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Abstract—Automated diagnostic and predictive asset manage-
ment capabilities are of paramount importance in the era of
connected and automated cooperative mobility. A diagnostic ve-
hicle can scan the rail network and process sensor measurements
to prevent incoming disruptions and ensure smooth operation of
automated transportation services. This requires the development
of reliable algorithms that enable early warning and predictive
asset management. An algorithm based on artificial intelligence
techniques is presented here. The algorithm analyses diagnostic
measures and relates them to observed faults on the rail network.
In operation mode, the algorithm predicts maintenance needs
based on current measurements.

Index Terms—Asset Management, Automated Diagnosis, Di-
agnostic Train, railway, RUL, Railway, ML, Machine Learning

I. INTRODUCTION

Dynamic scheduling of maintenance with a predictive ap-
proach is a key task of an asset management process ori-
ented to optimize the usability of the infrastructures and
services. In case of railway networks, large-scale tasks, such
as grinding, tamping, and other track geometry maintenance,
have special requirements in terms of cost, (un)availability of
track, disruption of services, loss of quality of service, and
other challenges for scheduling and business management [1].
Maintenance tasks to be carried out frequently or requiring
a long maintenance time window have the most significant
effect on track availability and network capacity. To optimize
asset management, algorithms have been proposed aimed at
maximizing track availability and, in general, minimizing the
generalized cost of maintenance [2]. As a general considera-
tion from relevant research, it is worth saying that preventive
maintenance problems in large-scale rail networks involve
hundreds of assets and very complex relationships between
them, which generates a very large number of constraints [3].
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Neither the European Union nor the European Commission can be considered
responsible for them.
Moreover, it has been partially funded by the Ministry of University and
Research (Ministero dell’Università e della Ricerca) under the project DIGIT-
CCAM (grant E67G22000010005).

In all cases, an optimization strategy can only be based on
track defect detection and prediction, with a paradigm shift
from corrective or conditional maintenance toward predictive
maintenance. This allows for maintenance planning and for
application of bi-level programming for optimal re-routing
of services and advanced traveller information, as it happens
in road contexts [4]. It is therefore crucial to develop and
use a degradation prediction model and/or a remaining life
anticipation model that, with reference to track geometry
measurements and fed by diagnostic train data, is able to
anticipate the need for intervention at least 60-90 days in
advance, in order to have enough time to use optimization
algorithm and put into action the best solution.

II. METHODOLOGY

One of the most relevant aspects of rail asset management
is the maintenance of optimal track conditions. Indeed, the
materials of the railway track, and thus the track geometry,
degrade due to repeated loads from passing trains and envi-
ronmental conditions. On the other hand, the geometry must
meet specific and very stringent quality requirements, both to
avoid speed limitations and to reduce the risk of derailment.
It is therefore inspected periodically to detect defects before
they reach unacceptable operating levels. A very critical issue
affecting the stability and longevity of rail infrastructure is the
degradation of ballast, consisting of crushed stone or gravel.
This latter break down and lose its structural integrity, resulting
in smaller particles, or fines, which can lead to safety and
efficiency problems [5], [6]. For instance, repeated loads cause
vertical and lateral deformation, reduced drainage and track
misalignment [7]. Moreover, the accumulation of fines can also
create a more rigid structure, diminishing the ballast’s ability
to distribute loads and absorb impacts. Regular maintenance,
including cleaning or replacing the ballast, is essential to
mitigate these effects and ensure safe and efficient railway
operations Thus, degradation of track geometry is influenced
by several factors, among others: traffic loads and speeds,
materials and construction methods, maintenance history. In
order to continuously measures the track geometry, several
parameters are observed, among others: vertical alignment (or
longitudinal level), horizontal alignment, gauge, and skew. The
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standards prescribe minimum and maximum allowable values
for these parameters, depending on the type of railway line.
If beyond these limits, various actions must be taken, which
can range from immediate action, to corrective maintenance,
to warning that requires attention to the situation with a view
to planning for non-immediate action.

A. Approach and hypotheses

In this paper, the feasibility of using diagnostic train data
to identifying the useful remaining time before the need (from
standards, regulations, and guidelines) to take action. We refer,
then, to so-called Remaining Useful Life (RUL) techniques.
The analyses of this study are based on measured track
geometry data obtained from diagnostic train passes. Given
the nature of such survey and measurements, the dataset used
is also referred to as mobile data. The hypotheses under which
the system is modelled are as enlisted below:

• The deterioration process is designed for discrete time
intervals. Even though the deterioration of track geometry
is continuous over time, it is assumed that it is possible
to sample the condition of the track with an inter-time
∆t dependent on the frequency of passing of diagnostic
trains.

• The state of degradation is represented by the dynamics
of the measurements themselves; a system in which one
or more of the measurements have gone outside the
predetermined limits of tolerance is considered degraded.

• The degradation process can be interpreted from one
sampling interval to the next; the state of the system
depends on explanatory variables, among which the most
important is assumed to be the cumulative traffic load on
the railroad track.

The work has been carried out with reference to data provided
by one of the main railway operator in Italy; the access to data
is not direct but provided off-line. The data sources used were
heterogeneous and included: i) the data lake of diagnostic mea-
surements (with reference to track geometry); ii) the database
of work orders and condition maintenance interventions; iii)
rail traffic data; iv) weather and environmental data (forecasts).
The work refers to a feasibility level, that is, with the aim of
analysing the quality of the data in terms of their possible use
for the realization of the considered RUL-oriented predictors.

B. Reference Methodologies

In recent years, predictive technologies have increasingly
relied on techniques based on big data analysis to moni-
tor, possibly in real time, the health of a system in order
to improve the accuracy and reliability in predicting fail-
ures and/or malfunctions [8]. The use of these technologies
responds to the need to analyse and process information
from multiple and heterogeneous data sources (temperature,
vibration, sensor measurements, etc.) in order to consider a
vast number of possible causes and concomitant causes of
failure so that maintenance strategies deemed most appropriate
can be implemented. The term Artificial Intelligence (AI)
encompasses the set of techniques, applications, and fields of

research related to the study of systems (hardware, software,
or hybrids) that accomplish tasks that would require the use
of intelligence if performed by humans [9], [10]. Among its
subdomains, Machine Learning (ML) [11] is the one most
applied in the field of industrial predictive maintenance, due
to its characteristic of learning by examples the task to be
performed. In the RUL field, Machine Learning is aimed at
tuning Regression Models, designed to predict the remaining
life of a piece of equipment. An example of this scenario is
the numerical prediction of the days to failure of a piece of
machinery, from the analysis of measurements (current and
historical) taken on the machinery itself. It is worth noting
that the use of ML techniques for predictive maintenance
is increasingly present due to the amount of data produced
daily by control systems [12], [13]. Indeed, the presence of
data acquired both during nominal operation of a system and
in the presence of abnormal operation, lays the foundation
for learning mathematical models designed to estimate the
occurrence of failures, based on the analysis of the data itself
[14]. Specifically, once the necessary data has been obtained
and properly cleaned, a ML model can be trained by going
on to identify which variables to include, through a process
known as feature engineering. Not carrying out this phrase of
skimming is a common mistake, based on the idea that having
more features to feed to an algorithm yields better results.
Instead, it has been repeatedly shown that in the presence of
a non-unlimited number of data (i.e., in all real-world cases)
as the number of features involved increases, the predictive
ability of the models tends to deteriorate, due to the so-called
curse of dimensionality.

III. PREPARATION OF DATA AND PRELIMINARY
ANALYSES

The activities on mobile data (gathered with diagnostic
trains) include an important initial phase of data extraction
from the railway operator database. We have adopted as a
starting point for extraction the identification id from the
database of the Work Orders (WOs in the following), that
is the maintenance works executed on tracks. They represent
both the outcome of a system failure as measured by the
indicator we would like to predict, and a change in the state
of track geometry (typically restored to new, or otherwise
subjected to partial restoration with reference to known ge-
ometric characteristics). About 290 intervention points were
identified from WOs. For each of the intervention points, all
the measures of the diagnostic train passages backward over
time (up to a possible previous WO) have been considered
for a range of track of 300 meters around the intervention
point. This has allowed the identification of track segments
of diagnostic measures included between two interventions on
the same section of the railway, i.e. between two refurbishment
of the section and therefore discontinuities in the degradation
process and instants of RUL extension. Each time interval
obtained can therefore be considered, barring interventions
not recorded, not surveyed, or contained in DBs other than
those interrogated, an uninterrupted series of measurements
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not affected by partial or total geometry renewal. The series
were in number of 464, that means that on average 60% of
the track segments were effected by more than one renewal
and for them a complete set of measures is available between
two degradation points. For each series of measures, also non-
geometric and non-maintenance data have been retrieved from
the database of the railway operator, such as the train traffic
(passages of non-diagnostic trains) and weather conditions.
It is worth noting that 392 of the 464 series (85%) were
terminated by a triggering condition that was an inadmissible
value for the vertical alignment (longitudinal level), beyond
the threshold value. This must be taken into account when the
capabilities of different predictors is calibrated, as in practice
the longitudinal level predictor has the power to predict 85% of
the observed ends of RUL. The resulting WOs were almost all
consisting in ballast intervention (with tamping machines) and
the likely phenomenon at the basis of the predictor activation
is deterioration, mostly due to densification, distortion, and
degradation phenomena of the railway superstructure.

A. Selection and normalization of the measures

All the data gathered by accessing the database of the
railway operator were referred to a line with a travel speed
lower than 250 km/h. In view of this occurrence and on the
expert knowledge of the authors, the analysis was restricted
to only four of the measures taken by the diagnostic trains.
The considered candidate predictors are: Gap; Longitudinal
level; Transverse level; Skew. The normalization process is
applied in the range of 300 meters before and after each
intervention point (600 meters in total). It consists in simply
rescaling the range of the measures with reference to the range
of acceptable values, that is, the one that do not trigger the
maintenance warning. For instance, assume the considered
measure is the longitudinal level and that it can be tolerated if
in the range ±10mm around the nominal design value (that
is zero). Then, the positive measured longitudinal values are
scaled by 10 and the negative ones by 10 as well. An example
of real data for the longitudinal level before and after the
normalization is given in Figure 1a and Figure 1b below.
Following the normalization phase of the measurements, a set
of features, or rather statistical variables, were extracted to
express, with a single value, the performance of the attribute
in the entire geometric surroundings of the intervention point.
In this way, a time series of spatial profiles is transformed,
for each measure, in a time series of numerical values for the
candidate predictor. The considered features are: Mean Value;
Median value; Kurtosis.

All measures above are popular and have a well-known
meaning, but the kurtosis, which is less frequently adopted.
Easily speaking, the kurtosis can be considered as the measure
of the discrepancy of a statistical distribution with respect to a
normal distribution. If zero, such a discrepancy is null, if less
than zero the distribution is more uniform than the Normal
one (with the same variance), if greater than zero it is more
concentrated than the corresponding Normal distribution. In
our case, a high value for the kurtosis explain the presence in

(a) Real data.

(b) Normalised data.

Fig. 1: Longitudinal level around an intervention point, consid-
ering a range of ± 300 meters. The horizontal dotted red lines
indicate acceptance range of ± 10 mm around the nominal
design value 0.

the observed railway section around the intervention point of
particularly higher (than the mean) values of the measure in
some points in the considered section. The evaluation of all
features listed above has been also calculated for a restricted
surrounding of the intervention point, measuring 200 meters
instead of 600 meters.

IV. MODEL SELECTION, TRAINING AND RESULTS

In our study case, the aim is to obtain a ML model that,
based on the features elaborated on the measures taken by a
diagnostic train over time, is able to predict the number of days
remaining for the end of useful life (RUL) of the measured
section of railway. The model will be trained with respect to
observed measures and known (observed) remaining days at
the moment the measures are taken. As any ML model, it
will be trained against observed data and will be evaluated
against a different set of observed data of the same kind. The
measure(s) able to conciliate predicted remaining days with
observed ones are called predictor(s). Finally, the predictor(s)
and the ML model are able to forecast, given a set of measures
repeated over time, the RUL, that is the number of days left
before an intervention is required because of the failing of the
measure(s) in the non-acceptable region of values.

A. The adopted model

The nature of the use case and of the available data samples
suggest adopting a Convolutional Neural Networks (CNN)
[15], a family of neural networks that can autonomously learn
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how to extract information from the data. In this case, the
use of the convolution operator along the temporal component
allows learning spatio-temporal information, which is useful
for predictive purposes. After some preliminary tests aimed at
designing the structure of the network, the model consists of a
CNN having two convolutional layers (each with 10 filters of
size 3×1, stride 1 and no padding) and two dense layers (each
having 100 neurons), interspersed with a dropout layer (set
with a probability of 0.7). The activation function used was
the ReLu, the batch size was set to 32 and the learning rate
to 0.01, with a linear decay of 0.001. The maximum number
of epochs was set to 25. At a given time an input sample
for training the model is a matrix with as many columns as
the considered measures (Gap, Longitudinal Level, Transvers
Level, Skew), elaborated toward the chosen feature (Mean or
Median, or SDV or Kurtosis) and as many rows as the number
of passages over time available for the railway section at the
considered time. The output is the number of remaining days
(RUL).

B. Model training and results

The model has been trained with respect to the data mea-
sured by diagnostic train. In order to isolate conditions when
the tracks start from their full functionality and progressively
degrade toward the maintenance intervention, the measures
from a major intervention to another have been considered.
The outcome is that for different intervention point the times-
pan of the measures is different, as it is different the time
elapsed from one major maintenance to another.

As the elapsed time is different, the number of diagnostic
train passages in that time is different, ranging from few
(more fragile track points) to several. Figure 2a shows the
distribution of the number of diagnostic train passages among
the considered intervention points. As the passages of the
diagnostic train are not constant over the years and the months,
the distribution of the number of passages has a different but
consistent shape in terms of number of RUL days observable
at each passage of the diagnostic train, which is depicted in
Figure 2b. An example of results in terms of observed and
forecasted (by the ML model) RUL days is depicted in Figure
3.

The overall results in terms of prediction ability of the
trained model, for all the sample adopted for the validation of
the model, are presented in Table I below by using standard
error indicators as MAE and RMSE. The spatial range (600
m vs 200 m) has a limited impact on prediction based on AI
techniques, but has a high impact on the stage of choosing the
most effective features. Therefore, it is suggested to explore (i)
larger spatial ranges and (ii) additional aggregation techniques
(e.g., symmetry). To analyse the impact of the number of
temporal acquisitions (i.e., diagnostic train passes) on the
predictive ability of the model, we report in Figure 4 the
error trend according to the number of available temporal
samples. The figure show a clear decreasing trend in the
error, which tends to decrease as the number of available time
instants increases. Note in particular that, for samples having

(a) Number of passages of diagnostic train.

(b) Number of days for RUL.

Fig. 2: Distribution of measurement passages.

Fig. 3: Prediction performance as a function of available
measurement obtained via diagnostic train passages.

a number of temporal acquisitions less than 10, the model
tends to underestimate the RUL (i.e., it indicates the need
for maintenance earlier than indicated by the measured RUL),
while it tends to more closely follow the measured RUL for
samples ahead a number of temporal instants greater than 10,
suggesting, despite the small number of available samples, a
greater robustness of the AI models when trained and used
than for samples afferent to the last case.
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Fig. 4: Prediction error variation as a function of the number
of available diagnostic train passages.

Predictor Variant Model Performance
Segment Length [m] Feature MAE RMSE

600
Mean 21.18 26.96
Median 29.47 32.65
Kurtosis 28.31 33.28

200
Mean 24.97 27.01
Median 22.56 23.61
Kurtosis 22.78 28.53

V. CONCLUSION

This work addressed the challenge of automated diagnostic
and predictive asset management for railway networks. To this
end, an algorithm based on artificial intelligence techniques
was developed. The proposed algorithm relied on diagnostic
measures as inputs, and aimed to find a relation with the
observed faults on the rail network. In operation mode, the
algorithm predicts maintenance needs based on current mea-
surements.

Due to the nature of the use case and of the available
data samples, a Convolutional Neural Networks was used for
the proposed model to autonomously learn how to extract
information from the data. The model was trained with respect
to the data measured by a real diagnostic train. In order to
isolate conditions when the tracks start from their full func-
tionality and progressively degrade toward the maintenance
intervention, the measures from a major intervention to another
have been considered. The results prove the feasibility of the
proposed machine learning model for predicting the RUL of
railways systems in a predictive maintenance perspective.

As future development, we aim to test and analyse the
proposed algorithm by using different datasets. Moreover, it
would be possible to optimize the parameters of the Convolu-
tional Neural Network so to increase the performance of the
algorithm, as well as to spot the more sensitive parameters
that could affect the outcome.
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Z. Lin, R. Liu, T. Tang, V. Vittorini, and Z. Wang, “A literature review
of artificial intelligence applications in railway systems,” Transportation
Research Part C: Emerging Technologies, vol. 140, p. 103679, 2022.
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