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Abstract— Longitudinal control for platoons of connected
autonomous vehicles is a hot research topic in the Cooperative
Intelligent Transport Systems (C-ITSs) domain. Most of the
existing results solve the platooning problem asymptotically,
without ensuring that the consensus could be achieved in a
finite settling time. To this aim, in this work we address the
problem of guaranteeing the leader-tracking for heterogeneous
vehicles platoons in a fixed time despite the presence of external
disturbances. To solve this problem, by exploiting the integral
sliding mode (ISM) approach and the Lyapunov theory, we
propose a distributed control strategy able to ensure the leader-
tracking in a finite settling time which is independent from any
vehicles initial conditions. The simulation analysis, carried out
in two different driving scenarios, confirms the effectiveness of
the theoretical derivation.

Index Terms— Connected Autonomous Vehicles Platoons;
heterogeneous vehicle dynamics; uncertain vehicles dynamics;
leader-tracking control problem; Distributed Fixed-time control
strategy.

I. INTRODUCTION

Over the past decades, the advances in information com-
munication technology have attracted considerable attention
in C-ITS domain due to the benefit they could lead in
terms of road safety increasing and the decreasing of the
environmental pollution [1]. Specifically, the deployment
of connected autonomous vehicles platoons moving in for-
mation with a common velocity while keeping a prefixed
inter-vehicular distance may significantly improve different
aspects of the vehicular traffic flow such as the traffic conges-
tion [2]. In this driving scenario, all vehicles are connected
through Vehicle-to-Vehicle (V2V) wireless communication
paradigm and exchange information by exploiting the de
facto IEEE 802.11p communication protocol [3]. Leverag-
ing these information, the aim of the cooperative control
strategies is to guarantee that each vehicle within the platoon
tracks the reference behaviour as imposed by the leader,
i.e. the first vehicle of the fleet, while achieving the desired
formation w.r.t. the communicating vehicles [4].
Exploiting the Multi-Agent Systems (MASs) paradigm [5],
in the wide technical literature, different cooperative driving
controllers have been proposed both for homogeneous vehi-
cles platoons (see for example [6], [7], [8] and the reference
therein) and for heterogeneous ones (see for example [9],
[10], [11]). Among them, robust protocols are suggested to
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counteract both the parameter uncertainties in [12] and the
co-presence of parameter uncertainty and time-delays in [13].
Again, resilient strategies able to deal with cyber-attacks
have been recently proposed in [4], [6], [14], while adaptive
approaches have been designed in [15] and in [10].
However, all the aforementioned works focus on the design
of an appropriate distributed control able to asymptotically
achieve consensus while it is expected that the final pre-
scribed inter-gap formation could be formed in a finite-time
interval [16]. Moreover, it has been shown in [17], [18] that
finite-time consensus controllers have a faster convergence
rate and better disturbance rejection to system uncertainty
and external disturbance w.r.t. the typical consensus-based
strategies. Despite these crucial aspects, only few works
have designed finite-time cooperative control for autonomous
vehicles platoons. Along this line, nonlinear finite-time con-
sensus protocols are suggested in [16] to solve the pla-
tooning problem over a fixed and switching communication
topologies and in [19] to guarantee the string-stability of
heterogeneous vehicles platoons in finite-time.
Although the consensus is pursued in a finite time, the
settling time estimation explicitly relies on the initial con-
ditions of each agent within the MAS [20], [21]. It implies
that there might be an applicability limit of the finite-time
consensus approaches in those cases when agents initial
states are unknown or unavailable a-priori. This brought
to the emerging of fixed-time consensus protocols whose
stability, as well as the settling time estimation, is completely
independent from agents initial conditions [22].
To this aim, in this work, to the best of authors knowledge,
we address, for the first time, the fixed-time leader-tracking
control problem for heterogeneous uncertain autonomous
vehicles platoons. To solve this problem, we propose a
fixed-time control protocol able to: i) counteract the ve-
hicles heterogeneity and unknown external disturbances;
ii) guarantee the leader-tracking in a fixed settling time
whose estimation only depends on the proper choice of the
control gains, and not on any vehicles initial conditions.
The stability of the vehicular network under the action
of the proposed distributed control protocol is analytically
proved by exploiting the fixed-time stability tools and the
Lypaunov theory and an estimation of the fixed settling time
is provided. Numerical analysis, carried out considering two
exemplar driving scenarios, confirms the theoretical deriva-
tion and discloses the effectiveness of the control strategy
in ensuring the robust leader-tracking in a fixed settling
time, despite the variation of vehicles initial conditions and
the network communication topology. Finally, the rest of
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the paper is organized as follows. In Section II, all the
mathematical background, notations and definitions are given
while the problem statement is stated in Section III. Section
IV describes the proposed distributed fixed-time platooning
controller and analytically proves the stability of the closed-
loop vehicular network. The numerical analysis, carried out
for different driving scenarios, is presented in Section V.
Conclusions are drawn in Section VI.

II. MATHEMATICAL PRELIMINARIES

A. Graph Theory

A set of N connected vehicles can be modeled as a
directed graph GN =(VN ,EN), where VN is the set of vehicles
while EN ⊆ VN × VN is the set of edges that defines the
communication topology allowing the connection among
them. The communication network can be hence described
via the adjacency matrix A and the in-degree matrix D .
The adjacency matrix A = [ai j] ∈ RN×N is such that the
element ai j = 1 if there exists a directed link from vehicle j
to vehicle i, 0 otherwise. Conversely, the in-degree matrix
is D = diag{d1,d2, · · · ,dN} ∈ RN×N , where di = ∑

N
j=1 ai j

indicates the number of connection links with the vehicle
i. Based on the above definition we can define the Laplacian
matrix as L = D−A ∈ RN×N .
In the rest of the paper, we consider a platoon composed of
N vehicles plus a leader, taken as an additional agent, labeled
with index 0 and assumed to have no neighbors, i.e. it shares
its state information without any edge that enters into it. To
model the resulting vehicular network we use an augmented
graph GN+1. To model the leader connections, we introduce
the pinning matrix B = diag{b1,b2, · · · ,bN} ∈ RN×N with
bi = 1 if the leader information is directly available for
the i−th vehicle, 0 otherwise. Defining a spanning tree as
a union of communication links connecting all vehicles of
the network, directly or indirectly, the following assumption
holds.

Assumption 1: [23] The graph GN+1 contains a spanning
tree with the leader as a root node. Hence, L + B is
a non-singular diagonally dominant M-matrix and all its
eigenvalues have positive real parts.

B. Definition and Lemmas

In this section we introduce some definitions and lemmas
useful for deriving the main result.

Definition 1 (Fixed-Time Stability[24]): Considering the
system

ẋ(t) = f (x(t)),

if there exist a continuous, positive definite function V (x(t)) :
Rn → R, such that V̇ (x(t)) ≤ −a V p(x(t))− b V q(x(t)),
∀x(t)∈Rn, a,b> 0, p∈ (0,1) and q∈ (1,∞), then the system
is fixed-time stable and the fixed settling time is bounded by
T ≤ 1

a(1−p) +
1

b(q−1) .

Lemma 1: [25] Consider the n (n ≥ 2) order integrator
system ẋ1(t) = x2(t), ẋ2(t) = x3(t), · · · , ẋn(t) = u(t), x(0) =
x0, with xk(t) ∈ R(i = 1, · · · ,n) and u(t) ∈ R. Let ki (∀i =

1, · · · ,n) positive constants such that the characteristic poly-
nomial, defined with the Laplace operator, sn+knsn−1+ · · ·+
k2s+k1 and sn+3knsn−1+ · · ·+3k2s+3k1 is Hurwitz. There
exists a constant ε ∈

(
n−2
n+2 ,1

)
such that, for every γ ∈ (ε,1),

the integrator system is stabilized at the origin in fixed-time
under the feedback control

u(t) =−
n

∑
r=1

kr(dxr(t)cγr + dxr(t)c+ dxr(t)cγ
′
r ),

with parameters γr and γ
′
r satisfying γn−g =

γ

(g+1)−gγ
, γ

′
n−g =

2−γ

gγ−(g−1) , (g = 0,1, · · · ,n−1).
Lemma 2: [26] Let x1,x2, · · · ,xN ≥ 0. If p∈ (0,1] we have

N

∑
i=1

xp
i ≥

( N

∑
i=1

xi

)p
. (1)

Instead, if p ∈ (1,+∞), we have
N

∑
i

xp
i ≥ N1−p

( N

∑
i=1

xi

)p
. (2)

Finally, throughout the paper, the following notation is
adopted. Given a non-negative value of c, we indicate the
sig function [27] as

dxcc = |x|csign(x), ∀x ∈ R

being sign(·) is the signum function. According the above
notation, we have xdxcc = |x|c+1.

III. PROBLEM STATEMENT

Consider a platoon composed of N autonomous connected
vehicles plus a leader sharing information about their posi-
tion and velocity through a V2V wireless communication
network. The behaviour of each vehicle i (∀i = 1, · · · ,N) can
be described by its linearized longitudinal dynamics as [28]

ṗi(t) = vi(t),

v̇i(t) = ui(t)+wi(t),
(3)

where pi(t) [m] and vi(t) [m/s] are the i−th vehicle absolute
position (w.r.t. a given reference framework) and longitudinal
velocity, respectively; ui(t) [m/s2] the desired longitudinal
acceleration to be imposed to the vehicle, which can be
computed as 1

Mi
ũi(t), being Mi [kg] the i−th vehicle mass and

ũi(t) [kg m/s2] the desired driving/brake force; wi(t) [m/s2]
is the unknown external disturbance acting on the vehicle
dynamics arising from environmental factors, such as varia-
tions in wind velocity and/or road slope.
Similarly, the leading vehicle, which imposes the reference
behaviour for the whole vehicles platoon, is described by the
following non-autonomous dynamical system [16]:

ṗ0(t) = v0(t)

v̇0(t) = u0(t),
(4)

where p0(t) [m] and v0(t) [m/s] are the leading vehicle
absolute position (w.r.t. a given reference framework) and
velocity, respectively; u0(t) [m/s2] the leader acceleration
which can be computed as 1

M0
ũ0(t), being M0 [kg] its mass
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and ũ0(t) [kg m/s2] the leader driving/brake force.
Given the autonomous vehicles platoon dynamics as in (3)
and (4), the following assumptions hold.

Assumption 2 ([28]): The unknown disturbances
wi(t), i = 1, · · · ,N are bounded, i.e. |wi(t)|< w̄i <+∞, with
w̄i are finite constant known to all vehicles.

Assumption 3: The leader behavior is unknown, but
bounded due to physical constraints [29], i.e. |u0(t)|< umax

0 <
+∞, with the finite constant umax

0 known to all vehicles.
Now the platooning control problem can be stated as

follows.
Problem 1 (Platooning Control in fixed-time): Given a

platoon composed of N connected autonomous vehicles
plus a leader imposing the reference behaviour for the
whole vehicular network, find a distributed control input
ui(t) (∀i = 1, · · · ,N) such that each vehicle i, in a fixed-time
T ?, tracks the leader motion v0(t) while maintaining a
desired inter-vehicular distance di j w.r.t. its neighbors
j ( j = 0,1,2, · · · ,N), i.e.

lim
t→T ?
‖pi(t)− p j(t)−di j‖= 0,

lim
t→T ?
‖vi(t)− v0(t)‖= 0,

(5)

where T ? < Tmax < +∞, being Tmax [s] the settling time
estimation, independent from the platoon initial conditions
and computed according to Definition 1.

IV. DISTRIBUTED FIXED-TIME PLATOONING CONTROL

In this section, firstly, we propose a novel distributed fixed-
time control protocol able to solve Problem 1, and, then, we
analytically prove the fixed-time stability of the vehicular
network under the action of the proposed controller.

A. Control Design

Define for each vehicle i (∀i = 1, · · · ,N) the position and
velocity tracking errors vectors as

δpi(t) =
N

∑
j=1

ai j(pi(t)− p j(t)−di j)+bi(pi(t)− p0(t)−di0)

(6)

δvi(t) =
N

∑
j=1

ai j(vi(t)− v j(t))+bi(vi(t)− v0(t)), (7)

where ai j and bi model the network communication topology
as defined in Section II-A.
By introducing the state error of the i−th vehicle w.r.t. the
leader as

p̃i(t) = pi(t)− p0(t)−di0,

ṽi(t) = vi(t)− v0(t),
(8)

the disagreement vectors in (6) and (7) can be recast as

δpi(t) =
N

∑
j=1

ai j(p̃i(t)− p̃ j(t))+bi p̃i(t) (9)

δvi(t) =
N

∑
j=1

ai j(ṽi(t)− ṽ j(t))+biṽi(t). (10)

Now, taking into account the definition of the disagreement
vectors as in (9) and (10), from (3) and (4), the error tracking
dynamics can be derived as

δ̇pi(t) = δvi(t),

δ̇vi(t) =
N

∑
j=1

ai j

(
ui(t)+wi(t)−u j(t)−w j(t)

)
+bi

(
ui(t)+wi(t)−u0(t)

)
.

(11)

Now, to solve the fixed-time platooning control as stated
in Problem 1, we introduce the following integral sliding
surface for each vehicle i:

σi(t) = δiv(t)+
∫ t

0
ki1(dδpi(s)cγ1 + dδpi(s)c+ dδpi(s)cγ

′
1)

+ ki2(dδvi(s)cγ2 + dδvi(s)c+ dδvi(s)cγ
′
2)ds
(12)

where ki1, ki2, γ1,2 and γ
′
1,2 have to be chosen according to

Lemma 1. Specifically, regarding the choice of ki1, ki2, since
the error dynamics as in (11) is of order n = 2, it is sufficient
selecting ki1 and ki2 ∈ R+. In view of (12) we propose for
each vehicle i the following distributed fixed-time control
protocol:

ui(t) =−
( N

∑
j=1

ai j +bi

)−1
(ki1(dδpi(t)cγ1 + dδpi(t)c

+ dδpi(t)cγ
′
1)+ ki2(dδvi(t)cγ2 + dδvi(t)c+ dδvi(t)cγ

′
2

−
N

∑
j=1

ai ju j(t)+ dσi(t)cp + dσi(t)c+ dσi(t)cq

+κisign(σi(t)))
(13)

being p ∈ (0,1), q ∈ (1,∞) and κi a control gain to be
properly tuned.

B. Stability Analysis

The fixed-time stability of the heterogeneous autonomous
vehicles platoon under the action of the proposed controller
in (13) is guaranteed by the following theorem.

Theorem 1: Consider a platoon composed of N hetero-
geneous vehicles plus a leader imposing the reference be-
haviour, whose dynamics are as in (3) and (4), respectively.
Let Assumptions 2 and 3 hold. The Problem 1 is solved in
a fixed-time T ? by the distributed control input (13) if we
select the control κi, ∀i as:

κi ≥
N

∑
j=1

ai j(w̄i + w̄ j)+bi(w̄i +umax
0 ), (14)

being w̄i and w̄ j the known upper bound of the external
disturbances acting on the vehicles i and j, respectively, and
umax

0 the maximum known value of the leader acceleration.
Proof: Consider the following candidate Lyapunov

function:

V =
1
2

N

∑
i=1

σ
2
i (t). (15)
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Differentiating (15), by taking into account the definition of
the sliding surface as in (12) as well as the error tracking
dynamics as in (11), we obtain:

V̇ =
N

∑
i=1

σi(t)
(
(

N

∑
j=1

ai j +bi)ui(t)−
N

∑
j=1

ai ju j(t)

+ ki1(dδpi(t)cγ1 + dδpi(t)c+ dδpi(t)cγ
′
1)

+ ki2(dδvi(t)cγ2 + dδvi(t)c+ dδvi(t)cγ
′
2)

+
N

∑
j=1

ai j(wi(t)−w j(t))+bi(wi(t)−u0(t))
)
.

(16)

Now, substituting the control input (13) in (16), after some
algebraic manipulation we have:

V̇ =−
N

∑
i=1

(
|σi(t)|p+1 + |σi(t)|2 + |σi(t)|q+1 +κi|σi(t)|

−
N

∑
j=1

ai jw j(t)|σi(t)|− (
N

∑
j=1

ai j +bi)wi(t)|σi(t)|

−bi|σi(t)|u0(t)
)
.

(17)

Now, consider the Assumptions 2 and 3, and select the con-
trol gains κi, i = 1, · · · ,N as in (14). In so doing, leveraging
also Lemma 2, (17) can be recast as

V̇ (t)≤−
N

∑
i=1

(
|σi(t)|p+1 + |σi(t)|2 + |σi(t)|q+1

)
≤−

( N

∑
i=1
|σi(t)|2

) p+1
2 −N

1−q
2

( N

∑
i=1
|σi(t)|2

) q+1
2
.

(18)

Considering the Lyapunov function as in (15), inequality (18)
can be finally re-written as

V̇ (t)≤−2
p+1

2 V (t)
p+1

2 −2
q+1

2 N
1−q

2 V (t)
q+1

2 . (19)

Hence, according to the fixed-time stability theory (see Def-
inition 1), the sliding surface σi(t) (∀i = 1, · · · ,N) converges
to zero in a fixed-time T1 ≤ 1

2
1+q

2 (1−p)
+ 1

2
q+1

2 N
1−q

2 (q−1)
.

Note that, during the sliding motion, i.e. when σi(t) = 0, we
have that σ̇i(t) = 0. This implies that, according to (11) and
(12), for t ≥ T1, the reduced closed-loop error dynamics can
be derived as

δ̇pi(t) = δvi(t),

δ̇vi(t) =−ki1(dδpi(t)cγ1 + dδpi(t)c+ dδpi(t)cγ
′
1)

− ki2(dδvi(t)cγ2 + dδvi(t)c+ dδvi(t)cγ
′
2).

(20)

From Lemma 1, the reduced closed-loop error system
(20) is fixed-time stable at the origin. It follows that
δpi(t), δvi(t) → 0 (∀i) in a settling time T2 that is
independent of any initial condition.
Accordingly, p̃i(t), ṽi(t)→ 0 (∀i). Indeed, by introducing the
global error vectors δp(t) = [δp1(t),δp2(t), · · · ,δpN(t)]> ∈
RN , δv(t) = [δv1(t),δv2(t), · · · ,δvN(t)]> ∈ RN

p̃(t) = [p̃1(t), p̃2(t), · · · , p̃N(t)]> ∈ RN and ṽ(t) =
[ṽ1(t), ṽ2(t), · · · , ṽN(t)]> ∈ RN , according to (9) and

(10), we can express the disagreement vector as function of
(8) as

δp(t) = (L +B)p̃(t),

δv(t) = (L +B)ṽ(t).
(21)

Given the Assumption 1, since L +B is a positive definite
M−matrix, δp(t), δv(t) → 0 in a fixed-time implies that
p̃(t), ṽ(t)→ 0.
Therefore, each vehicle within the platoon tracks the leader
behavior while maintaining the formation in a fixed-time
T ? ≤ Tmax = T1 +T2, depending on the proper choice of the
control gains. In so doing the statement is proven.

V. NUMERICAL RESULTS

In this section, the effectiveness of the proposed distributed
sliding mode control approach in guaranteeing the fixed-
time leader-tracking consensus is validated considering an
exemplar heterogeneous platoon composed of N = 5 ve-
hicles plus a leader and leveraging the Matlab/Simulink c©

simulation platform. In our operating scenario we assume
that the leading vehicle moves according to a trapezoidal
velocity profile. Specifically, it drives at an initial velocity of
15 [m/s]. At t = 15 [s] it begins accelerating with a constant
acceleration of 2 [m/s2] until reaching the constant velocity
of 25 [m/s]. Then, at t = 32 [s] it starts decelerating with
a constant deceleration of −1.9 [m/s2] until reaching the
final constant velocity of 10 [m/s]. External disturbances are
chosen as w1(t)= 0.2sin(0.5t), w2(t)= 0.2sin(0.1t), w3(t)=

Fig. 1: Exemplar platoon of five heterogeneous vehicles plus a
leader connected via the LPF topology.

Fig. 2: Exemplar platoon of five heterogeneous vehicles plus a
leader connected via a Random topology.

Mass mi [kg] m0 = 1400, m1 = 1500, m2 = 1445,
m3 = 1550, m4 = 1200, m5 = 1600

Max acceleration [ms−2] 5
Min acceleration [ms−2] −5
Desired spacing policy di j [m] 20
Control parameter p 0.5
Control parameter q 1.5
Control parameter γ1 0.53
Control parameter γ

′
1 1.85

Control parameter γ2 0.7
Control parameter γ

′
2 1.3

Control gains ki1 [s−2] 0.1 ∀i = 1, · · · ,5
Control gains ki2 [s−1] 1.1 ∀i = 1, · · · ,5

TABLE I: Vehicle and Control parameters.
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Fig. 3: Leader-tracking performance under the control in (13). Leader-Predecessor-Follower topology scenario. Time history of: (a) sliding
surface σi(t) (i = 1,2,3,4,5); (b) position error p̃i(t) = pi(t)− p0(t)−di0 (i = 1,2,3,4,5); (c) vehicles velocity vi(t) (i = 0,1,2,3,4,5).
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Fig. 4: Leader-tracking performance under the control in (13). Random topology scenario. Time history of: (a) sliding surface σi(t) (i =
1,2,3,4,5); (b) position error p̃i(t) = pi(t)− p0(t)−di0 (i = 1,2,3,4,5); (c) vehicles velocity vi(t) (i = 0,1,2,3,4,5).

0.3sin(t), w4(t) = 0.6sin(t) and w5(t) = 0.1sin(0.1t).
The vehicle parameters as well as the control ones, selected
according to Definition 1 and Lemma 1, are reported in
Table I. To disclose the effectiveness of the control strategy
and how it can ensure the leader-tracking in a fixed-time
(which only depends on the proper choice of the control
gains and not on any vehicles initial condition), here we
consider two representative scenarios where different initial
conditions as well as different communication networks are
considered, namely: i) Leader-Predecessor-Follower (LPF)
topology scenario (see Fig. 1); ii) Random topology scenario
(see Fig. 2). Note that, the numerical analysis have involved
other communication topologies. However, similar results
have been obtained and, hence, they are here omitted for
the sake of brevity.

A. Leader-Predecessor-Follower topology scenario

In the first driving scenario, vehicles are connected through
the common Leader-Predecessor-Followers topology [2] (see
Fig. 1), where each vehicle shares information with its prede-
cessor and the leader. The position/velocity initial conditions
for this scenario, as well as the control gains tuned according
to Theorem 1 are listed in Table II.
Results in Fig. 3 confirm the theoretical derivation and
disclose the effectiveness of the proposed fixed-time con-

Initial position
[p0(0), · · · , p5(0)]> [m]

[100,82,58,42,22,−2]

Initial velocity
[v0(0), · · · ,v5(0)]> [ms−1]

[15.0,14.0,13.5,16.0,15.5,14.5]

Control gains [κ1, · · · ,κ5] [s−2] [5.7,5.94,6.14,6.8,6.06]

TABLE II: Simulation parameters for the LPF topology scenario.

troller in guaranteeing the leader-tracking in a settling time
T ? ≤ Tmax = T1 +T2 ≈ 10 [s]. Specifically, Fig. 3 (a) shows
the time history of the sliding surface which converges
to zero in a finite settling time T1 ≈ 2.45 [s]. Conversely,
Fig.s 3 (b)-(c), disclosing the time histories of the position
error p̃i(t) (∀i = 1, · · · ,5) and the vehicles velocities vi(t)
(∀i= 0,1, · · · ,5), highlight that, once the manifold γi = 0 (∀i)
is reached, each vehicle tracks the leader motion (see Fig.
3(c)) while maintaining the desired spacing distance (see Fig.
3(b)) in T2 ≈ 7.55 [s].

B. Random topology scenario

In this operating scenario, we assume that vehicles are
connected through the random communication topology de-
picted in Fig. 2, where the leader information is available
just for a subset of vehicles, i.e. the first and fourth. The
position/velocity initial conditions for this scenario, as well
as the control gains tuned according to Theorem 1 are listed
in Table III.
Fig. 4 confirms the theoretical derivation also for this op-
erative scenario and disclose how, despite the changing of
vehicles initial conditions and the network communication
topology, the proposed control approach ensures the leader-
tracking in the fixed-time T ? ≤ Tmax = T1+T2 ≈ 10 [s] (equal
to one obtained into the L-P-F scenario). Note that this result

Initial position
[p0(0), · · · , p5(0)]> [m]

[103,86,62,45,21,0]

Initial velocity
[v0(0), · · · ,v5(0)]> [ms−1]

[15,12,17,14,13,14]

Control gains [κ1, · · · ,κ5] [s−2] [6.15,1.3,1.15,8.07,1.15]

TABLE III: Simulation parameters for Random topology scenario.
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is consistent with the theoretical derivation and proves the
ability of the proposed distributed fixed-time controller in
solving Problem 1 in a settling time which is fixed and
independent from any initial conditions. Specifically, Fig.
4 (a) shows the time history of the sliding surface which
converges to zero in a finite settling time T1 ≈ 2.45 [s],
despite the changing of initial conditions and the network
connections. Conversely, Fig.s 4 (b)-(c), disclosing the time
histories of the position error p̃i(t) (∀i = 1, · · · ,5) and the
vehicles velocities vi(t) (∀i= 0,1, · · · ,5), highlight that, once
the manifold γi = 0 (∀i) is reached, each vehicle, under the
action of the proposed controller, tracks the leader motion
(see Fig. 4(c)) while maintaining the desired spacing distance
(see Fig. 4(b)) in T2 ≈ 7.55 [s].

VI. CONCLUSIONS

In this paper we have addressed and solved the fixed-time
leader-tracking control problem for heterogeneous uncertain
autonomous connected vehicles platoons via a distributed
sliding-mode based control approach. Leveraging the fixed-
time stability tools and the Lyapunov theory, we have analyt-
ically proved how the proposed distributed control strategy
can ensure the leader-tracking in a fixed-time which only
depends on the proper choice of the control gains, and not
on any vehicles initial conditions. Moreover an estimation
of this settling time has been provided. Numerical analysis,
carried out considering two exemplar driving scenarios, have
confirmed the theoretical derivation and have disclosed the
effectiveness of the distributed fixed-time protocol in solving
the leader-tracking problem in a finite settling time.
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