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A B S T R A C T

Truck-and-drone routing problems are a topic of increasing interest due to advancements in
drone technology. Initially, drones were thought to serve only one customer per flight; however,
recent improvements in drone technology have led to the definition of multi-visit truck-and-
drone routing problems, where a drone can serve multiple customers in each flight. These
routing problems, which require a careful synchronization between the truck and the drone, are
challenging to solve, even with a small number of customers. In this work, we address a multi-
visit, single-truck, single-drone routing problem also known in the literature as the Truck–Drone
Team Logistics Problem (TDTLP). In particular, we study two versions of the TDTLP arising from
the possibility for the drone to land or hover at the recollection points. Our study proposes
a novel mixed-integer linear programming formulation for the TDTLP, solved by a Branch-
and-Cut (B&C) algorithm. Then, we introduce a matheuristic approach that incorporates our
B&C algorithm to solve medium- and large-size instances. Computational results on benchmark
instances demonstrate the robustness and efficacy of the proposed methods.

1. Introduction

The rapid expansion of e-commerce has created an increasing demand for fast and efficient delivery services. Emerging
technologies, such as unmanned aerial vehicles or drones, have received significant interest for their potential in parcel delivery
within logistics distribution. Indeed, in comparison to conventional delivery with trucks, drones offer numerous advantages: quicker
delivery times, less prone to traffic congestion, lower transportation costs, and no need for human drivers. However, drones are not
ideal for long-distance deliveries due to their restricted carrying and battery capacities, which limits the feasibility of drone-only
deliveries. Consequently, to fully leverage the capabilities of drones, truck-and-drone hybrid delivery systems have been proposed
for logistics distribution (Carlsson and Song, 2018; Murray and Chu, 2015). In such hybrid delivery systems, the truck serves a
dual role: it delivers parcels to customers and functions as a mobile launching/landing platform for one or more drones. As the
truck travels to different customer locations for deliveries, the drone is simultaneously dispatched from the truck to serve additional
customers, subsequently returning to the truck at a rendezvous location along its route. The series of drone operations (take-off,
deliveries, and landing) is commonly referred to as ‘sortie’ in the literature.

The utilization of such delivery systems and the resulting routing problems have emerged as a cutting edge research topic within
the Operations Research community. The related literature has expanded rapidly, introducing a variety of truck-and-drone routing
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problems that differ in terms of operational conditions and the structure of hybrid truck-and-drone delivery systems (Chung et al.,
2020; Liang and Luo, 2022). Currently, most studies have assumed that a drone can serve only one customer per sortie due to
technological limitations. However, with the rapid advancement of drone technologies, there have been significant improvements
in flight endurance and carrying capacity. This progress allows to serve multiple customers in a single drone sortie. Considering
these developments, a new category of truck-and-drone routing problems, termed multi-visit truck-and-drone routing problems, has
emerged (Poikonen and Golden, 2020).

Despite the considerable interest from the scientific community, these hybrid systems have not been extensively deployed
y logistics companies, partly due to regulatory limitations and the high investment costs associated with these innovative
ystems (Tavares, 2021; Zwickle et al., 2019). Specifically, many logistics companies are not fully aware of the potential benefits
f deploying such systems, largely because of the difficulties in determining effective routes due to the complexity of truck-and-
rone routing problems. Indeed, these problems, which include synchronization requirements, represent a more complex variant
f Traveling Salesman Problems or Vehicle Routing Problems. Thus, they are NP-hard problem as well, and they are extremely
hallenging to solve optimally and/or effectively, even for instances involving few customers. Due to this complexity, the majority
f contributions in the literature address these problems through heuristic approaches. To the best of our knowledge, only two
ontributions in the literature propose tailored exact solution methods for multi-visit truck-and-drone routing problems (Wang and
heu, 2019; Yin et al., 2023). However, both studies focus on a delivery problem that minimizes the sum of operational costs. Yet,
s indicated in Schermer et al. (2019), the more common performance indicators in hybrid drone–truck scenarios are time-related.
hese include the minimal time required to serve all locations or the earliest time at which both vehicles return to the depot at the
nd of operations.

In light of this, our study has developed an exact solution method for a specific type of multi-visit truck-and-drone routing
roblem, known in the literature as Truck–Drone Team Logistics Problem (TDTLP) (Gonzalez-R et al., 2020). The TDTLP is the first

routing problem defined in the literature where a single truck and a single drone, able of visiting multiple customers within the
same sortie, are utilized in tandem to serve a subset of customers with the objective of minimizing the delivery completion time. In
particular, in this work, we will focus on two versions of the TDTLP differing in the drone operation while waiting for the truck at
the rendezvous point of a sortie. In the TDTLP with landing (TDTLP-L), the drone can safely land at the rendezvous location, thus
saving energy as assumed in Gonzalez-R et al. (2020). In the TDTLP with hovering (TDTLP-H), we assume that the drone has to
hover at the rendezvous location, with the energy expended contributing to its battery depletion.

The main contributions of our paper are summarized as follows:

• We introduce a new mixed-integer linear programming (MILP) formulation for the TDTLP with a polynomial number variables
and without Big-M constraints. Additionally, we present two families of valid inequalities and a Branch-and-Cut (B&C)
algorithm developed to optimally solving the proposed formulation.

• We propose a matheuristic approach in order to highlight how the proposed MILP formulation can be effectively exploited to
heuristically solve medium- and large-size TDTLP instances. The matheuristic approach is based on the solution of the TDTLP
on a reduced graph, obtained by fixing the precedence of customer service in the solution.

• We conduct extensive experiments on benchmark instances for the TDTLP. For the TDTLP-L, our computational results
demonstrate that our approach is either competitive with or superior to the existing state-of-the-art methods (Gonzalez-R
et al., 2020). Notably, our method either finds optimal solutions for some instances previously unsolved or yields improved
upper bounds for those that remain unsolved. As this study is the first one to tackle the TDTLP-H, a direct comparison with
other solution methods in the literature is not possible. Therefore, we show the impact of the hovering assumption on both
the delivery completion time and the efficacy of the proposed solution methods.

The remainder of the paper is organized as follows: Section 2 provides a brief review of related literature to position our study. In
Section 3, we recall the TDTLP assumptions and features and introduce the MILP formulation. Section 4 details the B&C algorithm
and the valid inequalities. The matheuristic approach, based on the proposed MILP formulation, is discussed in Section 5. Section 6
is dedicated to presenting the computational results. Finally, the conclusions and perspectives for future work on this topic are
discussed in Section 7.

2. Literature review

The first truck-and-drone routing problem studied in the literature, known as the Flying Sidekick Traveling Salesman Problem
(FSTSP), established the foundational framework for a truck-and-drone delivery system. Following this seminal work, research into
truck-and-drone delivery systems has significantly increased in recent years. However, each study typically concentrates on a distinct
hybrid delivery system, each with its unique characteristics and operational features, often representing variations of the basic
framework defined by the FSTSP. Consequently, the literature on this topic shows considerable heterogeneity. Based on this and
categorizing the literature according to the composition of the delivery fleet, readers aiming at a comprehensive review are referred
to Masone et al. (2022), Najy et al. (2023) for single-truck single-drone problems, Cavani et al. (2021), Murray and Raj (2020)
for single-truck multi-drone, and Schermer et al. (2019), Wang et al. (2022) for multi-truck single/multi-drone. In this work, our
literature review is concentrated on multi-visit truck-and-drone routing problems, as the TDTLP falls into this category. Similar to the
literature on truck-and-drone routing problems, the contributions on multi-visit hybrid systems are also quite different. Therefore,
to provide a clear overview of the differences between these studies, we summarize their key characteristics in Table 1. The first
2

two columns list the authors and the publication year. Subsequent three columns detail the number of trucks utilized in the delivery
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Table 1
Summary of the contributions on multi-visit truck-and-drone routing problems.

Authors Year #T #D Objective Battery
capacity

Energy
consumption

Payload
capacity

Hover Truck
serve

P&D Exact
approach

Heuristic
approach

Size
exact

Size
heuristic

Karak and Abdelghany (2019) 2019 1 m Routing costs Distance Distance ✓ – – ✓ Solver Clark-and-Wright
based heuristics

8 100

Wang and Sheu (2019) 2019 k m Routing and vehicle
dispatchment costs

Time Time ✓ – ✓ – B&P – 13 –

Gonzalez-R et al. (2020) 2020 1 1 Completion time Time Time – – ✓ – Solver Greedy and
Simulated Annealing

10 250

Kitjacharoenchai et al. (2020) 2020 k m Completion time Time Time ✓ – ✓ – Solver Large Neighborhood
Search

8 76

Poikonen and Golden (2020) 2020 1 m Completion time Energy Time and
weight
(Non-linear)

– ✓ – – – Graph transformation,
Greedy heuristic
and Local Search

– 50

Luo et al. (2021) 2021 1 m Completion time Energy Time and
weight

✓ ✓ ✓ – Solver Tabu Search 10 100

Gu et al. (2022) 2022 k 1 Completion time
and vehicle
dispatchment costs

Energy Time and
weight

– ✓ ✓ – Solver Iterative Local Search
and Variable
Neighborhood Descent
based on segment
representation

10 200

Leon-Blanco et al. (2022) 2022 1 m Completion time Time Time – – ✓ – – Agent based heuristic – 500

Luo et al. (2022) 2022 k m Completion time
and vehicle
dispatchment costs

Energy Time and
weight

✓ ✓ ✓ ✓ Solver Iterative Local Search
based on segment
representation

10 100

Masone et al. (2022) 2022 1 1 Completion time Energy Time and
weight
(Non-linear)

✓ ✓ – – – Iterative Local Search
with Discrete and
Continuous
Improvements

– 70

Meng et al. (2023b) 2023 1 m Routing and vehicle
dispatchment costs

Energy Time and
weight

✓ ✓ ✓ ✓ Solver Two-stage
simulated annealing

11 101

Meng et al. (2024) 2023 k m Routing, drone energy
and vehicle
dispatchment costs

Energy Time and
weight

✓ ✓ ✓ ✓ Solver Adaptive Large
Neighborhood Search

10 50

Yin et al. (2023) 2023 k 1 Routing and vehicle
dispatchment costs

Energy Time ✓ – ✓ – B&C&P – 45 –

Jiang et al. (2024) 2024 k m Routing costs Distance Distance ✓ – ✓ ✓ Solver Adaptive Large
Neighborhood Search

10 100

Boccia et al.
(This work)

2024 1 1 Completion time Time Time ✓ ✓ ✓ – B&C Matheuristic 20 75

system, the number of drones mounted on each truck, and the objective function considered. The following six columns highlight
key features of the delivery system: the unit of measurement for drone battery capacity, the physical parameter affecting energy
consumption, whether the drone payload capacity is considered, whether the drone is required to hover at collection points for
safety reasons while waiting for the truck, if the truck can directly serve customers, and if both pick-up and delivery operations are
included. The final four columns provide some details about the solution method and the largest instance size solved, in terms of
customers considered, categorized into exact and heuristic approaches.

Given Table 1, in terms of delivery system features, it is evident that almost no contribution tackles the very same problem due
o variations in fleet composition, objective functions, or operating conditions. Additionally, the contributions can be categorized
ased on their objective function: those aiming to minimize completion time (Poikonen and Golden, 2020; Gonzalez-R et al., 2020;
asone et al., 2022; Kitjacharoenchai et al., 2020; Luo et al., 2021; Gu et al., 2022; Leon-Blanco et al., 2022; Luo et al., 2022), and

hose focusing on reducing operational costs (routing costs, number of vehicles used, etc.) (Wang and Sheu, 2019; Yin et al., 2023;
arak and Abdelghany, 2019; Meng et al., 2023b, 2024; Jiang et al., 2024). In terms of kind of optimization problems, the former
epresents min–max problems, while the latter are min-sum problems. Specifically, when multiple tandems are available, the typical
bjective is to minimize operational costs. Conversely, with only a single tandem available (even with multiple drones mounted on
he truck), the usual objective is the minimization of completion time. It can be also noticed that drone flight is always constrained by
attery capacity, generally quantified in terms of maximum energy or time. The energy consumption is usually directly proportional
o travel time or a function of both travel time and carried weight. Additionally, some studies do not consider the drone hovering
hile waiting for the truck, assuming it can land at rendezvous locations (Wang and Sheu, 2019; Yin et al., 2023; Gonzalez-R et al.,
020; Karak and Abdelghany, 2019; Kitjacharoenchai et al., 2020; Leon-Blanco et al., 2022; Jiang et al., 2024). The customers that
3

an be served within the same sortie are also often limited by the maximum payload, especially in problems involving both pick-up
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and delivery operations (Karak and Abdelghany, 2019; Luo et al., 2022; Meng et al., 2023b, 2024; Jiang et al., 2024). Furthermore,
a few contributions consider delivery systems where the truck cannot directly serve customers, acting only as a mobile depot for
the drone (Karak and Abdelghany, 2019; Poikonen and Golden, 2020; Masone et al., 2022).

In terms of solution approaches, the majority of contributions propose a mathematical formulation solved using an optimization
olver, such as Cplex or Gurobi. This trend can be attributed to the fact that the main contribution of these works lies in their
euristic approach, generally based on the large neighborhood search framework (Pisinger and Ropke, 2019). Regarding exact
ethods, only two works have developed tailored exact solution approaches, specifically, a Branch-and-Price (B&P) algorithm and

a Branch-and-Cut-and-Price (B&C&P) algorithm. However, both the approaches tackle min-sum optimization problems.
Based on this discussion, it is evident that our work is the only one proposing an ad-hoc exact solution method for a min–max

version of a multi-visit truck-and-drone routing problem. Other methods are tailored for very specific problem variants, limiting
their applicability to the problem under study without significant modification and no guaranteed effectiveness.

On this basis, the only two works relevant for comparison in our study are those considering the truck–drone team logistics setting
as a framework for the delivery system, specifically Gonzalez-R et al. (2020) and Leon-Blanco et al. (2022). The first defines the
truck–drone team logistics setting, extending the one considered in the FSTSP by including multiple visits per sortie, but simplifies
synchronization aspects by allowing the drone to land at the rendezvous location. To address the problem, the authors present a
MILP formulation and an iterative local search heuristic. The MILP formulation is solved using Gurobi which manages to determine
he optimal solution for instances with up to 10 customers, while the heuristics is tested on instance with up to 250 customers. The
econd study, while operating within the same truck–drone team logistics setting but with multiple drones on the truck, does not
ropose an exact approach or a mathematical formulation, but rather a heuristic approach. This heuristic was also tested in scenarios
nvolving a single drone, revealing that the heuristic method from Gonzalez-R et al. (2020) performs slightly better. Consequently,
he approaches in Gonzalez-R et al. (2020) represent the state-of-the-art for the TDTLP. Therefore, we will compare our solution
ethods with theirs in the computational results section. Specifically, we will compare our proposed B&C approach with the exact
ethod introduced in Gonzalez-R et al. (2020) for small-sized instances. For instances of a more realistic size, we will compare our
atheuristic approach with the heuristic method detailed in Gonzalez-R et al. (2020).

. Problem description and formulation

In this section, we briefly recall the TDTLP description. Since the TDTLP can be viewed as an extension of the FSTSP, the
escription employs the same assumptions found in Murray and Chu (2015) for the FSTSP, with the only modification being the
umber of customers the drone can serve within a single sortie. We also introduce an original formulation for the TDTLP that
epresents an advancement over the formulation proposed in Boccia et al. (2023) for the FSTSP. The proposed formulation can be
pplied to solve both versions of the TDTLP, with the only difference being in the drone endurance constraints.

.1. Problem description

The TDTLP considers a set of customers, 𝐶, that have to be served only once, either by the truck or the drone. The two vehicles
epart from and return to a single depot once. The proposed formulation splits the depot into a source node, 𝑠, and a destination
ode, 𝑡. Moreover, let 𝑉 be the set of nodes, 𝑉 = 𝐶 ∪ {𝑠, 𝑡}, and 𝐴 the set of arcs, 𝐴 = {(𝑖, 𝑗) ∶ 𝑖 ∈ 𝐶 ∪ {𝑠}, 𝑗 ∈ 𝐶 ∪ {𝑡}}. The travel
ime of the truck and the drone on each arc (𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐴, is indicated with 𝑡𝑖𝑗 and 𝑑𝑖𝑗 , respectively.

The truck has a sufficiently large capacity, enabling it to serve all the customers met along its route. Moreover, it acts as a mobile
epot for the drone providing the packages and dispatching the drone to serve the customers.

The drone can serve more than one customer for each sortie. Therefore, a sortie is a drone path from the launch node to the
endezvous node. The launch and the rendezvous nodes can be either the depot or a customer node. In addition, they must be
ifferent except if there is only one sortie starting from and ending at the depot. The duration of a sortie is limited by the drone
ndurance (𝐷𝑡𝑙), moreover there is a maximal number of clients 𝐶𝑚𝑎𝑥 that can be served in a single sortie. In the TDTLP-L, the

drone can land at the rendezvous node while waiting for the truck, so the flight time, which cannot exceed its endurance, is equal
to its travel time. On the other hand, in the TDTLP-H, the drone cannot land due to safety reasons and must hover while waiting
for the truck, meaning the drone hovering contributes to its flight time and, as a consequence, to its energy expenditure. In both
versions, it is clear that the two vehicles must be synchronized at the beginning and at the end of a sortie.

Moreover, service times arise when the drone is launched (launch time, 𝑆𝐿) or retrieved (recovery time, 𝑆𝑅). We point out that
launch operations are performed when the drone is still on the truck, while rendezvous operations are conducted while the drone
is airborne. Therefore, the recovery time is included in the endurance computation to ensure that the drone battery is not depleted
during these operations. Moreover, if a drone is launched from the depot, there is no launch time since the related operations can
be performed in advance.

The objective is to minimize the duration of the delivery process, i.e., the time needed by the two vehicles to serve all the
customers and return to the depot.

Based on this description, we can observe that in any feasible solution, the number of sorties cannot exceed the value 𝑠𝑚𝑎𝑥 =
⌊(|𝑉 | − 1)∕2⌋. This value is derived from the assumption that the simplest sortie consists of just one truck arc and two drone arcs,
used to serve a single client. Therefore, the number of nodes served by the truck, equivalent to the number of sorties, cannot be
4

greater than the number of nodes traversed by the truck. Following this, we will denote by 𝑆 = {1,… , 𝑠𝑚𝑎𝑥} the set of all potential
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Fig. 1. Feasible solution with the maximal number of smallest sorties.

Fig. 2. An example of feasible solution.

sorties. In Fig. 1 an example of feasible solution for an instances of 9 nodes with the maximal number of sorties is reported. The
continuous arcs represent the truck path, while the dashed arcs indicate the drone path.

In conclusion, to solve a TDTLP, we must determine: the number of sorties and, for each sortie, the customers served by the
drone; the drone path between the launch and rendezvous nodes for each sortie; and the truck route. For the sake of clarity, Fig. 2
presents an example of a generic feasible solution for an instance with 9 nodes.

3.2. Problem formulation

To model the TDTLP as a Mixed Integer Linear Programming (MILP) problem, we introduce the following sets of variables based
on the previous problem description:

- 𝑦𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴, is equal to 1 if the arc (𝑖, 𝑗) is traveled by the truck, 0 otherwise.
- 𝑦𝑘𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝑆, is equal to 1 if the arc (𝑖, 𝑗) is traveled by the truck while the drone is performing the 𝑘th sortie, 0

otherwise.
- 𝑥𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴, is equal to 1 if the arc (𝑖, 𝑗) is traveled by the drone, 0 otherwise.
- 𝑥𝑘𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝑆, is equal to 1 if the arc (𝑖, 𝑗) is traveled by the drone in its 𝑘th sortie, 0 otherwise.
- 𝜃ℎ, ℎ ∈ 𝐶, is equal to 1 if customer ℎ is served by the drone, 0 otherwise.
- 𝜔𝑘

𝑖 , 𝑖 ∈ 𝐶 ∪ {𝑠}, 𝑘 ∈ 𝑆, is equal to 1 if node 𝑖 is the launch node of the 𝑘th sortie, 0 otherwise.
- 𝛿𝑘𝑗 , 𝑗 ∈ 𝐶 ∪ {𝑡}, 𝑘 ∈ 𝑆, is equal to 1 if node 𝑗 is the rendezvous node of the 𝑘th sortie, 0 otherwise.
- 𝜎𝑘, 𝑘 ∈ 𝑆, is a continuous variable indicating the truck waiting time at the destination node of the 𝑘th sortie. If sortie 𝑘 does

not happen, then 𝜎𝑘 = 0.

For clarity, Fig. 3 depicts one of the sorties of a feasible solution, along with the corresponding values of the binary variables
involved in the sortie. As we can observe from the example, it is important to note that there is a subtle difference between the
𝑥𝑖𝑗 and 𝑥𝑘𝑖𝑗 variables. The values of these two types of variables are equal when the drone is actively serving a customer during a
sortie. For instance, in the example, 𝑥𝑗ℎ = 𝑥𝑘𝑗ℎ = 1 indicates that the drone travels the arc (𝑗, ℎ) and serves customer ℎ. However, for
the arc (𝑖, 𝑗), while 𝑥𝑖𝑗 = 1, there is no 𝑥𝑘𝑖𝑗 equal to 1 for any 𝑘 because the drone travels the arc (𝑖, 𝑗) atop the truck, as indicated by
𝑖𝑗 = 1, which shows that the truck also travels the same arc. For the nodes visited by both vehicles, we recall that the truck, due to
ts larger capacity, will serve them. On this basis, we observe that there is no difference between visiting and serving with respect
o the 𝑦𝑖𝑗 and 𝑦𝑘𝑖𝑗 variables. However, we introduce the 𝑦𝑘𝑖𝑗 variables to track the truck path for computing the waiting time of the
ruck during sortie 𝑘 and to assess the feasibility of the sortie in terms of drone endurance. Regarding the truck waiting time in
ortie 𝑘, represented by the value of the variable 𝜎𝑘, Fig. 3 also presents its expression. As we can see, the waiting time of the truck
s computed as the maximum of 0 and the difference between the duration of the drone path and the truck path during sortie 𝑘. We
ecall that, as also shown in Boccia et al. (2023), due to the synchronization of the two vehicles at drone launch and rendezvous
ocations, the total completion time (i.e., the makespan) of the delivery process can be expressed as a sum of three components: the
ruck routing time, the overhead time related to the launch and rendezvous locations, and the truck waiting time for the drone. It
s also possible to express the completion time as a sum of the drone routing time, the overhead time, and the drone waiting time
or the truck. However, it is preferable to use the truck as the reference vehicle for these components since it is generally the slower
f the two vehicles.

Consistently with the notation and the set of variables described above, the makespan of the delivery process, i.e., the objective
unction, can be written as:

∑

𝑡𝑖𝑗𝑦𝑖𝑗 +
∑ ∑

(𝑆𝐿 + 𝑆𝑅) 𝜔𝑘
𝑖 + 𝑆𝑅 𝜔1

𝑠 +
∑

𝜎𝑘
5

(𝑖,𝑗)∈𝐴 𝑘∈𝑆 𝑖∈𝑉 ⧵{𝑠,𝑡} 𝑘∈𝑆
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Fig. 3. 𝑘th sortie of a feasible solution.

where the first term measures the duration of the truck path, the second and the third term evaluate the total launch and recovery
service time (the launch service time at the depot is equal to 0), and the fourth term assesses the total truck waiting time.

Then, the set of constraints can be divided into the following families.
Truck routing constraints

∑

𝑗∶(𝑠,𝑗)∈𝐴
𝑦𝑠𝑗 =

∑

𝑖∶(𝑖,𝑡)∈𝐴
𝑦𝑖𝑡 = 1 (3.1)

∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑦𝑖𝑗 =

∑

𝑗∶(𝑗,𝑖)∈𝐴
𝑦𝑗𝑖 ≤ 1 𝑖 ∈ 𝐶 (3.2)

∑

𝑖,𝑗∈𝐻|(𝑖,𝑗)∈𝐴
𝑦𝑖𝑗 ≤

∑

ℎ∈𝐻⧵{𝑞}
(1 − 𝜃ℎ) 𝐻 ⊆ 𝑉 𝑞 ∈ 𝐻 (3.3)

Constraints (3.1) impose that the truck path starts from the origin node 𝑠 and ends in the destination node 𝑡. Constraints (3.2) are
flow conservation constraints for the truck path and ensure that each customer node is visited no more than once by the truck.
Constraints (3.3) are the subtour elimination constraints. As in the formulation of the orienteering problem (Gunawan et al., 2016),
given a subset of nodes 𝐻 , constraints (3.3) impose that the number of arcs with origin and destination in 𝐻 traveled by the truck
must be less than the number of nodes served by the truck in the subset 𝐻 .

Drone routing constraints
∑

𝑗∶(𝑠,𝑗)∈𝐴
𝑥𝑠𝑗 =

∑

𝑖∶(𝑖,𝑡)∈𝐴
𝑥𝑖𝑡 = 1 (3.4)

∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑖𝑗 =

∑

𝑗∶(𝑗,𝑖)∈𝐴
𝑥𝑗𝑖 ≤ 1 𝑖 ∈ 𝐶 (3.5)

∑

𝑖,𝑗∈𝐻|(𝑖,𝑗)∈𝐴
𝑥𝑖𝑗 ≤

∑

ℎ∈𝐻⧵{𝑞}
𝜃ℎ 𝐻 ⊆ 𝑉 𝑞 ∈ 𝐻 (3.6)

Constraints (3.4) impose that the drone path starts from the origin node 𝑠 and ends in the destination node 𝑡. Constraints (3.5) are
flow conservation constraints for the drone path and ensure that each customer node is visited no more than once by the drone.
Constraints (3.6) are the subtour elimination constraints.

Truck path and launch/rendezvous linking constraints
∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑦𝑘𝑖𝑗 −

∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑦𝑘𝑗𝑖 = 𝜔𝑘

𝑖 − 𝛿𝑘𝑖 𝑖 ∈ 𝑉 𝑘 ∈ 𝑆 (3.7)

They impose that there is a truck path without the drone onboard from the launch node to the rendezvous node of each drone sortie
𝑘.

Drone path and launch/rendezvous linking constraints
∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑘𝑖𝑗 −

∑

𝑗∶(𝑖,𝑗)∈𝐴
𝑥𝑘𝑗𝑖 = 𝜔𝑘

𝑖 − 𝛿𝑘𝑖 𝑖 ∈ 𝑉 𝑘 ∈ 𝑆 (3.8)

They impose that there is a drone path from the launch node to the rendezvous node of each drone sortie 𝑘.
Single assignment constraints

∑

𝑗∶(ℎ,𝑗)∈𝐴
𝑦ℎ𝑗 +

∑

𝑗∶(ℎ,𝑗)∈𝐴
𝑥ℎ𝑗 ≥ 1 ℎ ∈ 𝐶 (3.9)

∑

𝑗∶(ℎ,𝑗)∈𝐴
𝑦ℎ𝑗 + 𝜃ℎ = 1 ℎ ∈ 𝐶 (3.10)

Constraints (3.9) impose that an arc departing from client ℎ must be traversed by the truck alone, the drone alone, or the truck
carrying the drone. Constraints (3.10) impose that each customer must be served either by the truck or by the drone.
6
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Drone endurance constraints
∑

(𝑖,𝑗)∈𝐴
𝑡𝑖𝑗𝑦

𝑘
𝑖𝑗 ≤ (𝐷𝑡𝑙 − 𝑆𝑅) 𝑘 ∈ 𝑆 (3.11)

∑

(𝑖,𝑗)∈𝐴
𝑑𝑖𝑗𝑥

𝑘
𝑖𝑗 ≤ (𝐷𝑡𝑙 − 𝑆𝑅) 𝑘 ∈ 𝑆 (3.12)

onstraints (3.11) and (3.12) respectively set an upper bound on the duration of the truck and drone path for the 𝑘th sortie. The
pper bound corresponds to the drone endurance minus the recovery time, as the drone is airborne during these operations. In the
DTLP-H, both sets of constraints are considered, while in the TDTLP-L, only the constraints (3.12) are considered.
Capacity constraints

∑

(𝑖,𝑗)∈𝐴
𝑥𝑘𝑖𝑗 ≤ 𝐶𝑚𝑎𝑥 + 1 𝑘 ∈ 𝑆 (3.13)

hey impose a maximal number of clients served in a single sortie. We can observe that in the FSTSP problem 𝐶𝑚𝑎𝑥 is set to 1.
Waiting time constraints

∑

(𝑖,𝑗)∈𝐴
𝑑𝑖𝑗𝑥

𝑘
𝑖𝑗 −

∑

(𝑖,𝑗)∈𝐴
𝑡𝑖𝑗𝑦

𝑘
𝑖𝑗 ≤ 𝜎𝑘 𝑘 ∈ 𝑆 (3.14)

onstraints (3.14) are needed to consider the truck waiting time in the objective function.
Consistency constraints
(i) Linking constraints between truck variables

∑

𝑘∈𝑆
𝑦𝑘𝑖𝑗 ≤ 𝑦𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴 (3.15)

hey are variable upper bounds imposing that, during a generic sortie 𝑘, the variable 𝑦𝑘𝑖𝑗 can be equal to 1 only if the arc (𝑖, 𝑗) is
raversed by the truck.
(ii) Linking constraints between drone variables

∑

𝑘∈𝑆
𝑥𝑘𝑖𝑗 ≤ 𝑥𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴 (3.16)

hey impose that, during a generic sortie 𝑘, the variable 𝑥𝑘𝑖𝑗 can be equal to 1 only if the arc (𝑖, 𝑗) is traversed by the drone.
(iii) Linking constraints between truck and drone variables

∑

𝑘∈𝑆
𝑦𝑘𝑖𝑗 ≤ 1 − 𝑥𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴 (3.17)

∑

𝑘∈𝑆
𝑥𝑘𝑖𝑗 ≤ 1 − 𝑦𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴 (3.18)

𝑥𝑖𝑗 ≤ 𝑦𝑖𝑗 +
∑

𝑘∈𝑆
𝑥𝑘𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴 (3.19)

Constraints (3.17) guarantee that if the drone travels an arc, then the truck path during any sortie 𝑘 cannot include that arc.
imilarly, constraints (3.18) impose that if the truck travels an arc, then the drone path during any sortie 𝑘 cannot include that arc.
inally, constraints (3.19) ensure that a drone can travel an arc only if it is carried by the truck along that arc or because the arc
s part of the drone path during a generic sortie 𝑘.
(iv) Linking constraints between origin and destination sortie variables

∑

𝑖∈𝑉 ⧵𝑡
𝜔𝑘
𝑖 =

∑

𝑖∈𝑉 ⧵𝑠
𝛿𝑘𝑖 𝑘 ∈ 𝑆 (3.20)

𝜔𝑘
𝑖 + 𝛿𝑘𝑖 ≤ 1 𝑘 ∈ 𝑆 𝑖 ∈ 𝑉 ⧵ {𝑠, 𝑡} (3.21)

onstraints (3.20) guarantee that, if a sortie 𝑘 exists, it must have both an origin and a destination node. Constraints (3.22) ensure
hat a node cannot simultaneously be the origin and destination of the same sortie.
(v) Linking constraints between drone and sortie variables

𝜔𝑘
𝑖 ≥

∑

𝑗|(𝑖,𝑗)∈𝐴
𝑥𝑘𝑖𝑗 − 𝜃𝑖 𝑘 ∈ 𝑆 𝑖 ∈ 𝑉 ⧵ {𝑠} (3.22)

𝛿𝑘𝑗 ≥
∑

𝑖|(𝑖,𝑗)∈𝐴
𝑥𝑘𝑖𝑗 − 𝜃𝑗 𝑘 ∈ 𝑆 𝑗 ∈ 𝑉 ⧵ {𝑡} (3.23)

𝜔𝑘
𝑖 ≤

∑

𝑗|(𝑖,𝑗)∈𝐴
𝑥𝑘𝑖𝑗 𝑘 ∈ 𝑆 𝑗 ∈ 𝑉 ⧵ {𝑡} (3.24)

𝛿𝑘𝑗 ≤
∑

𝑖|(𝑖,𝑗)∈𝐴
𝑥𝑘𝑖𝑗 𝑘 ∈ 𝑆 𝑗 ∈ 𝑉 ⧵ {𝑡} (3.25)

If the drone traverses the arc (𝑖, 𝑗) during its 𝑘th sortie, then constraints (3.22) ensure that node 𝑖 is either the origin of the sortie
7

or it is served by the drone. Likewise, constraints (3.23) guarantee that node 𝑖 is either the destination of the sortie or it is served
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by the drone. Finally, if the arc (𝑖, 𝑗) is not traveled by the drone in its 𝑘th sortie, (3.24) and (3.25) guarantee that the nodes 𝑖 and
𝑗 cannot be the origin and the destination of the 𝑘th sortie.

Symmetry breaking constraints

∑

𝑖∈𝑉 ⧵{𝑠}
𝜔𝑘
𝑖 ≤

∑

𝑖∈𝑉 ⧵{𝑠}
𝜔𝑘−1
𝑖 𝑘 ∈ 𝑆 ⧵ {1} (3.26)

∑

𝑗∈𝑉 ⧵{𝑡}
𝛿𝑘𝑗 ≤

∑

𝑗∈𝑉 ⧵{𝑡}
𝛿𝑘−1𝑗 𝑘 ∈ 𝑆 ⧵ {1} (3.27)

hey are used to reduce the dimension of the problem by eliminating the symmetric solutions while preserving the existence of at
east one of them.

. Branch-and-Cut approach

The proposed formulation includes an exponential number of constraints due to the subtour elimination constraints (3.3), (3.6).
o address this, we developed a B&C algorithm to solve the formulation. Furthermore, a set of valid inequalities are integrated
ithin the B&C to strengthen the formulation and enhance the quality of the lower bound. In this section, we will first present the
roposed valid inequalities and then detail the implementation strategies employed for our B&C.

.1. Valid inequalities

roposition 1. Given the graph 𝐺(𝑉 ,𝐴) and two nodes 𝑝 and 𝑞, 𝑝, 𝑞 ∈ 𝑉 , let 𝐶𝑢𝑡(𝑝, 𝑞) be a generic cut on the graph 𝐺 between the nodes
and 𝑞, and let ℎ, ℎ ∈ 𝐶, be a generic customer. Then, the truck cut inequalities:

∑

(𝑖,𝑗)∈𝐶𝑢𝑡(𝑠,ℎ)
𝑦𝑖𝑗 ≥ 1 − 𝜃ℎ (4.1)

nd
∑

(𝑖,𝑗)∈𝐶𝑢𝑡(ℎ,𝑡)
𝑦𝑖𝑗 ≥ 1 − 𝜃ℎ (4.2)

re valid for the TDTLP problem formulation.

roof. If the drone does not serve customer ℎ (𝜃ℎ = 0), there must be a truck path from the origin node 𝑠 to ℎ and from ℎ to the
estination node 𝑡 in any feasible solution. Therefore, an arc must cross any cut from 𝑠 to ℎ and from ℎ to 𝑡. □

Analogously to the truck cut inequalities, it is possible to define the following drone cut inequalities, which are also valid for the
DTLP.

∑

(𝑖,𝑗)∈𝐶𝑢𝑡(𝑠,ℎ)
𝑥𝑖𝑗 ≥ 𝜃ℎ (4.3)

nd
∑

(𝑖,𝑗)∈𝐶𝑢𝑡(ℎ,𝑡)
𝑥𝑖𝑗 ≥ 𝜃ℎ (4.4)

Finally, it is also simple to prove that constraints (4.1), (4.2), (4.3) and (4.4) can be used as subtour elimination constraints.

4.2. Implementation details

The implementation of the B&C algorithm follows a classical framework, which includes solving a relaxed problem and
ntroducing violated cuts. Therefore, it begins with the solution of the linear programming relaxation consisting in:

• the set of 𝑦𝑖𝑗 , 𝑦𝑘𝑖𝑗 , 𝑥𝑖𝑗 , 𝑥
𝑘
𝑖𝑗 , 𝜃

ℎ, 𝜔𝑘
𝑖 , 𝛿𝑘𝑗 , and 𝜎𝑘 variables; the subset of truck routing constraints (3.1) and (3.2);

• the subset of drone routing constraints (3.4) and (3.5);
• the truck and drone path and launch/rendezvous linking constraints (3.7) and (3.8);
• the single assignment constraints (3.9) and (3.10);
• the drone endurance constraints (3.11) and (3.12) if solving the TDTLP-H, or only the constraints (3.12) if solving the TDTLP-L;
• the capacity constraints (3.13);
• the waiting time constraints (3.14);
• the consistency constraints (3.15)–(3.25);
8

• the symmetry breaking constraints (3.26) and (3.27).
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Fig. 4. Example of feasible solution when 𝑡𝑖𝑗 = 𝑑𝑖𝑗 = 𝜏𝑖 ∀(𝑖, 𝑗) ∈ 𝐴.

Then, at each node belonging to the first three depths of the enumeration tree, we separate and add to the formulation the truck
(drone) cut inequalities (4.1)–(4.4). The separation procedure solves the minimum cut problem (Karger and Stein, 1996), from the
origin node 𝑠 to ℎ and from ℎ to the destination node 𝑡 on the weighted graph 𝐺′(𝑉 ,𝐴,𝑊 ) where the weight 𝑤𝑖𝑗 on the generic arc
(𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐴, is given by the value of the corresponding 𝑦𝑖𝑗 (𝑥𝑖𝑗) variable. If the value of the minimum cut is less than 1 − 𝜃ℎ (𝜃ℎ),
then the violated cut inequality is added to the formulation. Successively, at each other node of the enumeration tree, if an integer
solution is found, we separate the lazy constraints on truck and drone subtour (3.3) and (3.6).

In Section 6.1.1, the B&C algorithm was experimented on small-size instances, up to 20 nodes, and the results were compared
with the exact approach described in Gonzalez-R et al. (2020) which, to the best of the authors knowledge, currently represents
the state of the art solution for this problem. The experimentation reveals that, within a 15-minute time limit, small instances of 10
nodes can be solved to the optimality, while for 20-node instances, the proposed approach is able to obtain feasible solutions with
an average gap of 20%. For medium and large-sized instances, it becomes necessary to develop a heuristic approach able to obtain
‘‘good’’ solutions within reasonable computation times.

5. Matheuristic approach

In this section, a Matheuristic approach for solving the TDTLP on medium-size instances is described. The proposed approach is
based on two observations derived from the experimental analysis:

• the order in which customers are visited in an optimal solution of the TDTLP is generally very similar to the visitation order
obtained by solving the Hamiltonian Path problem on the same instance, from the origin node 𝑠 to the destination node 𝑡;

• solving the TDTLP on an acyclic graph is much simpler than on a fully connected graph.

To build an acyclic graph, we can consider an ordered list of all the nodes from the set 𝑉 , 𝐿 = {𝑝1, 𝑝2,… , 𝑝𝑛}, where 𝑝𝑖 ∈ 𝑉
indicates the node in position 𝑖 in the list 𝐿. In this ordered list, the relation 𝑎 comes before 𝑏 (𝑎 ≺𝐿 𝑏) is a strict total order relation
on the set of nodes.

Let the L-Ordered Graph 𝐺𝐿(𝑉 ,𝐴𝐿) be a sub-graph of 𝐺(𝑉 ,𝐴) with the same set of nodes, but only a selected subset of its edges
(𝐴𝐿 ⊆ 𝐴). An arc (𝑖, 𝑗) belongs to 𝐴𝐿 iff 𝑖 ≺𝐿 𝑗. 𝐺𝐿(𝑉 ,𝐴𝐿) is an acyclic graph.

Proposition 2. The TDTLP defined on a Directed Acyclic Graph is a NP-hard problem.

Proof. To prove the thesis, let us examine a particular instance of the problem in which:

• the drone has infinite endurance (𝐷𝑡𝑙 = ∞);
• the time required for both the drone and the truck to traverse any arc (𝑖, 𝑗) ∈ 𝐴 is identical;
• the traversal time for an arc (𝑖, 𝑗) is determined exclusively by its tail node 𝑖 (𝑡𝑖𝑗 = 𝑑𝑖𝑗 = 𝜏𝑖 ∀(𝑖, 𝑗) ∈ 𝐴).

Let 𝐶 be the set of clients of this instance and let 𝐶𝑇 , 𝐶𝐷 ⊆ 𝐶 be a partition of 𝐶. It can be straightforwardly demonstrated
that there is exactly one feasible solution of the problem in which all clients in 𝐶𝑇 are served by the truck, and all clients in 𝐶𝐷
are served by the drone. The paths taken by both the truck and the drone to serve their respective clients are predetermined by
the topological ordering of the nodes within the Directed Acyclic Graph. Moreover, as depicted in Fig. 4, each node 𝑖 belonging to
either the truck or drone path increases the path length by 𝜏𝑖. Since the problem objective is to minimize the difference between
the lengths of the two paths, finding the optimal solution requires to solve a partition problem. This entails identifying two subsets
within 𝐶, 𝐶𝑇 (clients served by the truck) and 𝐶𝐷 (clients served by the drone), with the goal of minimizing the difference between
the sum of the weights in the two subsets. The problem that arises is a partition problem. Given that partition problems are NP-hard,
as shown in Mertens (2005), Garey and Johnson (1979), the proposition holds. □

Even though the problem remains NP-hard, the MILP formulation of the TDTLP on a Directed Acyclic Graph can be greatly
simplified. Furthermore, our computational experiments, as detailed in Section 6, show that by considering the ordered list 𝐿
obtained from the optimal solution of the Hamiltonian Path on the original graph 𝐺(𝑉 ,𝐴), we achieve ‘‘good’’ upper bounds.

In other words, to derive an upper bound for the optimal solution of the TDTLP, we define the ordered list 𝐿 as follows: the
first element of 𝐿 is the origin node, and the order of the subsequent nodes is determined by their position within the minimum
Hamiltonian Path, from the origin node to the destination node on the original graph 𝐺(𝑉 ,𝐴). Based on this, we construct the
L-Ordered Graph 𝐺𝐿(𝑉 ,𝐴𝐿) and then we solve the TDTLP on this acyclic graph.

In Fig. 5, the main steps of the heuristic are described:
9



Transportation Research Part C 165 (2024) 104691M. Boccia et al.
Fig. 5. Matheuristic scheme.

(a) starting from the original graph 𝐺(𝑉 ,𝐴) in which the depot has been splitted into an origin node with only outgoing arcs and
a destination node with only incoming edges, the minimum Hamiltonian Path is computed;

(b) considering the ordered list defined by the minimum Hamiltonian Path, the L-ordered graph 𝐺𝐿(𝑉𝐿𝐴𝐿) is generated;
(c) the TDTLP on the acyclic L-ordered graph 𝐺𝐿(𝑉𝐿𝐴𝐿) is solved.

In the computational experience, described in Section 6, the minimum Hamiltonian Path is computed by using a ‘‘classical’’
ILP formulation in which the subtour elimination constraints are separated as lazy constraints. Finally, to solve the TDTLP on the
acyclic graph, we used the formulation described in the following subsection together with new families of valid inequalities and
fixed strategies.

5.1. MILP formulation on a L-Ordered Graph

Given a L-Ordered Graph 𝐺𝐿(𝑉 ,𝐴𝐿), we can simplify the formulation of the TDTLP (as outlined in the previous section) as reported
below. For the sake of readability and simplicity, we slightly abuse notation by replacing 𝑝𝑖 (the node in position 𝑖 in the list 𝐿)
with 𝑖.

min 𝑧 =
𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1
𝑡𝑖𝑗𝑦𝑖𝑗 +

𝑠𝑚𝑎𝑥
∑

𝑘=1

𝑛−1
∑

𝑖=1
(𝑆𝐿 + 𝑆𝑅) 𝜔𝑘

𝑖 + 𝑆𝑅 𝜔1
𝑠 +

𝑠𝑚𝑎𝑥
∑

𝑘=1
𝜎𝑘

𝑛
∑

𝑗=2
𝑦1𝑗 =

𝑛−1
∑

𝑖=1
𝑦𝑖𝑛 = 1 (5.1)

𝑛
∑

𝑗=𝑖+1
𝑦𝑖𝑗 =

𝑖−1
∑

𝑗=1
𝑦𝑗𝑖 ≤ 1 𝑖 ∈ {2,… , 𝑛 − 1} (5.2)

𝑛
∑

𝑗=𝑖+1
𝑦𝑘𝑖𝑗 −

𝑖−1
∑

𝑗=1
𝑦𝑘𝑗𝑖 = 𝜔𝑘

𝑖 − 𝛿𝑘𝑖 𝑖 ∈ {1,… , 𝑛} 𝑘 ∈ {1,… , 𝑠𝑚𝑎𝑥} (5.3)

𝑛
∑

𝑗=𝑖+1
𝑥𝑘𝑖𝑗 −

𝑖−1
∑

𝑗=1
𝑥𝑘𝑗𝑖 = 𝜔𝑘

𝑖 − 𝛿𝑘𝑖 𝑖 ∈ {1,… , 𝑛} 𝑘 ∈ {1,… , 𝑠𝑚𝑎𝑥} (5.4)

𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1
𝑡𝑖𝑗𝑦

𝑘
𝑖𝑗 ≤ 𝐷𝑡𝑙 − 𝑆𝑅 𝑘 ∈ {1,… , 𝑠𝑚𝑎𝑥} (5.5)

𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1
𝑑𝑖𝑗𝑥

𝑘
𝑖𝑗 ≤ 𝐷𝑡𝑙 − 𝑆𝑅 𝑘 ∈ {1,… , 𝑠𝑚𝑎𝑥} (5.6)

𝑛−1
∑

𝑛
∑

𝑑𝑖𝑗𝑥
𝑘
𝑖𝑗 −

𝑛−1
∑

𝑛
∑

𝑡𝑖𝑗𝑦
𝑘
𝑖𝑗 ≤ 𝜎𝑘 𝑘 ∈ {1,… , 𝑠𝑚𝑎𝑥} (5.7)
10
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𝑗−1
∑

𝑖=1
𝑦𝑖𝑗 +

𝑠𝑚𝑎𝑥
∑

𝑘=1

𝑗−1
∑

𝑖=1
𝑥𝑘𝑖𝑗 ≥ 1 +

𝑠𝑚𝑎𝑥
∑

𝑘=1
𝛿𝑘𝑗 𝑗 ∈ {2,… , 𝑛} (5.8)

𝑠𝑚𝑎𝑥
∑

𝑘=1
𝑦𝑘𝑖𝑗 ≤ 𝑦𝑖𝑗 𝑖, 𝑗 = {1,… , 𝑛}, 𝑖 < 𝑗 (5.9)

𝑠𝑚𝑎𝑥
∑

𝑘=1
𝑥𝑘𝑖𝑗 ≤ 1 − 𝑦𝑖𝑗 𝑖, 𝑗 = {1,… , 𝑛}, 𝑖 < 𝑗 (5.10)

𝜔𝑘
𝑖 ≤

𝑖−1
∑

𝑗=1
𝜔𝑘−1
𝑗 ≤ 1 𝑖 ∈ 𝑉 𝑘 ∈ {2,… , 𝑠𝑚𝑎𝑥} (5.11)

𝛿𝑘𝑖 ≤
𝑖−1
∑

𝑗=1
𝛿𝑘−1𝑗 ≤ 1 𝑖 ∈ 𝑉 𝑘 ∈ {2,… , 𝑠𝑚𝑎𝑥} (5.12)

𝛿𝑘𝑖 ≤
𝑖−1
∑

𝑗=1
𝜔𝑘
𝑗 ≤ 1 𝑖 ∈ 𝑉 𝑘 ∈ {2,… , 𝑠𝑚𝑎𝑥} (5.13)

The objective function measures the makespan given by the duration of the truck path (first term), the total launch and recovery
ervice time where the launch service time at the depot is equal to 0 (second and third terms), and the total truck waiting time
fourth term).

Constraints (5.1)–(5.2) are referred to as Truck routing constraints. They require that a truck path exists from the origin node
1 to the destination node n in any feasible solution. Since the graph 𝐺𝐿(𝑉 ,𝐴𝐿) is acyclic, subtour elimination constraints are not
necessary.

Constraints (5.3) impose that there must be a truck path, without the drone on-board, from the launch node to the rendezvous
node for each drone sortie k. In a similar vein, constraints (5.4) impose that a drone path must be present from the launch node to
the rendezvous node for each sortie k.

Constraints (5.5) and (5.6) impose an upper bound for each sortie on the duration of the truck and drone path, respectively. In
the TDTLP-L, as assumed in Gonzalez-R et al. (2020), the drone can wait for the truck on the ground at the recovery node, the set
of constraints (5.5) is not considered.

Constraints (5.7) determine the truck waiting time (𝜎𝑘) for each sortie. This waiting time is given by the difference between the
duration of the truck path and the duration of the drone path.

Constraints (5.8) impose that each node must be visited either by the truck or by the drone. Moreover, if it is a recovery node,
both the drone and the truck must reach it.

Constraints (5.9) guarantee that, during a particular sortie 𝑘, the variable 𝑦𝑘𝑖𝑗 can be equal to 1 only if the arc (𝑖, 𝑗) is traversed
y the truck. Furthermore, constraints (5.10) guarantee that the drone path should be distinct from the truck path during any sortie
.

Finally constraints (5.11), (5.12) and (5.13) are not strictly necessary but can be added to the formulation to strengthen it.
pecifically, constraints (5.11) ensure that a generic node 𝑖 can serve as the launch node for sortie 𝑘 only if there exists another

node 𝑗 preceding 𝑖 in the relation (𝑗 ≺𝐿 𝑖), which is the launch node for the prior sortie 𝑘 − 1. Constraints (5.12) ensure that a
generic node 𝑖 can serve as the recovery node for sortie 𝑘 only if there exists another node 𝑗 preceding 𝑖, which is the recovery node
or the prior sortie 𝑘 − 1. Constraints (5.13) ensure that a generic node 𝑖 can serve as the recovery node for sortie 𝑘 only if there
xists another node 𝑗 preceding 𝑖, which is the launch node for the same sortie 𝑘.

.2. Variable fixing strategies

To the aim of reducing the dimension of the problem we can set to 0 the following variables:

(1) 𝜔𝑘
𝑖 with 𝑖 ≤ 2 × (𝑘 − 1)

(2) 𝛿𝑘𝑗 with 𝑗 ≤ 2 × 𝑘

(3) 𝑦𝑘𝑖𝑗 with 𝑖 ≤ 2 × (𝑘 − 1) or 𝑗 ≤ 2 × 𝑘

(4) 𝑦𝑖𝑗 if ∑𝑗−1
𝑝=𝑖 𝑑𝑝,(𝑝+1) > 𝐷𝑡𝑙 − 𝑆𝑅

The first set of variables can be set to 0 because each sortie involves at least two nodes, excluding the recovery node from
he previous sortie (or the origin node for the first sortie). Therefore, in any feasible solution, sortie 𝑘 cannot start before node
= (𝑘 − 1) × 2 (including node 𝑖). Similarly, the second set of variables can be set to 0 because each sortie cannot end before node
= 𝑘×2 (including node 𝑗). The third set of variables can be set to 0 because the generic sortie 𝑘 cannot start before node (𝑘−1)×2

inclusive) and cannot end before node 𝑘 × 2 (inclusive).
The last set of variables is composed of truck variables associated with arcs from node 𝑖 to node 𝑗 such that the shortest drone

ath serving all the nodes between them exceeds the drone endurance. Since any feasible solution must serve all nodes, such arcs
11

annot be traveled by a truck, and thus 𝑦𝑖𝑗 = 0.
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6. Computational results

This section presents and discusses the computational results of the experimentation performed to evaluate and validate the
roposed Exact (B&C algorithm) and Matheuristic approaches on both the TDTLP-L and TDTLP-H. Both the algorithms have been

coded in Python language using Gurobi 10.7.3 with default setting as MILP solver. The experiments are performed on an Intel(R)
Core(TM) i7-8700, 3.20 GHz, 16.00 GB of RAM.

We consider the same set of instances as those considered in Gonzalez-R et al. (2020), where the TDTLP was first defined. These
instances are built upon those originally outlined in Agatz et al. (2018) and are available in Bouman et al. (2018). They are derived
through a process of randomly positioning each node within a plane, with the time of travel between nodes calculated proportionally
to the Euclidean distance, and held constant for each pair of nodes. The test bed is divided into three categories: (i) uniform, (ii)
1-center, and (iii) 2-center. In the ‘uniform’ category, the node positions are randomly distributed according to a uniform integer
distribution ranging from 1 to 100. The ‘1-center’ and ‘2-center’ categories are designed to simulate customer densities in urban
landscapes with one or two circular city centers, respectively. Moreover, a constant battery life 𝑄 is considered for all instances.
This life is calculated as proportional to the average drone travel time between each pair of nodes (𝑄 = 2∕ |𝐴|

∑

(𝑖,𝑗)∈𝐴 𝑑𝑖𝑗). With
egard to the truck and drone speed we consider three cases: in the first one (𝛼 = 1) the drone and truck have equal speed on all
he edges; in the second one (𝛼 = 2) the drone is twice as fast as the truck on all edges; finally, in the third case, (𝛼 = 3) the drone
s three times as fast as the truck. Lastly, in every instance, the starting node is the same as the depot, and the destination node is
efined as the last node in each instance specification.

The results of the experimentation are divided into two distinct subsections, one for each TDTLP version. In particular, we first
eport the results for the TDTLP-L, as this version is the one addressed in Gonzalez-R et al. (2020). Moreover, the TDTLP-L serves

as a lower bound for the TDTLP-H. Consequently, in the section related to the TDTLP-H, we will also compare the solutions of the
two problems in terms of delivery completion time and evaluate the solution approaches in terms of running times.

To avoid any bias related to parameter settings, we use the same settings for both experiments as those considered in Gonzalez-R
et al. (2020). In particular, no launch and recovery times are considered (𝑆𝑅 = 𝑆𝐿 = 0), and there is no limit to the maximum
number of clients for a single sortie (𝐶max = ∞). The only limit to a drone path is its endurance (𝐷𝑡𝑙) that is set equal to the battery
life 𝑄. All the detailed results for both the TDTLP-L and the TDTLP-H versions can be found in Appendix A.

6.1. TDTLP-L experiments

In this subsection, we present the results of the proposed approaches for the TDTLP-L and compare them with the results obtained
by the solution methods proposed in Gonzalez-R et al. (2020). In particular, we first discuss the results achieved using the proposed
Branch-and-Cut algorithm and compare these with the results from the exact approach proposed in Gonzalez-R et al. (2020). Then,
we evaluate the performance of the proposed Matheuristic and compare it with the Simulated Annealing heuristic, also presented
in Gonzalez-R et al. (2020) that represents the current state-of-the-art for the TDTLP.

For the exact approach, we consider instances with a number of nodes 𝑛 equal to 10 and 20. In contrast, for the heuristic approach
experimentation, we use instances of size 𝑛 equal to 20 again, but also instances with 𝑛 equal to 50 and 75.

Since the test bed used for the study includes 10 different instances for each combination of instance category, value of 𝛼, and
size 𝑛, it totals 360 instances. Out of these, 180 instances were used for testing the exact approach, and 270 instances were used for
the heuristic approach, with an overlap of 90 instances being used in both approaches.

6.1.1. Exact approach
Tables 2 and 3 present a comparison between the exact approach outlined in Gonzalez-R et al. (2020) and the proposed Branch-

and-Cut method. The comparison is made on instances with 10 and 20 nodes, imposing a computation time limit of 1800 secs.
The columns within the macro-column Gonzales et al. (2020) Exact Approach are related to the results described in [3], while the
Branch-and-Cut macro-column presents the results of the proposed exact approach. The test bed used for the study includes 10
different instances for each combination of instance category, value of 𝛼, and size 𝑛. Consequently, each row in both tables presents
information derived from the solution of the 10 instances using the exact approach. In particular, the Avg Gap column reports the
average gap value between lower and upper bound, computed as (𝑈𝐵 − 𝐿𝐵) ∕𝑈𝐵 ∗ 100; the Max Gap column shows the maximum
gap value over the 10 instances; the Avg Time column reports the average time taken to solve each instance; and the #Opt column
indicates the number of instances solved to optimality within a time limit of 1800 secs.

As can be seen from Table 2, the proposed exact approach successfully solves to optimality all instances with 10 nodes within a
aximum time of 18 seconds. On the other hand, within a time limit of 1800 seconds, the exact approach proposed by Gonzalez-R

et al. (2020) manages to solve only 55 out of the 90 instances of size 𝑛 = 10, and in several cases, the resulting gap is quite high
more than 90%).

Solving instances of size 𝑛 = 20 to optimality is much more challenging compared to those of size 𝑛 = 10. Our B&C approach
uccessfully solves to optimality only three ‘double-center’ instances with 𝛼 = 1. In contrast, the exact approach detailed in Gonzalez-

et al. (2020) does not achieve optimality for any instance. Consequently, in Table 2, we have replaced the #Opt columns with
wo columns named #UB. These columns report the number of instances for which a feasible solution has been identified. Our B&C
pproach, within a time limit of 1800 seconds, manages to find feasible solutions for all 𝑛 = 20 instances. On the other hand, the
xact approach proposed in Gonzalez-R et al. (2020) is able to find feasible solutions for only 56 out of 90 instances. Additionally,
12

hen examining the gaps between lower and upper bounds, our approach consistently achieves an average gap of approximately
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Table 2
Exact approach - 𝑛 = 10.
Type 𝛼 Branch and Cut Gonzales et al. (2020) exact approach

Avg
Gap

Max
Gap

Avg
Time

#Opt Avg
Gap

Max
Gap

Avg
Time

#Opt

Uniform

1 0,00 0,00 10,89 10 14,94 75,12 1018,42 8
2 0,00 0,00 14,73 10 13,75 83,97 1170,75 8
3 0,00 0,00 19,25 10 25,06 85,91 1255,62 6

1-center

1 0,00 0,00 15,69 10 9,11 91,12 939,23 9
2 0,00 0,00 15,49 10 32,12 89,99 1239,93 4
3 0,00 0,00 14,43 10 45,87 92,77 1322,15 3

2-center

1 0,00 0,00 11,93 10 14,03 60,33 1313,12 5
2 0,00 0,00 18,04 10 21,38 77,20 1465,93 6
3 0,00 0,00 18,21 10 20,99 87,04 1078,95 6

All 0,00 0,00 15,41 90 21,92 91,12 1200,46 55

Table 3
Exact approach - 𝑛 = 20.
Type 𝛼 Branch and Cut Gonzales et al. (2020) exact approach

Avg
Gap

Max
Gap

Avg
Time

#UB Avg
Gap

Max
Gap

Avg
Time

#UB

Uniform

1 11,41 21,86 1800,00 10 88,61 93,62 1800,00 10
2 17,69 26,75 1800,00 10 85,27 92,72 1800,00 9
3 24,20 39,20 1800,00 10 – – 1800,00 0

1-center

1 22,59 30,09 1800,00 10 91,42 97,90 1800,00 10
2 22,64 33,95 1800,00 10 91,43 97,54 1800,00 3
3 23,82 42,71 1800,00 10 – – 1800,00 0

2-center

1 6,05 15,85 1564,82 10 (3*) 93,83 96,89 1800,00 10
2 17,12 37,78 1800,00 10 91,55 96,42 1800,00 10
3 22,67 55,79 1800,00 10 88,76 96,54 1800,00 4

All 18,69 55,79 1773,87 90 90,12 97,90 1800,00 56

20% across all instance types, while the exact approach in Gonzalez-R et al. (2020) exhibits significantly higher average gaps,
approximately around 90%.

Due to the high gap values already observed for instances of 20 nodes, the Matheuristic approach described in Section 5
as experimented for these instances and for even larger ones. The results of this experimentation are detailed in the following

ubsection.

.1.2. Heuristic approach
To demonstrate the effectiveness of our Matheuristic approach, in Table 4, for the smaller instances of 10 nodes, we compare the

easible solutions provided by it with the optimal solutions found by the B&C algorithm. The Avg Gap column reports the average
ap between the upper bound computed by the Matheuristic and the value of the optimal solution for each class of instances; the
Opt column indicates the number of instances for which the upper bound provided by the matheuristic coincides with the optimal

solution; finally, the Avg Time column indicates the average computational time taken by the Matheuristic to find the upper bound.
The Matheuristic approach solves all the 𝑛 = 10 instances in a negligible amount of time, achieving an average gap from the optimal
solution of less than 4%. Moreover, it provides the optimal solution for 38 out of 90 instances.

For instances of size n = 20, Table 5 compares the results obtained using the B&C algorithm with a time limit of 1800 s, with those
btained using the proposed Matheuristic and the heuristic described in [3]. The #Best Sol column in each macro column indicates
he number of instances for which the corresponding approach found the best upper bound. The Avg Gap from Best columns report
he average gap between the upper bound provided by the corresponding method and the best upper bound, calculated using the
ormula (𝑈𝐵 − 𝑈𝐵𝐵𝑒𝑠𝑡)∕𝑈𝐵 ∗ 100. The Avg Time columns show the average computational times. It is important to note that in the
xperiments reported in [3], the heuristic was executed 10 times for each instance. As a result, the data in the #Best Sol and Avg
ap from Best columns under the Gonzales et al. 2020 macro-column reflect the results of these 10 runs, and in theAvg Time column
ach item was computed considering the cumulative computational time for these runs for each instance. Table 5 does not include
he Avg Time column for the B&C algorithm as it reaches the imposed time limit of 1800 seconds for all instances.

Table 5 shows how the proposed Matheuristic is able to provide the best solution for 15 out of 90 instances of size 𝑛 = 20, while
the approach proposed in Gonzales et al. 2020 provides the best solution for only 4 instances. Moreover, the average gap compared
o the best solution is equal to 4.4% when using our heuristic, whereas it is equal to 6.6% with the second approach.

The effectiveness of the Matheuristic approach is further confirmed when considering larger instances of 50 and 75 nodes. To
ffectively solve these instances, we set a time limit equal to 300 and 600 secs respectively when the L-ordered Graph (5.1)–(5.13)
s solved. The solution of the Hamiltonian Path on the same instances to define the L ordered list takes always less than 1 s for the
13
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Table 4
Matheuristic approach - 𝑛 = 10.
Type 𝛼 Matheuristic

Avg
Gap

#Opt Avg
Time

Uniform

1 1,46 7 0,21
2 5,56 4 0,12
3 7,13 4 0,12

1-center

1 1,88 4 1,11
2 3,32 2 0,1
3 4,88 2 0,08

2-center

1 1,86 5 0,23
2 2,9 6 0,11
3 5,72 4 0,09

All 3,86 38 0,24

Table 5
Matheuristic approach - 𝑛 = 20.
Type 𝛼 Branch and Cut Matheuristic Gonzalez et al. 2020

Avg Gap #Best Avg Gap #Best Avg Avg Gap #Best Avg
from best Sol from best Sol Time from best Sol Time

Uniform

1 0,17 8 3,87 2 18,16 11,25 0 38,25
2 0,10 9 5,14 2 4,78 9,82 0 34,23
3 0,61 9 8,48 1 2,95 8,61 1 35,59

1-center

1 0,42 7 3,5 3 7,31 6,9 0 34,7
2 0,37 8 5,25 3 2,88 6,02 1 35,62
3 0,00 10 5,92 1 2,71 6,79 1 34,97

2-center

1 0,00 10 2,36 2 12,66 4,97 0 37,58
2 0,16 9 2,84 1 7,39 2,69 0 34,18
3 0,12 9 2,2 0 3,7 2,29 1 35,35

All 0,22 79 4,39 15 6,95 6,59 4 35,61

Table 6
Matheuristic approach - 𝑛 = 50.
Type 𝛼 Matheuristic Gonzalez et al. 2020

Avg Gap #Best Avg Avg Gap #Best Avg
from best Sol Time from best Sol Time

Uniform

1 0,00 10 300,96 17,08 0 476,33
2 0,00 10 300,94 7,66 0 481,87
3 2,39 7 300,95 5,15 3 490,73

1-center

1 0,00 10 300,88 9,66 0 463,51
2 0,79 8 300,86 6,16 2 504,04
3 2,96 7 298,97 6,52 3 506,82

2-center
1 0,00 10 300,88 12,74 0 462,77
2 0,45 8 300,89 3,55 2 496,27
3 1,13 3 300,9 0,17 7 487,65

All 0,86 73 300,69 7,63 17 485,55

instances of dimension 𝑛 = 50 and less than 3 s for instances with 𝑛 = 75. The results obtained for these instances are reported in
Tables 6 and 7. These Tables do not report the results obtained using the B&C algorithm, since, for instances of more than 20 nodes,
that approach does not provide any significant Upper Bound. The results of the Matheuristic approach are therefore compared only
with those obtained from Gonzalez heuristic.

On both the 90 instances of 50 nodes and the 90 instances of 75 nodes, the heuristic approach provides the best solution in
75 instances, and generally, the average gap from the best solution is less than 1.3%. These results, in addition to confirming the
effectiveness of the proposed approach, encourage the search for improved heuristic approaches that, starting from the solution
provided by the Matheuristic, can attempt to further improve it within reasonable times

6.2. TDTLP-H experiments

In this subsection, we report the results of the proposed approaches for the TDTLP-H, employing the same experimental design
14

previously reported for the TDTLP-L in terms of instances and parameter settings (e.g., time limit). Furthermore, to underscore the
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Table 7
Matheuristic approach - 𝑛 = 75.
Type 𝛼 Matheuristic Gonzalez et al. 2020

Avg Gap #Best Avg Avg Gap #Best Avg
from best Sol Time from best Sol Time

Uniform

1 0,00 10 602,63 20,25 0 1632,01
2 0,00 10 602,65 9,48 0 1631,64
3 0,77 8 602,75 4,79 2 1660,98

1-center

1 0,00 10 602,57 11,67 0 1575,19
2 2,33 6 602,72 3,75 4 1703,96
3 4,71 6 602,66 1,36 4 1711,06

2-center
1 0,00 10 602,38 16,35 0 1629,73
2 0,66 8 602,39 7,02 2 1726,86
3 3,13 7 602,45 2,72 3 1682,56

All 1,29 75 602,58 8,6 15 1661,55

Table 8
Exact and matheuristic approaches - 𝑛 = 10.

Type 𝛼 Branch and Cut Matheuristic Hover vs No hover

Avg
Gap

Max
Gap

#Opt Avg
Time

Avg
Gap

Max
Gap

#Opt Avg
Time

Avg
Delta

Max
Delta

Avg
Rat_E

Avg
Rat_H

Uniform
1 0,00 0,00 10 15,99 3,08 9,43 2 0,27 7,79 33,08 2,02 1,39
2 0,00 0,00 10 7,41 8,48 20,32 3 0,07 6,80 27,78 0,72 0,64
3 0,00 0,00 10 4,34 16,79 45,91 0 0,06 20,75 33,34 0,35 0,55

Single
1 0,00 0,00 10 19,45 2,99 6,65 2 0,16 8,64 30,50 1,95 1,60
2 0,00 0,00 10 7,62 4,96 14,67 2 0,07 5,62 17,06 0,57 0,77
3 0,00 0,00 10 5,49 9,35 24,93 0 0,06 10,42 21,18 0,38 0,83

Double
1 0,00 0,00 10 36,54 4,11 13,37 3 0,26 5,77 21,33 2,69 1,27
2 0,00 0,00 10 7,39 6,01 21,15 2 0,07 7,83 23,23 0,53 0,81
3 0,00 0,00 10 4,83 13,34 44,59 1 0,07 13,83 33,41 0,40 0,81

All 0,00 0,00 90 12,12 7,68 45,91 15 0,12 9,72 33,41 1,07 0,96

impact associated with drone hovering, we provide a comparative analysis of the solutions for the TDTLP-H and TDTLP-L across all
instance sets. Specifically, we highlight the difference between the delivery times of the solutions obtained for the two problems,
and we also emphasize the differences in the running times of the solution approaches.

Table 8 presents the results of both proposed approaches for instances where 𝑛 equals 10. We observe that the B&C approach
solves all instances to optimality with an average time of about ten seconds. Conversely, the Matheuristic approach achieves good
solutions (with an average gap of less than 8%) in less than a second. Furthermore, the Matheuristic approach determines the
optimal solutions for 15 instances. Concerning the difference between the TDTLP-L and TDTLP-H, we calculate for each instance the
percentage difference between the best solution obtained by any method for the TDTLP-H and the TDTLP-L, referred to as Delta.
Specifically, Delta is computed as (BUBTDTLP-H - BUBTDTLP-L)/BUBTDTLP-L ⋅ 100, where BUBTDTLP-H and BUBTDTLP-L represent the best
upper bound computed by any method for the TDTLP-H and TDTLP-L, respectively. We also calculate an indicator to highlight the
differences in running times for both algorithms when solving the two versions. Specifically, we compute the ratio of the running
time for solving the TDTLP-H to the running time for solving the TDTLP-L, for both the exact and the heuristic methods, referred
to as Rat_E and Rat_H, respectively. We observe that, on average, drone hovering leads to a 10% increase in delivery time, with a
worst-case scenario of about 30%. Conversely, examining the ratios seems that the average running times are similar, with a ratio
equal to 1. However, it is noted that when the two vehicles have the same speed, the running times for both approaches when solving
the TDTLP-H are higher than those for the TDTLP-L. Conversely, when the drone is faster than the truck, the situation is reversed.
This trend can be explained by considering how the battery life is computed for these instances. Indeed, battery life depends on the
drone travel time; thus, if the drone is faster, the travel times are shorter, and the battery life decreases as a consequence. Therefore,
a low value of battery life leads to limited endurance, resulting in a reduced solution space. This reduction is even more pronounced
if hovering contributes to energy expenditure.

Table 9 shows the results of both proposed approaches for instances with 𝑛 equal to 20. Unlike the TDTLP-L, where none of
the instances could be solved within the time limit, the B&C approach manages to optimally solve 11 instances for the TDTLP-H.
Conversely, the Matheuristic method achieves a better or equivalent solution to the B&C only in 5 instances. However, it is noted
that, on average, the quality of the solutions from the Matheuristic is only 9% higher than those obtained by the B&C (the Diff
indicates the percentage difference between the upper bound computed by the Matheuristic and the one computed by the B&C). The
running times for the Matheuristic remain very low, averaging less than 10 s. In terms of comparing the TDTLP versions, the same
trends observed previously are confirmed for these instances as well.

Finally, Tables 10 and 11 present only the comparison between the TDTLP-H and TDTLP-L for instances with 𝑛 equal to 50 and
75, respectively. This focus is due to the fact that for these instances, only the results from the Matheuristic approach are available,
15

as the B&C method is unable to find a solution within the time limit.



Transportation Research Part C 165 (2024) 104691M. Boccia et al.

t
t

a
i

7

v
a

Table 9
Exact and matheuristic approaches - 𝑛 = 20.

Type 𝛼 Branch and Cut Matheuristic Hover vs No hover

Avg
Gap

Max
Gap

#Best
Sol

Avg
Time

Avg
Diff

Max
Diff

#Best
Sol

Avg
Time

Avg
Delta

Max
Delta

Avg
Rat_E

Avg
Rat_H

Uniform
1 15,90 29,73 8 1800,00 5,44 16,07 2 38,21 5,07 13,33 1,00 3,13
2 17,89 27,63 10 1800,00 7,29 23,17 0 2,33 2,41 8,24 1,00 0,57
3 21,37 38,94 10 1800,00 20,43 41,63 0 0,29 8,03 22,35 1,00 0,18

Single
1 22,18 33,04 10 1800,00 4,52 12,56 0 14,62 11,23 24,22 1,00 5,02
2 8,11 23,81 10(2*) 1699,61 7,11 21,93 1 0,48 4,94 11,73 0,94 0,35
3 3,86 8,97 10(3*) 1389,33 16,11 41,82 0 0,20 9,05 25,70 0,77 0,21

Double
1 6,55 18,27 10(1*) 1676,73 3,53 17,23 0 20,09 1,57 8,33 1,51 1,64
2 11,10 27,92 10(2*) 1483,46 4,53 14,32 1 1,61 2,62 7,27 0,82 0,28
3 13,39 49,39 9(2*) 1383,58 10,01 33,19 1 0,41 5,82 19,79 0,77 0,26

All 13,37 49,39 87 1648,08 8,77 41,82 5 8,69 5,64 25,70 0,98 1,29

Table 10
Exact and matheuristic approaches - 𝑛 = 50.
Instance 𝛼 Hover vs No hover

Avg
Delta

Max
Delta

#Worst
Sol

Avg
Rat_H

Uniform
1 2,09 5,23 1 1,00
2 −0,69 1,13 4 1,00
3 2,73 7,82 2 0,84

Single
1 5,41 9,85 0 1,00
2 1,33 9,16 2 0,67
3 13,66 27,52 0 0,30

Double
1 −0,43 1,51 3 1,00
2 0,57 5,85 2 1,00
3 4,90 11,30 0 0,69

All 3,36 27,52 15 0,84

Table 11
Exact and matheuristic approaches - 𝑛 = 75.
Instance 𝛼 Hover vs No hover

Avg
Delta

Max
Delta

#Worst
Sol

Avg
Rat_H

Uniform
1 1,61 7,25 1 1,00
2 0,25 2,99 4 1,00
3 6,52 16,91 0 1,00

Single
1 3,54 9,26 2 1,00
2 3,37 9,70 1 1,00
3 13,27 29,49 0 0,72

Double
1 1,91 11,02 4 1,00
2 0,41 3,96 3 1,00
3 5,30 20,06 1 1,00

All 4,02 29,49 16 0,97

The increase in delivery time for these larger instances remains at about 25% in the worst case. However, we note that on average,
he difference is around 4%, slightly lower than that observed in smaller instances. This variation is attributed to the complexity of
hese instances. Indeed, there are instances where the objective function value of the solution for the TDTLP-L is higher than that for

the TDTLP-H. The column # Worst Sol indicates the number of instances where the Matheuristic approach on the TDTLP-L resulted in
worse solution compared to the one obtained for the TDTLP-H. In conclusion, the results of our experimentation with the TDTLP-H

ndicate that drone hovering substantially affects both the delivery time and the running times of the solution approaches.

. Conclusions

In this study, we study a multi-visit single-truck single-drone routing problem known as TDTLP. We specifically investigate two
ersions of the problem: TDTLP-H and TDTLP-L. To tackle these versions, we develop a mathematical programming formulation
16

nd introduce a B&C approach. This method is enhanced with two distinct families of valid inequalities, providing a tailored exact



Transportation Research Part C 165 (2024) 104691M. Boccia et al.
solution for the TDTLP. Additionally, we propose a matheuristic approach that solves the TDTLP on an acyclic graph. This graph is
constructed by fixing the precedence between customers based on the order determined by the Hamiltonian Path.

Computational results from different benchmark instances validate the robustness of the proposed methods and the efficacy
of both the B&C and the matheuristic approaches. Indeed, the experiments demonstrate that our methods are competitive with
or surpass existing state-of-the-art approaches, providing either optimal solutions or improved bounds for numerous previously
unsolved instances.

Future research will naturally extend the proposed formulation to other multi-visit truck-and-drone routing problems, with a
particular focus to those with multiple vehicles. Additionally, as done in Boccia et al. (2024), we plan to explore integrating the
proposed matheuristic approach with machine learning and data science techniques, aiming to compute effective solutions while
minimizing computational effort.
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