) is inci-
dent on a 0.5 mm thick BBO Type-I crystal that generates photon pairs with the same polarization. The photons propagate through an imaging system
(depicted here as a single lens L; see Section 5 for the detailed experimental layout). Signal and idler photons are spatially separated with a 50/50 beamsplitter
(BS) and impinge on a time-stamping camera (Timepix), which allows for retrieving spatially resolved coincidence counts. The camera was moved along the
propagation direction to measure spatial correlations in different planes and extract the corresponding pump and phase-matching function intensities. An
example with a Gaussian pump is shown in panels (b) and (c).

https://doi.org/10.6084/m9.figshare.26360413
https://doi.org/10.6084/m9.figshare.26360413
https://doi.org/10.6084/m9.figshare.26072848
https://doi.org/10.6084/m9.figshare.26072854
https://doi.org/10.6084/m9.figshare.26360413
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The extracted phase-matching intensity shows the formation
of the characteristic SPDC cone in a collinear phase-matching
configuration.

It is well known that measuring the intensity distribution of
a coherent beam in two different propagation planes can be used
to retrieve the phase. This non-interferometric phase retrieval
approach was first proposed by Gerchberg and Saxton [32] for
the case where the two intensity distributions are measured in
conjugate planes (i.e., the corresponding fields are one the Fourier
transform of the other). Unfortunately, doing this for an SPDC
state implies that, for instance, the reconstructed phase-matching
intensity will have a width of one or a few pixels in the first record-
ing plane (and a similar effect will be observed for the pump
distribution in the far field). This is due to the fact that the spatial
extension of pump and phase-matching functions is extremely
different on these two planes. One can then think of looking for
a compromise and choose two intermediate planes sufficiently
far away from each other but where the spatial extension of the
pump and phase-matching are of the same order. However, in these
cases, the Gerchberg–Saxton (GS)—as well as variations such as
the Fienup algorithm [33,34]—tends to have a worse convergence
and be sensitive to noise. This is acceptable for applications where
a phase pattern is generated to achieve target intensities but is less
practical for phase retrieval since the GS can easily converge to
local minima characterized by strongly irregular phase patterns.
We thus expect the GS approach to be useful only in cases of rather
complex, rapidly diffracting pump fields, while for smoother and
simple structures we focused on retrieving the phase structure
of phase-matching and pump using optimization algorithms.
However, these algorithms rely on some assumptions about the
modal structure of the measured quantities. This is not a big issue
since the SPDC physics for thin crystals has been extensively stud-
ied and SPDC spatial mode structures are expected to follow the
field continuity.

As a first step, we consider the phase retrieval of the phase-
matching function φ. In Figs. 3(a) and 3(b), we report the
measured intensity |φ(X, z)|2 in two different planes. φ(X, z)
propagates essentially as a strongly diverging beam. One can
expect—as also predicted by the thin-crystal theory of SPDC—
that the phase of φ in a given plane is quadratic: arg φ(X, z)=
πX2/(λz). When applying this phase structure on the ampli-
tude measured in z2 and numerically propagating back to z1,
one obtains the intensity displayed in Fig. 3(c), which is in good
agreement with the experimental result. The reconstructed phase-
matching function is shown in Fig. 3(c). The same phase structure
was obtained via an optimization algorithm based on the decom-
position of the phase-matching function in orthogonal modes. We
describe this process for the reconstruction of the pump phase in
detail below.

Pump lasers, prepared in spatial structures different from a
single Gaussian, have been considered, e.g., to shape correlations
in the orbital angular momentum (OAM) degree of freedom [7]
or to control multimode Hong–Ou–Mandel bunching or anti-
bunching [35]. In the latter case, one considers a pump field that
is an asymmetric function of one transverse coordinate. This is
obtained by applying a π -phase jump on an input Gaussian beam.
Figure 4 a shows the pump intensity contribution to the SPDC
state in two different propagation planes. To retrieve the phase
structure of the corresponding field, we consider its approximation
to a finite superposition of paraxial modes fκ(X, z),

(a) (b)

(d)(c)

Fig. 3. Full reconstruction of phase-matching function. (a), (b)
Experimentally extracted intensity of the phase-matching function of
an SPDC state in two different propagation planes. (c) Reconstructed
phase-matching intensity in z1, obtained by assuming the quadratic
phase shown in panel (d) and applied on the experimental amplitude in
z2. The intensity in z1 is obtained by Fresnel propagation. The excellent
agreement with the experimental intensity in z1 indicates the correctness
of the assumed phase structure. This agreement can be quantified by the
similarity (see Supplement 1), which in this case is 94%.

Ep(X, z)≈
∑
κ

c κ fκ(X, z). (10)

Here, κ is, in general, a set of discrete indices. If the pump intensity
in two different planes is Ii (X)= |Ep(X, zi )|

2, with i = 1, 2, then
the optimal modal decomposition can be found minimizing the
functional

L[{c κ}] :=
∫∫ ∑

i

∣∣∣∣∣Ii (X)− |
∑
κ

c κ fκ(X, zi )|
2

∣∣∣∣∣ d2 X . (11)

The choice of the modes set and the range of values for κ varies
case by case. Typical choices can be the Hermite–Gauss or
Laguerre–Gauss sets [36]. However, spatially shaped beams are
often generated by applying a phase pattern with line or point
singularities on an input Gaussian beam. This typically requires
a large number of coefficients in the decomposition Eq. (10). In
this situation, another convenient choice is the over-complete
set of hypergeometric-Gauss modes HyGG

−|`|,`(X) [37]—the
detailed expression used in this work is given in Section 5. We
recall that the index ` refers to the orbital angular momentum (in
units of ~) carried by the corresponding mode. The coefficients
c ` will thus give the OAM spectrum of the analyzed field. Figure
4(b) shows the field intensity of the decomposition (10) obtained
minimizing Eq. (11) where fκ→HyGG

−|`|,`. The excellent
agreement with the experimental data is also highlighted in Fig.
4(c), where the experimental amplitude distribution along y , for
fixed x = 1.9 mm, is compared with the reconstructed one. Figure
4(c) shows the reconstructed field in z= 0. A phase variation of
∼π between the two intensity maxima can be observed, together
with an overall smooth quadratic phase due to the imperfect
collimation of the pump on the crystal. In Fig. 4(e), the OAM

https://doi.org/10.6084/m9.figshare.26360413
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(a) (b) (c) (d)

(e)

Fig. 4. Phase reconstruction of the anti-symmetric state. (a) Pump intensities for an anti-symmetric SPDC state are extracted by calculating C+(X) from
the experimental coincidences. (b), (c) Reconstructed intensities from an optimal superposition of HyGG modes that best matches the experimental data in
panel (a). The similarities between reconstructed and measured intensity are 97% for the plane z1 = 0 cm and 99% for z2 = 34.5 cm. Panel (c) shows the
comparison with the experiment (gold-colored triangles) along the line x = 1.6 mm. (d) Reconstructed phase and amplitude of the pump contribution in
z1. (e) Reconstructed OAM power spectrum, which does not change in propagation, of the pump field.

power spectrum is reported, showing how the main contribu-
tion comes from two OAM modes with `=±1. The smaller
`= 0 contribution (associated with a Gaussian mode) is due to
a residual misalignment of the SLM phase mask. In Fig. 5, we
consider a pump created in an unbalanced superposition of OAM
modes, mainly with `=−2 and `= 4. This superposition exhibits
a six-lobe intensity pattern, similarly to the one that could be
encountered by an equal superposition of `= 3 and −3. The
intensity of the latter, however, will propagate differently from
the state here considered, and indeed the minimization algorithm
converges to the correct solution. A finite decomposition in 15
HyGG modes (with `=−7, . . . , 7) yields a reconstruction that
matches well the experimental data. The OAM power spectrum
is peaked at the expected OAM values. The small contributions
around `= 4 and `=−2 are likely due to a small misalignment of
the generation hologram.

The use of a finite set of orthogonal modes can be less effi-
cient for fields with no phase singularities. In most applications,
SPDC is generated by a pump in the fundamental mode of the
laser cavity; however, the actual phase and amplitude can be
altered by imperfections in the experimental setup. Thus, one
can expect that the pump contribution has a smooth phase fac-
tor that can be expanded in Zernike polynomials. We provide
proof of principle for these applications by introducing specific
optical aberrations on the Gaussian pump with a UV-SLM.
Figures 6(a)–6(d) show the extracted pump shapes in the crys-
tal image plane z1 = 0 and at z2 = 19 cm for cases in which a
coma and a second-order astigmatism phase were introduced
on the pump. We assumed the phase ξp(X, z= 0) to be a super-
position ξp(X, z= 0)=

∑
n,m γn,m Zm

n (X), where Zm
n (X) are

Zernike polynomials [38] and γn,m are real coefficients, while
the amplitude is given by the square root of the experimentally
retrieved intensity. Due to the lack of analytical expression for the

(a)

(c) (d)

(b)

Fig. 5. Phase reconstruction of OAM superposition states. (a)
Experimentally retrieved pump intensity in a superposition of, nominally,
OAM= 4 and OAM =−2. (b) Intensities of the reconstructed field
obtained by superimposing 15 HyGG modes. The agreement is con-
firmed by the similarity being 92% in z1 and 89.6% in z2. (c) Retrieved
phase and amplitude of the pump contribution at the crystal image plane.
(d) (Propagation-invariant) OAM power spectrum of the reconstructed
field.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Phase reconstruction of aberrated Gaussian pumps. Panels (a)–(d) show the extracted pump shapes in two propagation planes, z= 0 and 19 cm.
For (a) and (b), a coma aberration was imposed through an SLM on the pump laser. For (c) and (d), instead, second-order astigmatism was applied on the
pump laser. Panels (e) and (g) show the reconstructed phase and amplitude distributions in z= 0. In contrast, (f ) and (h) show the intensity obtained by
numerically propagating the fields in (e) and (g) to z= 19 cm [to be compared with panels (b) and (d), respectively]. Similarities are of the order of 90 % (see
Supplement 1, Fig. S2). The phase distributions in (e) and (g) are shown with the tip and tilt contributions removed since these are due only to the imperfect
centering of the intensity patterns in the two planes.

propagation of aberrated modes, we relied on the use of a genetic
algorithm instead of the maximum likelihood approach used in the
previous examples. Random choices of γn,m were used to define
the individuals that initialize the genetic algorithm. A numerical
Fresnel propagation approach was used to calculate the fields in z2

resulting from the different individuals and compare the intensity
with the experimental one. The function in Eq. (11) was here used
as the fitness function of the genetic algorithm (details are given
in Section 5 and Supplement 1). Figures 6(f ) and 6(h) show the
best-reconstructed pump field at z2—which is in good agreement
with the experiment—and the corresponding amplitude and phase
in z1 are shown in Figs. 6(e) and 6(g).

The examples given thus far rely on the assumption of a limited
decomposition in orthogonal modes of the field (or the phase in
the last example). To explore the applicability of this method to
more complex fields whose decomposition requires a much larger
set of modes, we consider the case in which the pump consists of
a Gaussian intensity with a phase image with sharp edges. The
choice is motivated by the idea of extending this approach towards
quantum phase imaging applications. Figures 7(a) and 7(b) show
the results in the case the phase structure of the pump is a maple leaf
with a phase difference between the interior and exterior part of π .
The experimental data were used to feed a modified GS algorithm
that exploits the Fresnel propagation instead of the Fourier trans-
form. The reconstructed field is shown in Fig. 7(c). The expected
phase jump is evident; however, the reconstruction quality seems
to be affected by the low spatial resolution of the camera.

4. DISCUSSION AND CONCLUSIONS

In conclusion, we have shown a powerful application of coinci-
dence imaging of biphoton states. Spatially resolved second-order
correlations allow the extraction of information about the two

main physical contributions to the SPDC biphoton states, the spa-
tial structure of the pump beam and the phase-matching function,
which is determined by the physical properties of the nonlinear
crystal used for the biphoton state generation. The intensity of
these two functions can be extracted at any distance from the
crystal, and the relationship of the obtained intensities at differ-
ent distances is given by an appropriate paraxial propagation. By
employing optimization methods, we exploited these results to
extract the phase of the two investigated functions and, thus, the
full biphoton state. It must be stressed that this high-dimensional
state reconstruction requires only two spatially resolved coinci-
dence measurements, which, thanks to modern time-stamping
cameras, can be performed in a few minutes without any control
of the biphoton source. However, the renunciation of interfero-
metric methods, and thus of direct phase measurements, comes
at the expense of designing the proper algorithm to find the best
phase structure that describes the experimental results. For smooth
phases, if the field intensities are retrieved in propagation planes
too close to each other, there will be a higher uncertainty in the
reconstructed phase. Moreover, the separation of pump and phase-
matching can be rigorously achieved when the transverse walk-off
between pump and down-converted photons is negligible, e.g.,
for thin crystals or, in general, pump lasers collimated within the
crystal thickness. The more general scenario will require more
robust approaches to analyze the 4D second-order correlations in
different propagation planes and extract the full phase patterns.
We expect that this problem could be tackled by utilizing properly
trained neural networks. Lastly, the ability to separate pump and
phase-matching contributions opens new opportunities for quan-
tum imaging applications, some of which will be explored in future
works.

https://doi.org/10.6084/m9.figshare.26360413
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(a) (b) (c)

Fig. 7. Phase image encoded in Gaussian pumps. A phase structure consisting of a maple leaf pattern with a phase jump ofπ between the interior and the
exterior part of the leaf was applied on the pump laser. The reconstructed pump contribution of the generated SPDC state is shown in panels (a) and (b) at
two propagation planes separated by 18 cm. The phase reconstructed via a modified GS algorithm is displayed in panel (c).

5. METHODS

A. Experimental Setup

The experimental setup is described in detail in Fig. 8. A 405 nm
pump laser is generated as the second harmonic of a Ti:Sa pulsed
laser (Chameleon Vision II). Then, a magnifying system of lenses
with a pinhole in the beam’s focus is used to generate the desired
Gaussian beam that is then sent to the SLM. The beam’s phase
and amplitude are structured using the amplitude-phase masking
technique [39], which requires appropriate phase masks displayed
on the SLM and selecting the first diffraction order. The latter is
achieved by placing an iris in a demagnifying system of lenses after
the SLM. Sending the resulting structured pump beam through the
BBO Type-I crystal, the SPDC is generated and collimated by a 75

Fig. 8. Detailed experimental setup. L, lens; Ph, pinhole; UV-SLM,
ultraviolet spatial light modulator; M, mirror; SP, short-pass filter; LP,
long-pass filter; HWP, half wave-plate; PBS, polarizing beamsplitter.

mm lens. After the crystal, the pump beam is filtered by a low-pass
filter. Signal and idler photons are separated with 50% probability
by a half wave-plate and a polarizing beamsplitter (PBS), instead
of using a non-polarizing beamsplitter. This approach guarantees
that the two photons are now orthogonally polarized. Using two
mirrors and a PBS, one can simultaneously match the optical paths
of the two photons and propagate them along parallel paths, with
a relative displacement smaller than the camera sensor. A bandpass
filter (centered at 810 nm and with 10 nm bandwidth) is mounted
on the camera intensifier to select frequency degenerate photons.
The Timepix camera collects spatially resolved time stamps with
∼1 ns resolution [18] from which the 4D coincidence distribution
is extracted.

B. Hypergeometric-Gaussian Modes

Hypergeometric-Gaussian modes HyGGp,` with p =−|`| are a
set of paraxial modes whose expression in the waist plane is given by

HyGG
−|`|,`(r , φ, z= 0)∝ exp(−r 2/w2) exp(i`φ),

where (r , φ, z) are cylindrical coordinates, ` is an integer number,
andw is a real parameter corresponding to the waist radius. Here,
we consider the more general case where a quadratic phase is added
on the waist plane:

HyGG
−|`|,`(r , φ, z= 0)∝ e−r 2/w2

e−iπr 2/λRe i`φ, (12)

where R is the wavefront curvature radius. The expression for
HyGG

−|`|,`(r , φ, z) for arbitrary z can be obtained analytically by
calculating the Fresnel propagator. It is convenient to use dimen-
sionless coordinates: ρ = r /w, ζ = z/z0 (with z0 = πw

2/λ), and
ξ =R/z0. The Fresnel integral thus reads

HyGG
−|`|,`(r , φ, z)∝

∫∫
e−ρ

′2(1−i/ξ)e i`φ′

× e−i[ρ′2+ρ2
−2ρρ′ cos(φ−φ′)]/ζρ ′dρ ′dφ′

= e
−i
(
ρ2
ζ
−`φ

)

×

∫
∞

0
ρ ′dρ ′ J |`|

(
2ρρ ′

ζ

)
e
−

(
σ+i
σ

)
ρ′

2

,

(13)
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where J |`|(.) is a cylindrical Bessel function of order |`| and 1/σ :=
1/ξ − 1/ζ . The solution to the last integral (see Ref. [40]) can be
expressed in terms of modified Bessel functions:∫

∞

0
ρ ′dρ ′ J |`|(αρ ′)e−βρ

′2

=

√
παe−

α2
8β

8β3/2

[
I |`|−1

2

(
α2

8β

)
− I |`|+1

2

(
α2

8β

)]
, (14)

with α := 2ρ/ζ and β := σ+1
σ
= 1+ i(1/ζ − 1/ξ). The func-

tions I |`|±1
2

are modified Bessel functions of the first kind.

C. Details of Genetic Algorithm

Genetic algorithms evolve a population of candidate solutions
toward optimal solutions to the problem of minimizing a cost
function. In our case, the cost function is given by Eq. (11). The
analytical expressions for the propagation of families of optical
modes at a finite distance z, such as Hermite–Gauss or Laguerre–
Gauss modes, enable the adoption of standard minimization
routines. This is not possible in the case of aberrated beams, where
there is no analytical formula for the propagated field. Genetic
algorithms offer a suitable alternative, as these iterate from random
guesses that evolve to the physical solutions of the optimization
problem [41]. In the following, we detail the sequence of oper-
ators used in our genetic algorithm. An initial population of N
individuals is randomly generated within the range [−20, 20],
where each individual is a set of real coefficients γ (genes) for the
chosen Zernike polynomials. In groups of k, these individuals
compete for the possibility to reproduce. Only the individual
better minimizing the cost function within each pool is given
access to the reproduction stage. This is the so-called tournament
mechanism, working as a selection operator [42]. The reproduc-
tion occurs in the form of blend crossover, largely employed to mate
real-valued individuals [43]. When two individuals reproduce,
two newborns originate as a weighted mixture of the parents. To
emulate the mutation of individuals in a natural environment,
genetic mutations are included in the workflow as Gaussian noise
with mean µ and standard deviation σ , potentially affecting each
gene of newborn individuals [44]. Blend crossover and mutation
are non-deterministic operators, occurring with probability pc and
pm , respectively. To push the algorithm to a faster convergence, our
algorithm is equipped with elitism, i.e., the best individual from the
parent generation is guaranteed a place in the next one, replacing
the worst individual of the offspring. The algorithm ends when
a certain condition is verified [45]. In our implementation, the
maximum number of generations Ngen is adopted as a termination
criterion. The user defines by hand all the parameters determining
the evolutionary sequence (also called hyperparameters). The com-
plete set of hyperparameters used in our algorithm is listed in Table
1.

Table 1. Genetic Algorithm Hyperparameters

Population size N = 100
Number of generations Ngen = 30
Tournament size k = 4
Crossover probability pc = 0.9
Mutation probability pm = 0.04
Gaussian mutation µ= 0, σ = 0.5
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