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ABSTRACT 
The aim of the present study was to determine the effect of including green forage in the diet of 
Italian Mediterranean dairy buffaloes on the ruminal microbiota, CAZymes profile, functional bio-
molecules and total antioxidant activity in bulk milk. Sixteen buffaloes were randomly assigned 
according to lactation number and daily milk production to two homogeneous groups, and for 
60 days received each: Group 1, a standard total mixed ration (TMR) or group 2, TMR þ ryegrass 
green forage (30% of diet). The diets of the two groups were iso-nitrogenous and iso-energetic 
and differed only in the proportion of green forage. Buffaloes that received TMR þ green feed had 
a higher (p < .01) representation of bacteria belonging to the orders Veillonellales, 
Selenomonadales and Bradymonadales compared with buffaloes that received TMR. The former 
buffaloes also had a greater (p < .01) abundance of CAZymes of the GT class (GHT4, GT14, GT20, 
GT26, GT39) and AA class (AA1, AA3, AA6). The milk of buffaloes that received TMR þ green feed 
had a higher (p < .01) antioxidant capacity and greater (p < .01) amounts of the functional biomo-
lecules L-carnitine, propionyl-L-carnitine, acetyl-L-carnitine and d-valerobetaine. The findings have 
provided evidence for metabolic and biosynthetic pathways that link green forage with rumen 
bacteria, CAZymes and the synthesis of amino acids and functional biomolecule in buffaloes.

HIGHLIGHTS
� Green feed diet in dairy buffaloes favours ruminal microbiota that produces CAZymes.
� CAZymes support the synthesis of amino acids and functional biomolecules in milk.
� Functional milk from animals fed natural diets will be more appreciated by consumers.
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Introduction

Buffaloes are a major global livestock of economic and 
social importance in both developing and developed 
economies (Deb et al. 2016). They are productive on a 
relatively low-quality diet and have milk of high nutri-
tional value (Arrichiello et al. 2022). The latter is due 
partly to the unique rumen microbiota of buffaloes 
which is distinctively different to the microbiota of 
other ruminants with relatively high fibre degradation 
and reduced methane production (Hamid et al. 2017; 

Iqbal et al. 2018; Malik et al. 2021; Sun et al. 2021). 

Based on the global importance of buffaloes as a 

source of milk, it is important to gain a deeper under-

standing of the relationships between diet, ruminal 

function and milk quality in buffaloes.
Consumers prefer food products sourced from ani-

mals fed natural diets (El-Zaiat and Abdalla 2019; 

Sallam et al. 2019). Cattle and buffaloes fed green for-

age produce milk with greater antioxidant and anti- 

inflammatory activity (Salzano et al. 2021, 2022). 
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The inclusion of green forage in the diet of buffaloes 
is associated with distinctive changes in the ruminal 
metabolome (Neglia, Cotticelli, et al. 2023) and tran-
scriptome (Salzano et al. 2023) and this may be prob-
ably due to the higher amount of simple sugars that 
are able to improve rumen efficiency and nutrient util-
isation (Mordenti et al. 2021). It can be, hence, 
assumed that the changes in the ruminal metabolome 
and transcriptome in buffaloes fed green forage 
enhances the health-promoting properties of buffalo 
milk.

The ruminal microbiota produces carbohydrate- 
active enzymes (CAZymes) which include lignocellulo-
lytic enzymes that fundamentally determine the 
degradation and debranching of plant polysaccharides 
(Hobson and Stewart 1997; Cantarel et al. 2009). The 
breakdown of complex carbohydrates by CAZymes 
produces several metabolites, including volatile fatty 
acids (VFAs) and hydrogen (Li et al. 2022). CAZymes 
are grouped into families depending on their specific 
enzymatic activity (Cantarel et al. 2009). The major 
CAZymes families are glycoside hydrolases (GHs, 
hydrolyse and/or rearrange glycosidic bonds), glycosyl 
transferases (GTs, form glycosidic bonds), polysacchar-
ide lyases (PLs, non-hydrolytic cleavage of glycosidic 
bonds), carbohydrate esterases (CEs, hydrolyse carbo-
hydrate esters) and auxiliary activities (AAs, redox 
enzymes that act in conjunction with CAZymes). Diet 
influences the CAZymes profile in cattle and buffaloes 
(Patel et al. 2014; Wang et al. 2019; Pantoja-Feliciano 
et al. 2023). The present study sought to describe rela-
tionships between the ruminal microbiota, ruminal 
CAZymes and milk quality, in buffaloes that received 
green feed. The relationships were compared to buffa-
loes that received a standard total mixed ration (TMR). 
The new information could be used to develop diets 
incorporating green feed which favour rumen micro-
biota that produce CAZymes profiles that enhance 
milk quality in buffaloes. The hypothesis tested was 
that green feed induces changes in the ruminal micro-
biota composition and CAZymes profile resulting in 
enhanced synthesis of amino acids and precursors of 
functional health-promoting biomolecules in milk of 
buffaloes.

Materials and methods

For this trial, standard veterinary practices were fol-
lowed and institutional approval was obtained from 
the Ethical Animal Care and Use Committee of the 
University of Napoli “Federico II” (Protocol Number 
0025532/2022).

Animals, dietary treatment and ruminal 
tissue collection

The study was carried out over a period of 60 days 
using Italian Mediterranean dairy buffaloes (n ¼ 16; 
8.5 ± 2.0 years old) at a commercial farm in southern 
Italy. The animals were acclimatised in pens with con-
crete floors and were machine milked twice daily. 
They were randomly assigned on parity and daily milk 
production to two homogeneous groups and received 
either a standard TMR (5.6 ± 0.6 parity; 6.0 ± 0.6 kg/ 
day milk) or TMR þ green forage (5.3 ± 0.6 parity; 
6.4 ± 0.5 kg/day milk) (Table 1). The green feed con-
sisted of ryegrass (about 30% of the diet on dry mat-
ter) at the re-blossoming stage that was cut twice 
daily to avoid fermentation, and immediately put into 
the mixer wagon and fed without storage. The ratio of 
forage to concentrate was 56:44 for buffaloes that 
received TMR and 69:31 for buffaloes that received 
TMR þ green forage. The two diets were iso-nitrogen-
ous and iso-energetic and differed only in the propor-
tion of green forage (Table 1). The animals were fed in 
the morning and evening. Refusals were recorded and 
then removed. Energy values (milk forage units ¼
1700 kcal) were calculated using equations provided 
by the INRA (2007).

Average feed intake for each pen was determined 
daily from unconsumed feed before the next feeding. 
The amount and composition of refusals were used to 

Table 1. Feed and chemical composition of the buffalo diets 
fed without total mixed ration (TMR group) or with 
(TMR þ green feed) approximately 30% green ryegrass.

TMR TMR þ green feed
% feed % feed

Ryegrass 0.0 50.3
Corn silage 68.5 35.6
Alfalfa hay 12.5 5.2
Soybean meal, 48% 1.8 0.0
Concentrate 11.8 5.1
Wheat straw 3.1 2.3
Hydrogenated fats 0.9 0.7
Calcium carbonate 0.4 0.4
Salt 1:3 0.6 0.4
Vitamins 0.4 0.0
Total 100 100

Composition, % of dry matter

Dry matter 16.0 16.1
CP 14.5 14.4
Fat 4.8 5.0
NDF 38.0 38.5
ADF 24.0 23.4
NSC 34.6 33.1
Starch 21.0 15.5
Ash 8.1 9.0
Calcium 0.9 1.0
Phosphorus 0.4 0.4
MFU 0.93 0.91

CP: crude protein; NDF: neutral detergent fibre; ADF: acid detergent fibre; 
NSC: non-structural carbohydrates; MFU: milk forage units.
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calculate DMI and diet composition. Individual feed 
intake and differences (D) between nutritive intake 
and relative requirements were estimated as previ-
ously reported (Campanile et al. 1998):

Dry matter DMð Þ intake ¼ 91 g�MWþ 0:27 kg
�kg ECM

DCP ¼ g CP intake– 80 g CP� 100 kg live weightð

þ2:7 g CP� g milk protein yieldÞ

DMFU ¼ MFU intake– 1:4þ 0:6� 100 kg live weightð Þ½

�1:1þ 0:44 MFU� kg ECM�

At day 60, samples of bulk milk were obtained for 
each group, the milk production was recorded and 
the animals were slaughtered and processed under 
commercial conditions. The rumen of each animal was 
made available and samples were collected from dif-
ferent locations within the rumen and pooled. Rumen 
fluid samples (50 mL) for each animal were collected 
in a falcon tube, immediately frozen in dry ice, and 
then stored at −80 �C until analyses.

Bulk milk analysis

Samples were analysed in triplicate using IR spectros-
copy (Milkoscan 139, Foss Electric, Hillerød, Denmark) 
that was calibrated with a buffalo standard. Energy 
corrected milk (ECM ¼ 740 kcal) was calculated 
using the formula for buffalo cows (Campanile et al. 
1998): ([ffat (g�kg-1) - 40 þ protein (g�kg-1) - 31g �
0.01155] þ 1) � milk yield. The content of c-butyrobe-
taine, glycine betaine, d-valerobetaine, L-carnitine, 
acetyl-L-carnitine and propionyl-L-carnitine was deter-
mined in duplicate pooled soluble milk extract sam-
ples as previously described (Servillo, D’Onofrio, 
Giovane, et al. 2018). Briefly, samples of milk were cen-
trifuged at 3000 � g for 15 min at 4 �C to recover fat 
globules. The latter were filtered through a 5 lm 
Millipore filter (Burlington, MA) to remove high MW 
components and any precipitate that may have been 
transferred when recovering fat globules. This was fol-
lowed by filtration through an Amicon Ultra 0.5 mL 
centrifugal filter with a 3 kDa molecular weight cut-off 
to yield low MW components, including short-chain 
acylcarnitines (between 161.2 and 245.3 molecular 
weight), glycine betaine (153.6 molecular weight), 
c-butyrobetaine (146.1 molecular weight) and d-valero-
betaine (159.23 molecular weight). The antioxidant 
and antineoplastic activity in Amicon Ultra-filtrates are 
not due to low MW peptides as activity is retained 
during treatment at 100 �C to produce ricotta cheese 
(Salzano et al. 2019). Analysis involved HPLC-ESI-MS/ 
MS with an Agilent LC-MSD SL quadrupole ion trap 

and a 1100 series liquid chromatograph (Supelco 
Discovery C8 column, 250 � 3.0 mm, particle size 
5 lm) under isocratic conditions, 0.1% formic acid in 
water, at flow rate of 100 lL/min. Quantification of 
each compound involved comparison of the peak area 
of its most intense MS2 fragment with the respective 
calibration curve built with solutions of standards 
products (L-carnitine, acetyl-L-carnitine propionyl-L-car-
nitine, glycine betaine and c-butyrobetaine) from 
Sigma-Aldrich (Milan, Italy) (Servillo, D’Onofrio, Neglia, 
et al. 2018). d-Valerobetaine was prepared as previ-
ously described (Servillo, D’Onofrio, Neglia, et al. 
2018). Standard solutions were prepared by serial dilu-
tion of standard stock solutions (2 mg/L) with water 
containing 0.1% formic acid. Linearity was assessed by 
correlation coefficients (r2) >0.99 for all compounds. 
Precision and accuracy for all compounds in milk 
ranged from 95% to 105%.

Ferric reducing antioxidant power and total 
antioxidant assay

Milk ferric reducing antioxidant power (FRAP; Assay Kit 
(MBS169262) and total antioxidant capacity (TAC; 
Assay Kit (#K274-100) were determined in pooled milk 
samples according to the manufacturer. Milk samples 
(four replicates) were diluted 1:10 (v/v) with H2O and 
a 1 lL aliquot was used for each assay. Samples were 
incubated at room temperature for 90 min protected 
from light, before measuring the absorbance at 
570 nm, or monitoring the increase in absorbance at 
594 nm for 1 h at 37 �C for TAC and FRAP assay, 
respectively. The positive control comprised ascorbic 
acid (1 lg/mL). FRAP value was expressed as Fe2þ iron 
equivalents (lM; range ¼ 10–250 � lg/mL of ascorbic 
acid) and TAC was expressed as Trolox equivalent cap-
acity (range ¼ 10–250 � nmol lg/mL of ascorbic 
acid).

DNA extraction

Bacterial genomic DNA was extracted using the 
QIAMP DNA Stool mini kit (QIAGEN, Hilden, Germany) 
according to the manufacturer and included negative 
extraction controls (Saggese et al. 2016; Saggese, 
Giglio, et al. 2022). The amount and the quality of the 
extracted DNA were evaluated using Nanodrop ND- 
2000 (Nanodrop, Wilmington, DE) and a high-sensitiv-
ity QubitTM fluorometer (Saggese, De Luca, et al. 
2022).
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Sequencing, bioinformatics and statistical 
analyses of 16S rRNA gene sequences

Partial 16S rRNA gene sequences were obtained 
using primers specific for the V4–V5 region (515FB ¼
GTGYCAGCMGCCGCGGTAA and 926R ¼ CCG 
YCAATTYMTTTRAGTTT 515FB) (Parada et al. 2016) and 
were sequenced at the Integrated Microbiome 
Resource (IMR, https://imr.bio) using an Illumina MiSeq 
machine (San Diego, CA). All sequences were imported 
in R, and analysed with the DADA2 package (Callahan 
et al. 2016). Following the package guidelines, quality 
plots were performed to check the sequences’ quality. 
Post-QC reads were trimmed using the filterAndTrim 
command [truncLen ¼ c(260,190), maxN ¼ 0, 
maxEE ¼ c(2,2), truncQ ¼ 2, rm.phix ¼ TRUE, 
trimLeft ¼ c(20,21)]. After this step, a parametric error 
model, based on the convergence between the esti-
mation of error rate and the inference of the sample 
composition, was performed. Paired-end reads were 
merged and exact amplicon sequence variants (ASVs) 
were inferred using the dada algorithm. Chimeric 
sequences were removed and prokaryotic taxonomy 
was assigned using the naive Bayesian classifier 
method against the Silva Database (r138). ASVs abun-
dance table obtained from DADA2 was further proc-
essed in R using Phyloseq, Vegan and Microbiome 
packages (Lahti and Shetty 2017; Oksanen et al. 2020). 
Sequences are available in the NCBI Sequence Read 
Archive (SRA) database under the BioProject number 
PRJNA993601. BioSample accession number for each 
sequence is included in Supplementary Table S1.

After the Phyloseq object creation, low abundance 
ASVs (less than three reads across the dataset), mito-
chondria, chloroplast and potential contaminants 
(Sheik et al. 2018) were removed. The remaining ASVs 
represented �99% of the original reads, with 
1,139,005 reads classified as 8222 individual ASVs used 
for downstream statistical investigations (Maia et al. 
2020). ASVs counts were normalised to the median 
library size across the dataset. Diversity analyses were 
carried out using the Phyloseq package (McMurdie 
and Holmes 2013) with relative abundance set to 
100% after the removal of sequences described above. 
Top abundance ASVs and Genera were defined as hav-
ing a cumulative relative abundance above 0.1% in 
our dataset. The alpha diversity was investigated using 
the Simpson diversity index among the two sampled 
areas. The beta diversity was investigated using the 
Jaccard diversity index as implemented in the vegan 
package (Oksanen et al. 2012). Both the abundance 
weighted and unweighted versions of the index were 
used.

Sequencing, bioinformatics and statistical 
analyses of metadata

Microbiomes were investigated through metagenomic 
analysis using the Giovannelli Lab metagenomics 
narrative created on Kbase (Arkin et al. 2018). 
Metagenomic data are available in the NCBI SRA with 
project ID PRJNA993601. BioSample accessions for 
each metagenome are included in Supplementary 
Table S1. This pipeline is designed to analyse raw 
metagenomic sequences obtained from various micro-
biomes and includes three main approaches: a read- 
based approach, an assembly-based approach and a 
genome-resolved approach. The read-based approach 
first involves quality control of the raw sequences 
using FastQC (v0.11.9) to evaluate sequence quality, 
followed by a trimming step with Trimmomatic (v0.36) 
to remove primers and poorly sequenced extremities. 
The trimmed sequences are then subjected to taxo-
nomic classification using Kaiju (v1.7.3). The read- 
based functional profiling was obtained through the 
software mi-faser (functional annotation of sequencing 
reads; Zhu et al. 2018) which combines faser (an opti-
mised algorithm for mapping reads) with the refer-
ence database of protein functions and annotates 
each microbiome as a set of molecular functions. The 
assembly-based approach involves the use of three 
different assembly software programs for each sample: 
metaSPAdes (v3.15.3), MEGAHIT-high and low sensitiv-
ity (v1.2.9) and IDBA-UD (v1.1.3). The resulting assem-
blies are evaluated using QUAST (v1.1.2) to select the 
best assembly based on contiguity and completeness. 
The functional annotation of the contigs obtained 
from the assembly is carried out using the Database 
of Rapid Annotation using Subsystems Technology 
(RAST).

The genome-resolved approach involves binning 
the contigs obtained from the assembly step using 
three different binning software programs: MaxBin2 
(v2.2.4), MetaBAT2 (v1.7) and CONCOCT (v1.1). The 
resulting bins are refined using consensus assignments 
with the software DAS-tool (v1.1.2) to ensure bins with 
at least 50% completeness. Quality control of the bins 
is performed using CheckM (v1.0.18), which uses a 
built-in library of high-quality conserved marker genes 
to estimate the completeness and contamination of 
the metagenomic bins. The taxonomic classification of 
the high-quality bins is carried out using the Genome 
Taxonomy Database Toolkit (GTDB-Tk) database 
(Chaumeil et al. 2019), which provides objective taxo-
nomic assignments for bacterial and archaeal 
genomes, placing the bins within a phylogenetic tree 
with high-quality reference genomes.
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CAZyme annotation of metadata

All samples were further functionally characterised by 
analysis of the CAZyme database (www.cazy.org), 
which allows the identification of CAZymes. CAZymes, 
including those encoded by GHs, glycosyltransferases 
(GTs), CEs, PLs and AAs genes in the rumen metage-
nome, were identified and annotated using the 
HMMER 3.0 package (http://hmmer.org/) with the 
dbCAN CAZyme database (www.cazy.org; Yin et al. 
2012). The CAZyme results of the gene were searched 
against the sequences in the NR database using the 
BLASTP algorithm with an E-value cut-off of 1 � 10-5.

Statistical analyses

Statistical analyses were performed using SPSS (23.0) 
for Windows 10 (SPSS Inc., Chicago, IL). The buffalo 
was used as the experimental unit. One-way ANOVA 
was used to compare data for dry matter intake (DMI), 
milk yield and quality, total antioxidant activity (TAC), 
FRAP and functional molecules of milk. A statistically 
significant difference was accepted at p < .05.

Results

Animal productions

As shown in Table 1, total DMI was similar between 
TMR and TMR þ green feed buffaloes (16.0 ± 0.2 and 
16.1 ± 0.2 kg/day respectively for TMR and 
TMR þ green feed buffaloes, p ¼ .89). Average milk 
yield and ECM throughout the experimental period 
did not differ significantly between the two groups 
(12.3 ± 0.1 vs. 12.5 ± 0.2 kg respectively for TMR and 
TMR þ green feed group, p ¼ .87). No differences 
were found on milk quality traits between the two 
groups (data not shown).

Milk biomolecules and antioxidant capacity

Results for functional biomolecules in milk and total 
antioxidant power are shown in Table 2. Buffaloes that 
received green feed had higher (p < .01) concentra-
tions of L-carnitine, propionyl-L-carnitine, acetyl-L-carni-
tine and d-valerobetaine compared with buffaloes that 
received the TMR. Concentrations of glycine, betaine 
and c-butyrobetaine did not differ between groups. 
The antioxidant capacity of milk was higher (p < .01) 
in buffaloes that received green feed, both when 
determined by TAC and FRAP assays.

Taxonomic analysis of the rumen 
microbial composition

A total of 1,139,005 sequences with an average 
sequence length of 370 bp were found and 8221 ASVs 
were identified. Of these, 6192 ASVs were common to 
the two groups. There were 734 unique for buffaloes 
that received TMR and 1295 were unique for buffaloes 
that received TMR þ green feed. The taxonomic analysis 
assigned the bacterial community to 14 bacterial phyla 
(Supplementary Table S2 Figure S1). Firmicutes (now 
renamed Bacillota) and Bacteroidota were the most 
abundant phyla in both groups (over 92% of the total 
bacteria). Other bacterial phyla that accounted for more 
than 1% of the sample were Proteobacteria and 
Planctomycetota (Supplementary Table S2). At the order 
level, Bacteroidales, Christensenellales, Oscillospirales and 
Lachnospirales were most abundant in both groups 
(Supplementary Table S3 and Figure S2). At the genus 
level, Christensenellaceae_R-7_group, Rikenellaceae_ 
RC9_gut_group, NK4A214_group, Prevotella and 
Butyrivibrio were the most common in buffaloes that 
received TMR and Lachnospiraceae_XPB1014_group 
replaced Butyrivibrio in buffaloes that received 
TMR þ green feed (Supplementary Table S4 and 
Figure S3).

Rumen microbial diversity

The overall microbial composition of the rumen 
did not differ markedly between the two groups 
(Supplementary Figures S1–S3). No differences were 
observed at the phylum level (Supplementary Figure 
S1 and Table S2) and there were relatively minor dif-
ferences at the order and genus level (Supplementary 
Figures S2 and S3, Tables S3 and S4). At the order 
level, Peptostreptococcales–Tissierellales were more 
abundant in buffaloes that received TMR and 
Veillonellales–Selenomonadales and Bradymonadales 

Table 2. Functional biomolecules and antioxidant power in 
milk for buffaloes that received a total mixed ratio (TMR 
group) and buffaloes that received TMR þ fresh ryegrass 
(approximately 30% of the diet; TMR þ green feed group).

TMR, mg/L TMR þ green feed, mg/L

L-Carnitine 30.4 ± 0.7 A 41.0 ± 0.6 B
Acetyl-L-carnitine 38.6 ± 0.5 A 48.4 ± 0.6 B
Propionyl-L-carnitine 15.7 ± 1.0 A 22.1 ± 0.5 B
c-Butyrobetaine 4.4 ± 0.3 3.8 ± 0.2
d-Valerobetaine 19.1 ± 0.6 A 23.4 ± 0.6 B
Glycine betaine 7.3 ± 0.1 7.4 ± 0.3
TAC 220.3 ± 5.5 A 249.5 ± 7.7 B
FRAP 194.3 ± 4.2 A 225.8 ± 4.8 B

FRAP: ferric reducing antioxidant power assay; TAC: total antioxidant 
capacity.
Results are mg/L, mean ± SEM. (A, B) p < .01.
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were more abundant in buffaloes that received 
TMR þ green feed (Supplementary Table S3). 
Relatively few statistically significant differences 
were observed at the genus level and these 
were mostly due to poorly represented genera: 
Prevotellaceae_YAB2003_group (Bacteroidota phylum) 
and Colidextribacter (Bacillota phylum) were more 
abundant in buffaloes that received TMR whilst 
Selenomonas, Prevotellaceae-UCG-007, Quinella, 
Oscillospira and Tyzzerella (all Bacillota phylum) were 
more abundant in buffaloes that received TMR þ
green feed (Supplementary Table S4).

The microbial diversity of the two groups was fur-
ther characterised by analysing alpha and beta diver-
sity. Alpha diversity was analysed using the richness 
and Simpson indices, the former taking into account 
all sequences obtained and the latter focusing only on 
the most abundant ones. A higher number of species 
and greater species diversity were observed in the 
buffaloes that received TMR þ green feed (Figure 
1(A)). However, when the analysis focused only on the 
most abundant sequences, the results were reversed, 
and a higher number of species were found in buffa-
loes that received TMR (Figure 1(B)). Taken together, 
these results could be interpreted to suggest (1) buffa-
loes that received TMR þ green feed had a greater 
biodiversity of rumen microbial composition than buf-
faloes that received TMR and (2) the greater number 
of species found in buffaloes that received 
TMR þ green feed was due to rare species. This was 
supported by analysis of beta diversity by the nMDS- 
Jacard index. The unweighted analysis showed that 
the samples of buffaloes that received TMR þ green 
feed (green symbols in Figure 2(A)) were scattered in 
a larger area than samples of buffaloes that received 
TMR (yellow symbols in Figure 2(A)). This indicated a 
greater species diversity in buffaloes that received 

TMR þ green feed. The weighted nMDS analysis, 
where the most abundant ASV are given more weight, 
showed that the samples of the two groups were simi-
larly distributed, indicating that the clusters observed 
in the unweighted analysis were mostly due to rare 
species (Figure 2(B)).

Metagenomic analysis of the rumen microbiota

Total DNA from rumen samples was also used for 
shotgun metagenome sequencing at the IMR (https:// 
imr.bio). Microbial community metagenomes were 
generated using the Illumina Nextera Flex Kit for 
MiSeq þ NextSeq and we used a 2� depth (�8 M PE 
reads). Metagenomic data were used to assess the 
presence of archaea and viral DNA. Significantly fewer 
archaeal and viral sequences were found compared to 
bacterial sequences. Members of the phylum 
Euryarchaeota accounted for 2.5 ± 1.3% (TMR) and 
2.4 ± 1.0% (TMR þ green feed) of the total rumen 
microbiota. At the genus level, the abundance of 
Methanobrevibacter did not differ between the two 
groups (TMR 1.80%; TMR þ green feed 1.74%). The 
total amount of viral DNA in rumen samples was very 
low and similar between the two groups (TMR 0.26%; 
TMR þ green feed 0.22%).

Enzymes of the transferases (EC2) and hydrolases 
(EC3) classes were more abundant in both groups and 
did not differ (Figure 3). Analysis of functional alpha 
diversity showed the highest Simpson’s diversity index 
for buffaloes that received TMR þ green feed (Figure 
4). This was supported by an nMDS analysis based on 
weighted Jaccard similarity, which showed that sam-
ples for buffaloes that received TMR þ green feed 
(green symbols in Figure 5) were scattered in a larger 
area than samples for buffaloes that received TMR 
(yellow symbols in Figure 5).

Figure 1. Alpha diversity between the two diet groups. (A) Observed number of ASVs (simply the number of ASVs present in the 
sample) and (B) Simpson diversity index (taking into account the number of taxa as well as the abundance, thus downplaying the role 
of rare species). Based on this, the total mixed ration (TMR) þ green diet has a larger number of rare species compared to the TMR diet.
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Metagenomic analysis of carbohydrate-active 
enzymes

Members of all six classes of CAZymes (GHs, GTs, 
CBMs, CEs, PLs and AAs) were identified, with classes 
GH and GT being the most abundant in both groups 

(Supplementary Table S5, summarised in Table 3). 

Buffaloes that received TMR þ green feed had a lower 

average number of CAZymes of the classes GHs, CBMs 

and CEs, and an increased number of the classes GTs 

and AAs (Table 3). Analysis of the most abundant GH 

Figure 2. Ordination (nMDS) based on weighted (top) and unweighted (bottom) Jaccard similarity coloured according to the diet 
group. Ellipses correspond to the 95% confidence interval of the barycentre for the group.

Figure 3. Enzyme code (EC) class distributions in the buffalo group fed with standard total mixed ratio (TMR) or with 
TMR þ ryegrass green forage.
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and GT families showed that enzymes belonging to 
73 GH and 26 GT families were present, with seven GH 
and seven GT families present only in buffaloes that 
received TMR and six GH and 1 GT families present 
only in buffaloes that received TMR þ green feed 
(Supplementary Table S5, summarised in Table 4). The 
most abundant GH families (GH2, GH13 and GH30) 
were all more abundant in buffaloes that received 
TMR (Figure 6(A)). Families with GH10, GH35, GH54, 
GH67, GH95, GH104, GH105, GH115 and GH133 more 
abundant in buffaloes that received TMR þ green feed 
(Figure 6(B)). Analysis of the GT family showed that 
GT4, GT14, GT20, GT26 and GT39 were more abundant 
in buffaloes that received TMR þ green feed and GT5, 
GT10, GT30, GT83 and GT112 were more abundant in 
buffaloes that received TMR (Figure 7). The GT families 
that were more abundant in the Green group are also 
produced by some of the genera detected as more 
abundant in the Green group (Table 5). Some of the 
remaining GH and GT families were present in the 
rumen of the two 3p experimental groups to different 
extents.

Discussion

The present study tested the hypothesis that green 
feed induces changes in the ruminal microbiota and 
CAZymes which results in enhanced milk quality in 
buffaloes. In support of the hypothesis, the inclusion 
of green feed in the diet of buffaloes favoured subpo-
pulations of bacteria that produced a distinct subset 
of CAZymes. Also, whole milk of buffaloes that 
received TMR þ green feed had higher amounts of 
L-carnitine, propionyl-L-carnitine, acetyl-L-carnitine and 
d-valerobetaine (Salzano et al. 2021; Neglia, Cotticelli, 
et al. 2023). These functional biomolecules have 
health-promoting properties and in vitro suppress 
human cancer cell lines (D’Onofrio, Cacciola, et al. 
2020; D’Onofrio, Mele, et al. 2020; Cacciola et al. 2022).

Buffaloes that received TMR þ green feed had a 
higher representation of bacteria belonging to the 

orders Veillonellales, Selenomonadales and 
Bradymonadales. Veillonellaceae ferment lactate to 
acetate and propionate which is related to fatty 
acid metabolism (Zeng et al. 2019). At the genus 
level, Quinella, Selenomonas, Prevotellaceae-UCG-007, 
Oscillospira and Tyzzerella were more abundant in buf-
faloes that received TMR þ green feed. Members of 
the genus Prevotella, and other genera of the family 
Prevotellaceae, are dominant rumen bacteria and show 
changes in response to changing diets (Paradiso et al. 
2021; Rabee et al. 2022; Yi et al. 2022). In weaned 
calves, Succiniclastum, Selenomonas 1 and the 
Prevotellaceae YAB2003 group were positively corre-
lated with total short chain fatty acids and propionic, 
valeric, acetic and butyric acids, and acetate and 
butyrate concentrations in the rumen (Hartinger et al. 
2022). In the present study, the proportion of highly 
fermentable carbohydrates/sugars was higher in buffa-
loes that received TMR þ green feed consistent with a 
greater prevalence of Prevotella. Buffaloes that 
received the TMR diet had a greater abundance of 
bacteria in the orders Peptostreptococcales and 
Tissierellales. Peptostreptococcales ferment butyrate, 
which is used by cells of the rumen wall as an ener-
getic substrate with the formation of b-hydroxybuty-
rate (Palakawong Na Ayudthaya et al. 2018; 
Gharechahi et al. 2021). A diet high in concentrates 
increased acetate and butyrate in the rumen (Sinha 
et al. 2017) and ruminal fluid in vitro in buffaloes 
(Neglia, Calabr�o, et al. 2023).

The capacity of the rumen to convert feed into fer-
mentable sugars is dependent on polysaccharide 
hydrolysing enzymes, CAZymes, that are produced by 
rumen microbes. In the present study, differences in 
rumen bacteria subpopulations between buffaloes 
that received TMR and TMR þ green feed were associ-
ated with different ruminal profiles of CAZymes. The 
total CAZymes were higher in buffaloes that received 
TMR compared to the TMR þ green feed group. In 
TMR buffaloes, a greater abundance of Prevotellaceae 
was associated with a higher percentage of CAZymes 
GH, CBM, CE and PL (Wang et al. 2019). Buffaloes that 

Table 3. Distribution of CAZymes in the rumen of buffaloes that received a total mixed ration (TMR group) and 
buffaloes that received TMR þ fresh ryegrass (approximately 30% of the diet; TMR þ green feed group).

TMR TMR þ green feed

Average number/animal % Average number/animal %

GH: glycoside hydrolases 328.37 84.39 251.42 82.47
GT: glycosyl transferases 33.25 8.54 32.00 10.50
CBM: carbohydrate binding modules 1.37 0.35 0.71 0.23
CE: carbohydrate esterases 20.87 5.36 14.25 4.69
PL: polysaccharide lyases 3.25 0.84 2.71 0.89
AA: auxiliary activities 2.00 0.51 3.71 1.22
Total CAZymes 389.11 304.80
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received TMR þ green feed had a higher percentage 
of CAZymes GT and AA. The GH CAZymes, together 
with CE and PL have a complex process of lignocellu-
lose breakdown and can degrade complex sugars 
(Lombard et al. 2014) whilst CBMs can enhance the 
catalytic efficiency of enzymes by specifically binding 
polysaccharides and improving enzyme concentration 
(Jones et al. 2018).

In both cattle and buffaloes, a change from green 
to dry roughage was associated with an increase in 

GH CAZymes (Bohra et al. 2019). In the present study, 
buffaloes that received TMR had a greater amount of 
GH CAZymes compared to the TMR þ green feed 
group.

Buffaloes that received TMR þ green feed had a 
greater abundance of CAZymes of the GT class (GHT4, 
GT14, GT20, GT26, GT39) and AA class (AA1, AA3, 
AA6). The AA CAZymes class is most abundant in 
wood degrading fungi and have lignocellulose degrad-
ation and antioxidant activity (S€utzl et al. 2018). The 

Table 4. Glycoside hydrolases (GH) and Glycosyl transferases (GT) families present only in one group.
TMR TMR þ green feed

GH Activities in the family GH Activities in the family

GH4 Maltose-6-phosphate glucosidase (EC 3.2.1.122); 
a-glucosidase (EC 3.2.1.20); 
a-galactosidase (EC 3.2.1.22); 
6-phospho-b-glucosidase (EC 3.2.1.86); a-glucuronidase 
(EC 3.2.1.139); 
a-galacturonase (EC 3.2.1.67); 
palatinase (EC 3.2.1.-)

GH11 Endo-b-1,4-xylanase (EC 3.2.1.8); 
exo-1,4-b-xylosidase (EC 3.2.1.-)

GH50 b-Agarase (EC 3.2.1.81) GH63 Processing a-glucosidase (EC 3.2.1.106); 
a-1,3-glucosidase (EC 3.2.1.84); 
a-glucosidase (EC 3.2.1.20); 
mannosylglycerate a-mannosidase/ 
mannosylglycerate hydrolase (EC 3.2.1.170); 
glucosylglycerate hydrolase (EC 3.2.1.208)

GH76 a-1,6-Mannanase (EC 3.2.1.101); a-glucosidase (EC 3.2.1.20) GH65 a,a-Trehalase (EC 3.2.1.28); 
maltose phosphorylase (EC 2.4.1.8); 
trehalose phosphorylase (EC 2.4.1.64); 
kojibiose phosphorylase (EC 2.4.1.230); 
trehalose-6-phosphate phosphorylase 
(EC 2.4.1.216); 
nigerose phosphorylase (EC 2.4.1.279); 
3-O-a-glucopyranosyl-L-rhamnose 
phosphorylase (EC 2.4.1.282); 
1,2-a-glucosylglycerol phosphorylase 
(EC 2.4.1.332); a-glucosyl-1,2-b-galactosyl-L- 
hydroxylysine a-glucosidase (EC 3.2.1.107); 
1,3-a-oligoglucan phosphorylase 
(EC 2.4.1.334); 
a-1,2-glucosidase (EC 3.2.1.-); a-glucan 
phosphorylase (EC 2.4.1.-); 
kojibiose glucohydrolase (a-1,2-glucosidase) 
(configuration inverting) (EC 3.2.1.216); 
branched-dextran exo-1,2-a-glucosidase 
(EC 3.2.1.115)

GH141 a-L-Fucosidase (EC 3.2.1.51); 
xylanase (EC 3.2.1.8)

GH85 Endo-b-N-acetylglucosaminidase (EC 3.2.1.96)

GH144 Endo-b-1,2-glucanase (EC 3.2.1.71); 
b-1,2-glucooligosaccharide sophorohydrolase (EC 3.2.1.214)

GH89 a-N-Acetylglucosaminidase (EC 3.2.1.50)

GH158 Endo-b-1,3-glucanase (EC 3.2.1.39) GH112 Lacto-N-biose phosphorylase or galacto-N-biose 
phosphorylase (EC 2.4.1.211); 
D-Galactosyl-b-1,4-L-rhamnose phosphorylase 
(EC 2.4.1.247)

GH 159 b-D-Galactofuranosidase (EC 3.2.1.146); 
a-L-arabinofuranosidase (EC 3.2.1.55)

GT Activities in the family GT Activities in the family
GT11 GDP-L-Fuc: galactoside a-1,2-L-fucosyltransferase (EC 2.4.1.69); 

GDP-L-Fuc: b-LacNac a-1,3-L-fucosyltransferase (EC 2.4.1.-)
GT56 TDP-Fuc4NAc: lipid II Fuc4NAc transferase 

(EC 2.4.1.-)
GT66 Dolichyl-diphosphooligosaccharide – protein glycotransferase 

(EC 2.4.99.18); undecaprenyl-diphosphooligosaccharide – protein 
glycotransferase (EC 2.4.99.19)

GT84 Cyclic b-1,2-glucan synthase (EC 2.4.1.-)
GT102 dTDP-b-L-Rhap: O-antigen-polysaccharide a-1,3-L- 

rhamnosyltransferase (EC 2.4.1.289)
GT108 GDP-a-D-Manp: b-1,2-D-mannosyltransferase (EC 2.4.1.374)
GT111 UDP-Galf: b-1,3-galactofuranosyltransferase (EC 2.4.1.-)
GT113 Glucosyltransferase (2.4.1.-); hexosyltransferase (2.4.1.-)
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latter finding could explain the higher antioxidant 
activity in whole milk of buffaloes that received 
TMR þ green feed in the present study. A higher 
expression of genes linked to oxidative stress and 
cellular responses in buffalo ruminal cells in vitro 
correlated with a greater abundance of bacteria 
that produce GT4 and G26 (Selenomonas, Prevotella, 
Oscillospiraceae); GT14 and GT20 (Prevotella); 
GT30 (Selenomonas, uncultured Prevotella); GT39 
(Oscillospiraceae). The GT CAZymes are involved in the 
biosynthesis of glycosidic bonds from phospho-acti-
vated sugar donors (Coutinho and Henrissat 1999; 
Benson et al. 2004; Yip and Withers 2006). The specifi-
city of GT CAZymes residues in their ability to 

selectively modify the correct hydroxyl group on an 
acceptor containing many equally reactive hydroxyls 
(e.g. complex oligosaccharides) (Varki 2017). As many 
bacteria synthesise polysaccharides that mimic human 
glycosylation, bacterial GT CAZymes can be used for 
the synthesis of glycoproteins with eukaryotic glycosy-
lation patterns (Varki 2017).

Diet clearly determines the profile of CAZymes in 
ruminants. The CAZymes profile in buffaloes that 
received TMR þ green feed in the present study could 
partly explain the ruminal wall cellular transcriptome 
of buffaloes that received green feed (Salzano et al. 
2023). The latter would influence the metabolome of 
ruminal fluid (Neglia, Cotticelli, et al. 2023) which, in 

Figure 4. Functional alpha diversity (Simpson) based on the shotgun metagenome functional read assignment for the two diet 
groups.

Figure 5. Functional based nMDS based on weighted Jaccard similarity among the shotgun metagenome functional read assign-
ment for the two diet groups.
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turn, would influence systemic and milk metabolites in 
buffaloes fed green forage (Salzano et al. 2021, 2022). 
This pathway of CAZymes influencing cellular proc-
esses would be considered analogous to sugar nucleo-
tide-dependent glycosyltransferases (UGT enzymes) 
and glycosylation pathways in human cells (Audet- 
Delage et al. 2022). Ne-trimethyllysine (TML) is the 
main precursor (Servillo et al. 2014) of the functional 

biomolecules observed in buffaloes provided with 
green forage (Salzano et al. 2021, 2022). This precursor 
is derived by lysine methylation (Lee et al. 2004) 
which most likely occurs in ruminal wall cells. Leafy 
vegetables, such as ryegrass, contain relatively high 
amounts of TML, which participates in carnitine bio-
synthesis (Servillo et al. 2014). Moreover, they are also 
known to produce favourable nutrient profiles in cattle 
in terms of gross composition, macroelements and 
trace elements (Callahan et al. 2016; Gulati et al. 
2018). The higher amount of TML in the rumen of ani-
mals fed green forage may hence explain the produc-
tion of milk with higher nutritional profile.

Overall, the findings in the present study, combined 
with our previous reports noted above, show that buf-
faloes fed green forage have higher expression of genes 
involved in amino acid metabolism. The present find-
ings provide strong support for the proposed metabolic 

Figure 6. The most abundant Glycoside hydrolases (GH) families in the buffalo group fed with standard total mixed ration (TMR) or with 
TMR þ ryegrass green forage (A). GH families whose abundances show a clear difference between the two experimental groups (B).

Figure 7. Abundance of the Glycosyl transferases (GT) families in the buffalo group fed with standard total mixed ration (TMR) or 
with TMR þ ryegrass green forage.

Table 5. Genera detected in total mixed ration (TMR) þ green 
feed group rumen samples that encoded the more abundant 
Gglycosyl transferases (GT) in TMR þ green feed group.
GT Genus

GT4 Selenomonas, Prevotella, Oscillospiraceae
GT14 Prevotella
GT20 Prevotella
GT26 Selenomonas, Prevotella, Oscillospiraceae
GT30 Selenomonas, uncultured Prevotella
GT39 Oscillospiraceae
GT56 –
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and biosynthetic pathways that link green forage with 
rumen bacteria, CAZymes and the synthesis of amino 
acids and biomolecule in buffaloes. This information 
can inform the development of diets incorporating 
green forage that achieve good animal health and well-
being whilst producing high amounts of functional bio-
molecules in milk, for both buffaloes and cattle.

Conclusions

Our analyses indicate that whilst the overall microbial 
composition of the rumen is not drastically affected 
by the experimental diet, it increases the microbial 
biodiversity with an increased abundance of low rep-
resented bacterial genera. The inclusion of green feed 
in the diet of dairy buffaloes favours ruminal micro-
biota that produce CAZymes that support the synthe-
sis of functional biomolecules. The latter enhances the 
health-promoting properties of whole milk. The find-
ings provide incentive to further refine feeding strat-
egies that meet consumer preference for food 
products sourced from animals fed natural diets. The 
approach adopted in the present study for buffaloes 
should also be applicable to dairy cattle.
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