RAutophagy

Autophagy

Taylor & Francis

ISSN: (Print) (Online) Journal homepage:<https://www.tandfonline.com/loi/kaup20>

The polymorphism L412F in *TLR3* **inhibits autophagy and is a marker of severe COVID-19 in males**

Susanna Croci, Mary Anna Venneri, Stefania Mantovani, Chiara Fallerini, Elisa Benetti, Nicola Picchiotti, Federica Campolo, Francesco Imperatore, Maria Palmieri, Sergio Daga, Chiara Gabbi, Francesca Montagnani, Giada Beligni, Ticiana D.J. Farias, Miriam Lucia Carriero, Laura Di Sarno, Diana Alaverdian, Sigrid Aslaksen, Maria Vittoria Cubellis, Ottavia Spiga, Margherita Baldassarri, Francesca Fava, Paul J. Norman, Elisa Frullanti, Andrea M. Isidori, Antonio Amoroso, Francesca Mari, Simone Furini, Mario U Mondelli, GEN-COVID multicenter study, Mario Chiariello, Alessandra Renieri & Ilaria Meloni

To cite this article: Susanna Croci, Mary Anna Venneri, Stefania Mantovani, Chiara Fallerini, Elisa Benetti, Nicola Picchiotti, Federica Campolo, Francesco Imperatore, Maria Palmieri, Sergio Daga, Chiara Gabbi, Francesca Montagnani, Giada Beligni, Ticiana D.J. Farias, Miriam Lucia Carriero, Laura Di Sarno, Diana Alaverdian, Sigrid Aslaksen, Maria Vittoria Cubellis, Ottavia Spiga, Margherita Baldassarri, Francesca Fava, Paul J. Norman, Elisa Frullanti, Andrea M. Isidori, Antonio Amoroso, Francesca Mari, Simone Furini, Mario U Mondelli, GEN-COVID multicenter study, Mario Chiariello, Alessandra Renieri & Ilaria Meloni (2022) The polymorphism L412F in *TLR3* inhibits autophagy and is a marker of severe COVID-19 in males, Autophagy, 18:7, 1662-1672, DOI: [10.1080/15548627.2021.1995152](https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15548627.2021.1995152)

To link to this article: <https://doi.org/10.1080/15548627.2021.1995152>

6

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

[View supplementary material](https://www.tandfonline.com/doi/suppl/10.1080/15548627.2021.1995152) \mathbb{C}^{\bullet}

Published online: 29 Dec 2021.

[Submit your article to this journal](https://www.tandfonline.com/action/authorSubmission?journalCode=kaup20&show=instructions) \mathbb{Z}

Article views: 1927

[View Crossmark data](http://crossmark.crossref.org/dialog/?doi=10.1080/15548627.2021.1995152&domain=pdf&date_stamp=2021-12-29) \mathbb{Z}

 \mathbb{C} [Citing articles: 5 View citing articles](https://www.tandfonline.com/doi/citedby/10.1080/15548627.2021.1995152#tabModule) \mathbb{C}

BRIEF REPORT

a OPEN ACCESS **a** Check for updates

The polymorphism L412F in *TLR3* **inhibits autophagy and is a marker of severe COVID-19 in males**

Susanna Croci^{[1,2](#page-2-0)}, Mary Anna Venneri^{[3](#page-2-1)}, Stefania Mantovani @^{[4](#page-2-1)}, Chiara Fallerini^{1,2}, Elisa Benetti², Nicola Picchiotti^{5[,6](#page-2-3)}, Federica Campolo^{[3](#page-2-1)}, Francesco Imperatore^{7,8}, Maria Palmieri^{1,2}, Sergio Daga^{1,2}, Chiara Gabbi^{[9](#page-2-4)}, Francesca Montagnani^{2[,10](#page-2-5)}, Giada Beligni^{[1,2](#page-2-0)}, Ticiana D.J. Farias¹¹, Miriam Lucia Carriero^{1,2}, Laura Di Sarno^{1,2}, Diana Alaverdian^{[1,2](#page-2-0)}, Sigrid Asl[a](http://orcid.org/0000-0002-0263-7107)ksen¹², Maria Vittoria Cubellis¹³, Ottavia Spiga 0^{[14](#page-2-9)}, Margherita Baldassarri^{1,2}, Francesca Fava^{1,2}, Paul J. Norman¹¹, El[i](http://orcid.org/0000-0002-9037-5417)sa Frullanti^{1,2}, Andrea M. Isidori D^{[3](#page-2-1)}, Antonio Amoroso^{[15](#page-2-9)[,16](#page-2-10)}, Francesca Mari^{[1,2](#page-2-0),17}, Simone Furini^{[2](#page-2-0)}, Mario U Mondelli @^{[4](#page-2-1),[1](#page-2-0)8}, GEN-COVID multicenter study¹, Mario Chiariello^{[7](#page-2-3)[,8](#page-2-4)}, Alessandra Renieri @^{[1,2](#page-2-0),17}, and Ilaria Meloni^{[1,2](#page-2-0)}

¹Medical Genetics, University of Siena, Siena, Italy; ²Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; ³Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; ⁴Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; ^sDIISM-SAILAB, University of Siena, Siena, Italy;
⁶Department of Mathematics, University of Pavia, Pavia, Italy: ⁷Is Department of Mathematics, University of Pavia, Pavia, Italy; ⁷Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy; ^aConsiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy; ⁹Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; 10Department of Medical Sciences, Infectious and Tropical Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy; 11Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; 12Department of Clinical Science, Universty of Bergen and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway; 13Department of Biology, Università Degli Studi di Napoli "Federico II", Napoli, Italy; 14Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy; 15Department of Medical Sciences, University of Turin, Turin, Italy; ¹⁶Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Italy; ¹⁷Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy; ¹⁸Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy

ABSTRACT

The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in
HEK293 cells transfected with TLR3^{L412F}-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine ($p = 0.038$). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways.

Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/ TNF-α: tumor necrosis factor

Introduction

In December 2019, a new virus was isolated in Wuhan, China, which was called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is an enveloped positive-sense RNA virus that caused a new pandemic, which WHO named COVID-19 (coronavirus disease-2019).

To date, many characteristics of SARS-CoV-2 are still unclear and, although its ability to be transmitted from one person to another has been ascertained, uncertainties remain about the exact modes of transmission and pathogenicity. In addition, a high variability of symptoms in infected patients and between different populations has been reported; one of the possible explanations of such variability is the genetic background of the host that may affect immune responses to the virus. Among host genetic factors that might impact on symptoms severity there are genes involved in virus entry and mediators of innate immunity [\[1](#page-10-0)[,2](#page-10-1)]. TLRs (toll like receptors) are a class of proteins that play a key role in host innate immunity, causing the production of pro-inflammatory cytokines (TNF, IL1, and IL6) and type I and II Interferons, that are responsible for innate antiviral responses. Among TLR genes, *TLR3* encodes an interferon-inducing dsRNA sensor,

CONTACT Mario Chiariello **C** m.chiariello@ispro.toscana.it **Institute for the Study, Prevention and Oncology Network (ISPRO), Via Fiorentina 1, 53100, Siena;** Alessandra Renieri alessandra.renieri@unisi.it **Medical Genetics Unit, University of Siena, Policlinico Le Scotte, Viale Bracci, 2, Siena 53100, Italy** Supplemental data for this article can be accessed [here](https://doi.org/10.1080/15548627.2021.1995152).

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

ARTICLE HISTORY

Received 23 March 2021 Revised 14 October 2021 Accepted 14 October 2021

KEYWORDS

Autophagy; COVID-19; HLA; L412F; TLR3

whose activation is involved in protection against different RNA viruses [\[2–](#page-10-1)[4](#page-10-2)]. Upon viral infection, TLR3 signaling leads to the activation of two factors, NFKB and IRF3 (interferon regulatory factor 3), which play an essential role in the immune response. This results in the production of various cytokines, including TNF (tumor necrosis factor), activating immune responses. However, increased inflammatory responses can make the patient more susceptible to pneumonia and autoimmune diseases. Accordingly, a protective effect against fatal pneumonia has been reported in the absence of TLR3 [[5–](#page-10-3)[7](#page-10-4)]. Among TLR3 variants, the functional L412F polymorphism ($rs3775291$; $c.1234 \text{ } C > T$) is known to decrease TLR3 expression on the cell surface [[8\]](#page-10-5). This polymorphism also leads to poor recognition of SARS-CoV-2 dsRNA, during replication, compared to its wild-type (WT) counterpart [\[9](#page-10-6)] and has been recently associated with SARS-CoV-2 susceptibility and mortality [[10\]](#page-10-7).

There is evidence that TLR3, as with other TLRs, acts through autophagy in determining susceptibility to infections [\[11](#page-10-8)]. The autophagic pathway is essential during infection and for molecular processes such as cell maintenance and homeostasis [[12](#page-10-9)[,13](#page-10-10)]. Indeed, autophagy is one of the major cell defense mechanisms against pathogens [\[14\]](#page-10-11). A role for autophagy is reported in different studies on other coronaviruses such as the mouse hepatitis virus/MHV and the transmissible gastroenteritis virus/TGEV [\[15](#page-10-12)[,16\]](#page-10-13). A role in SARS-CoV-2 infection has also been described [\[17–](#page-10-14)[19\]](#page-10-15). In particular, SARS-CoV-2 can inhibit autophagy resulting in accumulation of autophagosomes and inhibition of viral clearance that, together with immune dysfunction and the activation of numerous inflammatory cytokines, leads to a more severe form of COVID-19 [\[20–](#page-10-16)[22\]](#page-10-17).

To shed light on the mechanisms underlying the diverse susceptibility to COVID-19, we performed a nested-control study within our GEN-COVID cohort, confirming the role of L412F polymorphism in the *TLR3* gene in susceptibility to SARS-CoV-2 and further defining the potential mechanisms by which this effect is exerted.

Results and discussion

Comparing the extreme phenotypes of SARS-CoV-2 infection, severe COVID-19 patients (cases) versus SARS-CoV-2 PCRpositive oligo-asymptomatic subjects (controls), and using LASSO Logistic regression on common bi-allelic polymorphisms from whole-exome sequencing, we identified the L412F polymorphism (rs3775291; c.1234 C > T) in *TLR3* as a severity marker [\(Figure 1A\)](#page-4-0). The grid search curve of the crossvalidation score [\(Figure 1B\)](#page-4-0) shows a maximum of the regularization parameter in 10. With this calibration setting, the 10-fold cross-validation provides good performances in terms of accuracy (73%), precision (74%), sensitivity (73%), and specificity (73%) as shown in [Figure 1C.](#page-4-0) The confusion matrix is reported in [Figure 1D,](#page-4-0) whereas the receiver operating characteristic (ROC) curve ([Figure 1E](#page-4-0)) provides an area under the curve (AUC) score of 80%.

The L412F polymorphism has an overall allele frequency of about 20%, ranging from 30% in European to 0.88% in African (mainly sub Saharan) populations [[8\]](#page-10-5). It is intriguing that a relatively COVID-19-free population such as sub Saharan has a very low frequency (0.88%) of this polymorphism and that Asian (26.97%) and European (30.01%) have a much higher frequency. The variant protein with phenylalanine is under-represented on the cell surface, it is not efficiently secreted into the culture medium when expressed as the soluble ectodomain, and it has reduced capability to activate the expression of TLR3-dependent reporter constructs [\[8\]](#page-10-5). In order to confirm the role of the polymorphism, we compared individuals showing severe COVID-19 (cases) and those with no sign of the disease (controls). We subdivided patients into two categories, those having the polymorphism in heterozygous or homozygous state and those homozygous for the WT allele. We found that the prevalence of L412F polymorphism is significantly higher in cases compared to controls (p-value 2.8 \times 10⁻²) [\(Table 1](#page-5-0)). The global allele frequency of L412F in our cohort (cases and controls) is 29.38%, comparable to the allele frequency of 29.79% reported in the European (non-Finnish) population in the gnomAD database [\(https://gnomad.broadinstitute.org/\)](https://gnomad.broadinstitute.org/). The identified frequencies were in Hardy-Weinberg equilibrium.

Sex-related differences of TLRs activation following stimulation by viral nucleic acid may be involved in the sex-related variability in response to viral infections [\[23\]](#page-10-18). Several rare TLR3 loss of function mutations are known to be linked both to influenza and SARS-CoV-2 virus as well as hyperfunctioning mutations [\[24](#page-10-19)[,25\]](#page-10-20). In agreement with these data, when we stratified by gender, the statistically significant difference increased in the sub-cohort of males giving an Odds Ratio of 1.94 (95% confidence interval, 1.23 to 3.06; p $= 3.8x10^{-3}$), whereas it was lost in the sub-cohort of females (p-value 5.8×10^{-1}) ([Tables 1, 2, 3\)](#page-5-0).

We then investigated the prevalence of patients carrying L412F in heterozygous or homozygous states in all 4 categories of COVID-19 clinical severity, considering only male subjects regardless of age ($n = 665$). We found that the prevalence of carriers directly increased with the severity of COVID-19, from a clinical condition not-requiring hospitalization to intratracheal intubation [\(Figure 1F\)](#page-4-0)

The L412F substitution in TLR3 falls in the ectodomain, in the 14 leucine-rich repeats/LRR domain, a motif of 22 amino acids in length that folds into a horseshoe shape [\[26](#page-10-21)]. Proteins containing leucine-rich repeats are involved in a variety of biological processes, including signal transduction, cell adhesion, DNA repair, recombination, transcription, RNA processing, disease resistance, apoptosis, and the immune response [\[27](#page-10-22)]. The L412F substitution is expected to have a limited structural impact with minimal rearrangement of near hydrophobic amino acids such as tryptophan 386 [\(Figure 2\)](#page-5-1). However, the absence of one of the leucines probably determines a different rearrangement of the motif and consequently of the near glycosylation site Asn414, having an impact on protein-protein interaction and in signal transduction process [[28](#page-10-23)].

Germline knockout of *TLR3* inhibits autophagy and upregulation of TLR3 promotes damage after myocardial infarction mainly because of autophagy rather than inflammatory activation [[29\]](#page-10-24). Interestingly, we could notice a statistically significant (p = $3.8x10^{-2}$) reduced survival at 28 days in TLR3_L412F COVID-19 patients treated with

Figure 1. The histogram of the LASSO logistic regression weights represents the importance of each feature for the classification task, (A) The positive weights reflect a susceptible behavior of the features to the target COVID-19 disease, whereas the negative weights a protective action. (B) Cross-validation ROC-AUC score for the grid of LASSO regularization parameters; the error bar is given by the standard deviation of the score within the 10 folds; the optimal regularization parameter is chosen by selecting the one with highest cross-validation score (red point). (C) Boxplot of accuracy, precision, sensitivity, specificity, and ROC-AUC score for the 10 fold of the cross-validation. The box extends from the Q1 to Q3 quartile, with a line at the median (Q2) and a triangle for the average. (D) Confusion matrix for the aggregation of the logistic regression predictions in the 10 folds of the cross-validation. (E) ROC curve for the 10 folds of the cross-validation. (F) Distribution of carriers of the polymorphism L412F in homozygous or heterozygous states stratified by clinical category.

Table 1. L412F and COVID-19 outcome (both sexes).

			Marginal Row
	Cases	Controls	Totals
L412F	186 (55.0%)	139 (46.3%)	325 (50.9%)
Wild-Type	152 (45.0%)	161 (53.7%)	313 (49.05%)
Marginal Column Totals	338 (52.97%)	300 (47.02%)	638 (Grand Total)

p-value (cases vs controls) = 2.8×10^{-2}

Table 2. L412F and COVID-19 outcome (males only).

			Marginal Row
	Cases	Controls	Totals
L412F	131 (55.3%)	45 (38.8%)	176 (49.8%)
Wild-Type	106 (44.7%)	71 (61.2%)	177 (50.1%)
Marginal Column Totals	237 (67.13%)	116 (32.86%)	353 (Grand Total)

p-value (cases vs controls) = $3.6x10^{-3}$

Table 3. L412F and COVID-19 outcome (females only).

			Marginal Row
	Cases	Controls	Totals
L412F	55 (54.5%)	94 (51.1%)	149 (5.,3%)
Wild-Type	46 (45.5%)	90 (48.9%)	136 (47.7%)
Marginal Column Totals	101 (35.43%)	184 (64,56%)	285 (Grand Total)

p-value (cases vs controls) = 5.8×10^{-1}

hydroxychloroquine (HCQ) [\(Figure 3A\)](#page-6-0). As this drug is a well-established inhibitor of autophagy, we reasoned that alterations of this important biological process might have a role in the increased severity of the clinical phenotypes of SARS-CoV-2 infection in patients with the TLR3^{L412F} polymorphism. Notably, beside being entirely ineffective at changing the clinical evolution of COVID-19, which led to retraction of the paper reporting the clinical trial [\[30\]](#page-10-25), HCQ may have been responsible for reportedly increased fatality rates among among

patients treated with this drug [\[31](#page-10-26),[32\]](#page-10-27). Poly(I:C) stimulation of the TLR3 receptor has already been shown to stimulate autophagy [[29](#page-10-24)]. Therefore, we decided to compare the efficacy of transfected WT and L412F-mutated receptors in inducing autophagy upon poly(I:C) treatment. To monitor autophagy, we used indirect immunofluorescence microscopy to score the formation of punctate intracellular vacuoles stained for LC3B. Moreover, to better appreciate autophagosomal formation, we also used bafilomycin A_1 (Baf A1), an inhibitor of lysosomal acidification, to prevent lysosomal degradation of autophagosome-associated LC3B [[33](#page-10-28)]. Baf A1 allows, in fact, the detection of each autophagosome formed in the time-lapse between addition of the drug to cells and harvesting [[33](#page-10-28)]. Importantly, to avoid potentially confounding effects of the endogenous TLR3 receptor in transfected cells, we used *TLR3* knockout HEK cells. In these cells, when transfected with a plasmid encoding WT TLR3 (TLR3_WT), we observed a progressively increasing number of autophagosomes (APs) when stimulated with poly(I:C) for different time points in the presence of BAF A1 (compared to BAF A1 alone) [\(Figure 3B-C](#page-6-0)), indicating a stimulation of the synthesis of these vesicles and a positive autophagic flux. Conversely, in HEK cells transfected with TLR3_L412F, the number of AP was reduced by poly(I:C)

stimulation in the presence of BAF A1 ([Figure 3B-C\)](#page-6-0), demonstrating a block in AP synthesis and a reduced autophagic flux. Interestingly, in the absence of BAF A1, AP numbers did not increase upon poly(I:C) stimulation, suggesting that, in HEK cells, fast degradation of AP may compensate for a small increase in the synthesis. Indeed, also rapamycin (RAP), a strong stimulus for autophagy [\[34\]](#page-10-29), induced only a small increase of AP in the absence of BAF A1 in these cells upon transfection of both TLR3_WT and TLR3_L412F, supporting slow rates of AP synthesis in these cells upon stimulation with different stimuli. The fusion process of autophagosomes with hydrolase-containing lysosomes represents the final step in the degradation process along the autophagic route and its evaluation provides important information for flux analysis [\[33](#page-10-28)]. Therefore, as a further confirmation of a reduced autophagic flux in HEK cells expressing the TLR3^{L412F} mutant as compared to TLR3_WT-transfected cells, we decided to score fusion of autophagosomes to lysosomes in these cells upon poly(I:C) stimulation, by measuring colocalization rate of LC3B and LAMP-1, through analysis with the Volocity software of immunocytochemistry experiments (Fig. S1).

During SARS-CoV-2 infection, adipocytes produce proinflammatory cytokines like TNF, IL6 and IL1B/IL-1β which recruit immune cells to the site of infection [[35](#page-10-30)]. Autophagy is stimulated and regulated by these pro-inflammatory cytokines [\[35](#page-10-30)]. TNF is a potent immunomodulator and proinflammatory cytokine that has been implicated in the pathogenesis of

Figure 2. Superposition of wild-type and mutated TLR3 protein. (A) TRL3 human protein tridimensional structure of 2Z7X crystal structure. In green cartoon representation of TLR3 protein. (B) and (C) Zoom of the mutated region with Leu412 in red sticks and Phe412 in magenta. The hydrophobic core of Leu377, Leu389, and Trp386 is in blue sticks.

3B

pm.

 $***$

 $* * *$

 $4h$ $6h$ $8h$ Rap

poly(I:C)

BAF A1

 4_h

C3B

10

25

20

15

10

LC3B dots per cell

Poly (I:C)
8 h

 Rap
4 h

 $\mathbf C$

pro.

 \blacksquare TLR3 WT \blacksquare L412F

> $4h$ $6h$ $8h$ Rap

poly(I:C)

Full Medium

Poly (I:C)
8 h

 $R\ddot{a}$

poly(I:C)

Rap

 $0 \text{ }\mu\text{m}$ 2

 $0 - \mu m$

poly(I:C)

Rap

4_h

levels were evaluated by Real Time PCR. The gene expression levels were evaluated by the fold change versus TLR2 WT sample using the equation 2^{−DDCt}. Data are presented as the mean ± SEM. Data significance was analyzed using One-way ANOVA test with Holm-Sidak's correction. Asterisks were attributed for the following significance values: P > 0.05 (ns), P < 0.05 (*) and P < 0.01 (**). (E) Normal human fibroblasts (NDHF) from subjects expressing the TLR3_WT receptor were stimulated with 50 μg/ml poly(I:C) or RAP (1 μ M) for 4 h, in full medium alone or containing 400 nM bafilomycin A₁ for 3 h. Cells were next fixed, permeabilized with 100 μg/ml digitonin and stained with anti-LC3B antibodies and revealed with Alexa Fluor 488-conjugated secondary antibodies. Nuclei were stained with DAPI. (F) Same as in E, but the number of autophagosomes (scored as LC3B-positive dots) per cell was evaluated for each sample by Volocity software. (G and H) same as in E-F, but fibroblasts are homozygous for the TLR3_L412F receptor. Statistical analysis was performed using Student's t test. Means § SEM for each value are shown in the graphs. ns = not significant; ** = p < 0.01; *** = p < 0.001. < 0.001.

autoimmune and infectious diseases. It is produced by activated monocytes and macrophages, as well as by many other cell types, including lymphocytes, as a transmembrane protein. Through cell modulation, TNF can activate both cell death and survival mechanisms. TNF induces autophagy through a feedback mechanism, causing further recruitment and activation of lymphocytes and contributing to the excess inflammation typical of SARS-CoV-2 infection [\[36\]](#page-10-31). As chloroquine, a powerful inhibitor of autophagy, inhibits production of different cytokines, among which TNF [\[37](#page-10-32)], we next decided to test if the inhibitory effect of the L412F mutation on autophagy was also able to mimic the effect of the pharmacological inhibitor of this process in HEK cells. Indeed, while poly(I:C) readily stimulated TNF expression in HEK cells transfected with the TLR3_WT receptor, this effect was completely abolished in TLR3_L412F-transfected cells [\(Figure 3D\)](#page-6-0).

In order to validate data obtained on transfected HEK cells, we next isolated and cultured skin fibroblasts from healthy donors with different genotypes relative to the TLR3 locus: wild-type (WT/WT) and L412F (L412F/L412F) homozygous. In these primary fibroblasts, immunofluorescence analysis revealed that the number of LC3B-positive vesicles increased upon poly(I:C) stimulation both in the absence and in the presence of BAF A1 [\(Figure 3E-F\)](#page-6-0), showing an overall positive autophagic flux in WT cells, while the flux resulted significantly reduced in L412F/L412F fibroblasts ([Figure 3G-H\)](#page-6-0). As a control, RAP stimulation of both WT/WT and L412F/L412F showed a positive autophagic flux [\(Figure 3\(E,F,G,H\)](#page-6-0) confirming that the mutation specifically affected TLR3-dependent autophagy and not the general autophagic process. Also in these cells, we confirmed a reduced autophagic flux in TLR3_L412F-expressing fibroblasts as compared to TLR3_WT-expressing cells, upon stimulation with poly(I:C), by measurement of the LC3B-LAMP1 colocalization rate (Fig. S2).

Overall, our results therefore suggest that the outcome of clinical trials with HCQ should be reinterpreted in the light of TLR3L412F polymorphism status. Negative effects of the drug in L412F bearing subjects may have masked a possible positive outcome in L412F-free subjects. Importantly, they also support a positive role of autophagy in the anti-viral response of the organism to SARS-CoV-2, as suggested by a recent report by Hayn and colleagues [\[38\]](#page-11-0), demonstrating that at least 3 viral proteins are able to specifically block autophagic turnover.

TLR3 variant L412F has been associated with a wide range of autoimmune diseases including Addison disease and hypothyroidism [\[39\]](#page-11-1). *TLR3* rare variants resulting in partial loss of function and occurring together with the common variant L412F, or with another rare variant, have been identified in Addison disease [\[40](#page-11-2)]. Persistent viral infections in a background of defective innate immunity lead to overexpression of HLA allotypes prone to present autoantigen. Defects of autophagy have been observed in many infectious and autoimmune diseases. Alteration of autophagic processes causes the onset of autoimmunity due to increased survival and reduced apoptosis of self-reactive lymphocytes [[41–](#page-11-3)[43](#page-11-4)]. HLA has been shown to be implicated in disease severity and clinical outcome of patients with COVID-19 [[44](#page-11-5)]. Accordingly, an increased frequency of autoimmune disorders as co-morbidity was found in our cohort in L412F COVID-19 patients with specific HLA class II haplotypes prone to autoantigen presentation. In particular, we analyzed the DR3-DQ2 haplotype which predisposes to different types of autoimmune diseases [[45](#page-11-6),[46](#page-11-7)]. The frequency of autoimmune disorders is indeed significantly increased in male patients with HLA DR3/DQ2 haplotype and L412F, especially diabetes (25%) [\(Table 4](#page-7-0) and [Table 5\)](#page-8-0). These results suggest that the combination of L412F in *TLR3* and a specific class II HLA haplotype puts male patients at risk of post-COVID autoimmune exacerbation emphasizing the need for appropriate follow-up.

No association was found between AIRE loss of function variants and COVID-19 outcome, as outlined by the absence of the gene in [Figure 1.](#page-4-0)

In conclusion, we have identified the second proteinencoding polymorphism that modulates COVID-19 outcome. These results indicate that L412F polymorphism in the *TLR3* gene makes males, in whom after puberty testosterone lowers TLR3 expression, at risk of severe COVID-19 in a context of a polygenic model. Moreover, based on impairment of autophagy, these data provide a rationale for reinterpreting clinical trials with HCQ stratifying patients by L412F. Finally, the combination of L412F in *TLR3* and specific HLA class II haplotypes may put male patients at risk of post-acute sequelae of SARS-CoV-2 infection pointing to the need for an appropriate follow-up. Our experiments suggest an important role of autophagy downstream of the TLR3 receptor, possibly affecting TNF production and susceptibility to infections, including SARS-CoV-2, pinpointing to IFNs treatment (especially IFN γ) avoiding hydroxiclorochine.

Table 4. Association between DR3-DQ2 + L412F haplotype and autoimmune disorders in male patients.

	With autoimmune	W/O autoimmune	Marginal Row
	disease	disease	Totals
$DR3-D02 + L412F$ 12 (3.59%) Other Marginal Column Totals	64 (19.16%) 76 (22.75%)	12 (3.59%) 246 (73.65%) 258 (77.24%)	24 (7.18%) 310 (92.81%) 334 (Grand Total)

p-value (cases vs controls) = 0.000951

Materials and methods

Patients

We performed a nested case-control study (NCC). We used a cohort of 1319 subjects (cases and controls) from the Italian GEN-COVID Multicenter study, infected with SARS-CoV-2 diagnosed by RT-PCR on nasopharyngeal swab [\[47](#page-11-8)]. Cases were defined as patients needing endotracheal intubation or CPAP/biPAP ventilation. Controls were oligo-asymptomatic subjects not requiring hospitalization.

Ethics approval

The GEN-COVID study was approved by the University Hospital of Siena Ethical Review Board (Protocol n. 16,929, dated 16 March 2020).

LASSO logistic regression

We adopted the *λ* P *p* $\sum_{k=1}$ β_k $|\beta_k|$ Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression model for the classification of severe COVID-19 patients (cases) versus SARS-CoV-2 PCR-positive oligo-asymptomatic subjects (controls), able to enforce both the sparsity and the interpretability of the results. By denoting with β_k the coefficients of the logistic regression and by lambda (λ) the strength of the regularization, the LASSO regularization [[48](#page-11-9)] term of the loss, has the effect of shrinking the estimated coefficients to 0. In this way, the weights of the logistic regression algorithm can be interpreted as the feature importances of the subset of the most relevant features for the task [[49\]](#page-11-10). The input features are the common biallelic polymorphisms from whole-exome sequencing as well as gender, and the age, the latter as a continuous

variable normalized between 0 and 1. Common bi-allelic polymorphisms are defined as combinations of two polymorphisms, each with minor allele frequency above 1%, with frequency above 5% in the cohort.

The fundamental hyper-parameter of the logistic regression algorithm is the strength of the LASSO term, which is tuned with a grid search method on the average area under the ROC curve for the 10-fold cross-validation. The regularization hyperparameter varies in the range $[10^{-3}, 10^{2}]$ with 50 equally spaced values in the logarithmic scale. The optimal regularization parameter is chosen by selecting the parameter with the highest cross-validation score. During the fitting procedure, the class slight unbalancing is tackled by penalizing the misclassification of the minority class with a multiplicative factor inversely proportional to the class frequencies. The data preprocessing was coded in Python, whereas for the logistic regression model the scikit-learn module with the liblinear coordinate descent optimization algorithm was used. Performances of the model were evaluated using the cross-validation confusion matrix as well as by computing precision, sensitivity, specificity, and the ROC curve.

Cell culture and transfection

HEK-Dual™ Null (NF/IL8) cells (Invivogen, hkd-nullni) cells were cultured in Dulbecco modified Eagle medium (DMEM; Euroclone, ECB7501L) supplemented with 10% fetal bovine serum (FBS; Euroclone, ECS0180L), 2 mM L-glutamine (Carlo Erba, ABP379-100) and 100 units/ml penicillinstreptomycin (Life Technologies, 15,140,148) at 37°C in an atmosphere of 5% $CO₂:air.$ Transfections were performed with 1 μg DNA plasmid using lipofectamine LTX (Life Technologies, 15,338,500). The cells were seeded to be 70% to 80% confluent, then DNA was diluted in DMEM with 10 mM HEPES, pH 7.2. Lipofectamine LTX was next added to the complex (5 μl) to allow creation of complexes (30 min at RT). Ultimately, DNA-lipid complexes were added to cells. Bafilomycin A_1 was from Santa Cruz Biotechnology (sc-201,550). Human primary fibroblasts were obtained from the Genetic Biobank of Siena [\(http://biobanknetwork.](http://biobanknetwork.telethon.it/) [telethon.it/](http://biobanknetwork.telethon.it/); cell line number: Rett 2250, 2980/18, 1031/15, Rett 1200). Fibroblasts were cultured in Dulbecco Modified Eagle medium supplemented with 10% FBS, 2% L-glutamine and 1% penicillin-streptomycin, according to standard protocols, and routinely passed 1:2 with trypsin-EDTA (0.05%) solution (Irvine Scientific, 9342).

Immunofluorescence (IF)

Cells were washed with phosphate-buffered saline (PBS; Oxoid, BR0014G), then fixed with 4% paraformaldehyde in PBS for 20 min, washed with PBS and permeabilized with digitonin solution (Life Technologies, BN2006) for 20 min. Then, the cells were washed three times in PBS. Permeabilized cells were incubated with anti-LC3B (MBL, M152–3) and/or anti-LAMP1 (Cell Signaling Technology, 9091) primary antibodies for 1 h, washed three times with PBS, and then incubated with antimouse Alexa Fluor 488-conjugated (Life Technologies, A21202) and/or Alexa Fluor 647 (Life Technologies, A21245) secondary antibodies; subsequently cells were washed three times with PBS. Nuclei were stained with a solution of 6 μM of 4ʹ,6 diamidino-2-phenylindole (DAPI; Sigma Aldrich, D9542) in PBS for 10 min. Coverslips were mounted in a fluorescence mounting medium (Dako, S3023). Samples were visualized on a TSC SP5 confocal microscope (Leica Microsystems, 5,100,000,750) installed on an inverted LEICA DMI 6000CS (Leica Microsystems, 10,741,320) microscope and equipped with an oil immersion PlanApo 63×1.4 NA objective. Images were acquired using the LAS AF acquisition software (Leica Microsystems, 10,210). Poly(I:C) was from InvivoGen (31,852–29-6).

Dot count and statistical analysis for autophagy

For the LC3B-positive dot counts, we performed intensitometric analysis of fluorescence using the Quantitation Module of Volocity software (PerkinElmer Life Science). LC3B-LAMP 1 colocalization rate was measured by the Quantification tool of LAS AF software (Leica Microsystems). Dot counts and colocalization rate were subjected to statistical analysis. Measures were obtained by analyzing at least 400 cells/sample (dot counts) or 250 cells/sample (colocalization rate) from 3 different experiments. Significance (P value) was assessed by Student's t test, using GraphPad Prism6 software. Asterisks were attributed for the following significance values: $P > 0.05$ (ns), $P < 0.05$ (*), $P < 0.01$ (**), $P < 0.001$ (***).

Real time qPCR analysis of TNF expression

Total RNA was isolated using the RNAeasy Mini Kit (Qiagen, NC9677589) according to the manufacturer's instructions. cDNA synthesis was performed using the Maxima First Strand cDNA Synthesis Kit (Life Technologies, EP0751). Neosynthetized cDNA was used to perform Real Time PCR using the PowerUp Sybr Green (Life Technologies, A25779). The following primers were used: *TNF* Fw CTATCTGGGA GGGGTCTTCC; *TNF* Rw GGTTGAGGGTGTCTGAAGGA; *HPRT1* Fw GTCTTGCTCGAGATGTGATG and *HPRT1* Rw GTAATCCAGCAGGTCAGCAA. Target transcripts were analyzed with the QuantStudio 7 System (Applied Biosystems, CA, USA). The comparative threshold cycle (Ct) method was used for quantification analysis. The Ct values of each gene were normalized to the Ct value of HPRT1. The gene expression levels were evaluated by the fold change using the equation 2-ΔΔCt.

HLA *sequencing*

HLA-class I and *II* genes were targeted for DNA sequencing using a biotinylated DNA probe-based capture method [\[50](#page-11-11)], with modifications as follows. Genomic DNA (500 ng from each sample) was fragmented enzymatically using the NEBNext Ultra ii FS module (New England Biolabs, E7810S). Individual samples were labeled uniquely using 3 μl of 15 μM custom dual-index adapters (Integrated DNA Technologies, Coralville, IA, USA) and the NEB ligation module. Post ligation cleanup was based on the Kapa Hyper Prep protocol (Kapa Biosystems, Wilmington, MA) and followed by dual size selection. Paired ends of 250 bp each were sequenced using a NovaSeq instrument and SP Reagent Kit (Illumina Inc, San Diego, CA, USA). *HLA* alleles were determined from the sequence data using the consensus from three algorithms: NGSengine 2.10.0 (GenDX, Utrecht, The Netherlands), HLA Twin (Omixon Biocomputing Ltd. Budapest, Hungary) and HLA*LA [[51\]](#page-11-12).

Acknowledgments

This study is part of the GEN-COVID Multicenter Study, [https://sites.](https://sites.google.com/dbm.unisi.it/gen-covid) [google.com/dbm.unisi.it/gen-covid,](https://sites.google.com/dbm.unisi.it/gen-covid) the Italian multicenter study aimed at identifying the COVID-19 host genetic bases. Specimens were provided by the COVID-19 Biobank of Siena, which is part of the Genetic Biobank of Siena, member of BBMRI-IT, of the Telethon Network of Genetic Biobanks (project no. GTB18001), of EuroBioBank, and of RD-Connect. We thank the CINECA consortium for providing computational resources and the Network for Italian Genomes [http://www.nig.](http://www.nig.cineca.it) [cineca.it](http://www.nig.cineca.it) for its support. We thank private donors for the support provided to A.R. (Department of Medical Biotechnologies, University of Siena) for the COVID-19 host genetics research project (D.L n.18 of 17 March 2020). PJN was supported by a grant from fastgrants.org and US NIH R56 AI151549. We also thank the COVID-19 Host Genetics Initiative ([https://www.covid19hg.org/\)](https://www.covid19hg.org/) and MIUR project "Dipartimenti di Eccellenza 2018-2020" to the Department of Medical Biotechnologies University of Siena, Italy. We thank Dr. Margherita Leonardi for the experimental contribution in the autophagy data analysis. TDJF received the Post-Doctoral fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) of Brazil.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

MIUR project "Dipartimenti di Eccellenza 2018-2020" to Department of Medical Biotechnologies University of Siena, Italy (Italian D.L. n.18

1670 \leftrightarrow S. CROCI ET AL.

March 17, 2020). Private donors for COVID-19 research. "Bando Ricerca COVID-19 Toscana" project to Azienda Ospedaliero-Universitaria Senese. Charity fund 2020 from Intesa San Paolo dedicated to the project N. B/2020/0119 "Identificazione delle basi genetiche determinanti la variabilità clinica della risposta a COVID-19 nella popolazione italiana". The Italian Ministry of University and Research for funding within the "Bando FISR 2020" in COVID-19 and the Istituto Buddista Italiano Soka Gakkai for funding the project "PAT-COVID: Host genetics and pathogenetic mechanisms of COVID-19" (ID n. 2020-2016_RIC_3).

ORCID

Stefania Mantovani Dhttp://orcid.org/0000-0002-5885-2842 Ottavia Spiga http://orcid.org/0000-0002-0263-7107 Andrea M. Isidori Dhttp://orcid.org/0000-0002-9037-5417 Mario U Mondelli **b** http://orcid.org/0000-0003-1811-3153 Alessandra Renieri **b** http://orcid.org/0000-0002-0846-9220

References

- [1] Lee IH, Lee JW, Kong SW. A survey of genetic variants in SARS-CoV-2 interacting domains of ACE2, TMPRSS2 and TLR3/7/8 across populations. Infect Genet Evol. [2020;](#page-2-12)85:104507.
- [2] Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: a review. Scand J Immunol. [2019](#page-2-12) Jul;90(1):e12771.
- [3] Perales-Linares R, Navas-Martin S. Toll-like receptor 3 in viral pathogenesis: friend or foe? Immunology. Immunology. 2013 Oct;140(2):153–167.
- [4] Totura AL, Whitmore A, Agnihothram S, et al. Toll-Like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio 2015 May 26;6(3):e00638–15.
- [5] Matsumoto M, Oshiumi H, Seya T. Antiviral responses induced by the TLR3 pathway. Rev Med Virol. [2011](#page-3-0) Mar;21(2):67–77.
- [6] Schulz O, Diebold SS, Chen M, et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature. 2005 Feb 24;433 (7028):887–892.
- [7] Suresh MV, Dolgachev VA, Zhang B, et al. TLR3 absence confers increased survival with improved macrophage activity against pneumonia. JCI Insight. 2019 Dec 5;4(23):e131195.
- [8] Ranjith-Kumar CT, Miller W, Sun J, et al. Effects of single nucleotide polymorphisms on Toll-Like receptor 3 activity and expression in cultured cells. J Biol Chem. [2007](#page-3-1) Jun 15;282(24):17696–17705.
- [9] Teimouri H, Maali A. Single-nucleotide polymorphisms in host pattern-recognition receptors show association with antiviral responses against SARS-CoV-2, in-silico trial. JoMMID. [2020;](#page-3-2)8 $(2):65 - 70.$
- [10] Dhangadamajhi G, Rout R, Cavazos-Escobar E. Association of TLR3 functional variant (rs3775291) with COVID-19 susceptibility and death: a population-scale study. Hum Cell. [2021](#page-3-3) Feb 22;34:1–3.
- [11] Franco LH, Fleuri AKA, Pellison NC, et al. Autophagy downstream of endosomal Toll-Like receptor signaling in macrophages is a key mechanism for resistance to Leishmania major infection. J Biol Chem. [2017](#page-3-4) Aug 11;292(32):13087–13096.
- [12] Kirkin V, McEwan DG, Novak I, et al. A role for ubiquitin in selective autophagy. Mol Cell. [2009](#page-3-5) May 15;34(3):259–269.
- [13] Delgado MA, Elmaoued RA, Davis AS, et al. Toll-like receptors control autophagy. EMBO J. [2008](#page-3-5) Apr 9;27(7):1110–1121.
- [14] Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. [2011](#page-3-6) Jan 20;469(7330):323–335.
- [15] Prentice E, Jerome WG, Yoshimori T, et al. Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem. [2004](#page-3-7) Mar 12;279(11):10136–10141.
- [16] Guo L, Yu H, Gu W, et al. Autophagy negatively regulates transmissible gastroenteritis virus replication. Sci Rep. [2016](#page-3-7) Mar 31;6: 23864.
- [17] Carvalho-Schneider C, Laurent E, Lemaignen A, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. [2021](#page-3-8) Feb;27(2):258–263.
- [18] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020Apr16;181 (2):271–280.e8.
- [19] Miao Y, Fan L, Li JY. Potential treatments for COVID-19 related cytokine storm - beyond corticosteroids. Front Immunol. 2020 Jun 16;11: 1445.
- [20] Shojaei S, Suresh M, Klionsky DJ, et al. Autophagy and SARS-CoV-2 infection: a possible smart targeting of the autophagy pathway. Virulence. [2020](#page-3-9) Dec;11(1):805–810.
- [21] Benvenuto D, Angeletti S, Giovanetti M, et al. Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6) could affect viral autophagy. J Infect. 2020 Jul;81(1):e24–e27.
- [22] Jamwal S, Gautam A, Elsworth J, et al. An updated insight into the molecular pathogenesis, secondary complications and potential therapeutics of COVID-19 pandemic. Life Sci. 2020 Sep 15;257: 118105.
- [23] Torcia MG, Nencioni L, Clemente AM, et al. Sex differences in the response to viral infections: TLR8 and TLR9 ligand stimulation induce higher IL10 production in males. PLoS One. [2012](#page-3-10);7 (6):e39853.
- [24] Lim HK, Huang SXL, Chen J, et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med. [2019](#page-3-11) Sep 2;216(9):2038–2056.
- [25] Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. [2020](#page-3-11) Oct 23;370(6515):eabd4570.
- [26] Enkhbayar P, Kamiya M, Osaki M, et al. Structural principles of leucine-rich repeat (LRR) proteins. Proteins. [2004](#page-3-12) Feb 15;54 $(3):394-403.$
- [27] Rothberg JM, Jacobs JR, Goodman CS, et al. slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev. [1990](#page-3-13) Dec;4(12A):2169–2187.
- [28] Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. [2001](#page-3-14) Dec;11(6):725–732.
- [29] Gao T, Zhang SP, Wang JF, et al. TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction. J Cell Mol Med. [2018](#page-3-15) Jan;22(1):395–408.
- Ruschitzka F, Patel AN. Retraction-Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. [2020](#page-5-2) Jun 13;395(10240):1820.
- [31] Mahase E. Covid-19: WHO halts hydroxychloroquine trial to review links with increased mortality risk. BMJ [2020](#page-5-3) May 28;369: m2126.
- [32] Ayele Mega T, Feyissa TM, Dessalegn Bosho D, et al. The outcome of hydroxychloroquine in patients treated for COVID-19: systematic review and meta-analysis. Can Respir J. [2020](#page-5-3) Oct 13;2020: 4312519.
- [33] Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy [2021](#page-5-4) Feb;8:1–382.
- [34] Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. [2017](#page-5-5) Sep;179:528–542. [Epub 2017 Jul 28]. PMID: 28751651; PMCID: PMC5975367.
- [35] Michalakis K, Ilias I. SARS-CoV-2 infection and obesity: common inflammatory and metabolic aspects. Diabetes Metab Syndr. [2020](#page-5-6) Jul-Aug;14(4):469–471.
- [36] Vomero M, Barbati C, Colasanti T, et al. Autophagy modulation in lymphocytes from COVID-19 patients: new therapeutic target in SARS-COV-2 infection. Front Pharmacol. [2020](#page-7-1) Nov 19;11: 569849.
- [37] Jang CH, Choi JH, Byun MS, et al. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford). [2006](#page-7-2) Jun;45 (6):703–710.
- [38] Hayn M, Hirschenberger M, Koepke L, et al. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep. [2021](#page-7-3) May 18;357:109126. [Epub 2021 Apr 27]. PMID: 33974846; PMCID: PMC8078906.
- [39] Nahum A, Dadiac H, Batesac A, et al. The biological significance of TLR3 variant, L412F, in conferring susceptibility to cutaneous candidiasis, CMV and autoimmunity. Autoimmun Rev. [2012](#page-7-4) Mar;11(5):341–347.
- [40] Aslaksen S, Wolff AB, Vigeland MD, et al. Identification and characterization of rare toll-like receptor 3 variants in patients with autoimmune Addison's disease. J Transl Autoimmun. [2019](#page-7-5) May 28;1:100005.
- [41] Wu DJ, Adamopoulos IE. Autophagy and autoimmunity. Clin Immunol. [2017M](#page-7-6)ar;176:55–62.
- [42] Caza TN, Talaber G, Perl A. Metabolic regulation of organelle homeostasis in lupus T cells. Clin Immunol. 2012 Sep;144 (3):200–213.
- [43] Keller CW, Lünemann JD. Autophagy and autophagy-related proteins in CNS autoimmunity. Front Immunol. 2017 Feb 27;8: 165.
- [44] De Sousa E, Ligeiro D, Lérias JR, et al. Mortality in COVID-19 disease patients: correlating the association of major histocompatibility complex (MHC) with severe acute respiratory syndrome 2 (SARS-CoV-2) variants. Int J Infect Dis. [2020](#page-7-7) Sep;98:454–459. Epub 2020 Jul 18.
- [45] Erichsen MM, Løvås K, Skinningsrud B, et al. Clinical, immunological, and genetic features of autoimmune primary adrenal insufficiency: observations from a Norwegian registry. J Clin Endocrinol Metab. [2009](#page-7-8) Dec;94(12):4882–4890.
- [46] Smigoc Schweiger D, Mendez A, Kunilo Jamnik S, et al. High-risk genotypes HLA-DR3-DQ2/DR3-DQ2 and DR3-DQ2/DR4-DQ8 in co-occurrence of type 1 diabetes and celiac disease. Autoimmunity. [2016](#page-7-8) Jun;49(4):240–247.
- [47] Daga S, Fallerini C, Baldassarri M, et al. Employing a systematic approach to biobanking and analyzing clinical and genetic data for advancing COVID-19 research. Eur J Hum Genet. [2021](#page-8-1) Jan;17:1–15.
- [48] Molnar R. Interpretable machine learning. A guide for making black box models explainable. [2020.](#page-8-2) lulu.com.
- [49] Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological). [1996](#page-8-3);58(1):267–288.
- [50] Norman PJ, Hollenbach JA, Nemat-Gorgani N, et al. Defining KIR and HLA Class I genotypes at highest resolution via highthroughput sequencing. Am J Hum Genet. [2016](#page-9-0) Aug 4;99 (2):375–391.
- [51] Dilthey AT, Mentzer AJ, Carapito R, et al. HLA*LA-HLA typing from linearly projected graph alignments. Bioinformatics. [2019](#page-9-1) Nov 1;35(21):4394–4396.

GEN-COVID Multicenter Study [\(https://sites.google.com/dbm.unisi.it/](https://sites.google.com/dbm.unisi.it/gen-covid) [gen-covid\)](https://sites.google.com/dbm.unisi.it/gen-covid)

Mirella Bruttini^{1,2,17}, Rossella Tita¹⁷, Sara Amitrano¹⁷, Anna Maria Pinto¹⁷, Maria Antonietta Mencarelli¹⁷, Caterina Lo Rizzo¹⁷, Valentina Perticaroli^{1,2,17}, Massimiliano Fabbiani¹⁹, Barbara Rossetti¹⁹, Giacomo Zanelli^{2,19}, Elena Bargagli²⁰, Laura Bergantini²⁰, Miriana D'Alessandro²⁰, Paolo Cameli²⁰, David Bennett²⁰, Federico Anedda²¹, Simona Marcantonio²¹, Sabino Scolletta²¹, Federico Franchi²¹, Maria Antonietta Mazzei²², Susanna Guerrini²², Edoardo Conticini²³, Luca Cantarini²³, Bruno Frediani²³, Danilo Tacconi²⁴, Chiara Spertilli²⁴, Marco Feri²⁵, Alice Donati²⁵, Raffaele Scala²⁶, Luca Guidelli²⁶, Genni Spargi²⁷, Marta Corridi²⁷, Cesira Nencioni²⁸, Leonardo Croci²⁸, Gian Piero Caldarelli²⁹, Maurizio Spagnesi³⁰, Paolo Piacentini³⁰, Maria Bandini³⁰, Elena Desanctis³⁰, Silvia Cappelli³⁰, Anna Canaccini³¹, Agnese Verzuri³¹, Valentina Anemoli³¹, Agostino Ognibene³², Alessandro Pancrazi³², Maria Lorubbio³², Massimo Vaghi³³, Antonella D'Arminio Monforte³⁴, Esther Merlini³⁴, Federica Gaia Miraglia³⁴, Raffaele Bruno^{35,36}, Marco Vecchia³⁵, Serena Ludovisi³⁷, Massimo Girardis³⁸, Sophie Venturelli³⁸, Marco Sita³⁸, Andrea Cossarizza³⁹, Andrea Antinori⁴⁰, Alessandra Vergori 40 , Arianna Emiliozzi 40 , Stefano Rusconi 41,42 , Matteo Siano 42 , Arianna Gabrieli⁴², Agostino Riva^{41,42}, Daniela Francisci⁴³⁴⁴, Elisabetta Schiaroli⁴³⁴⁴, Francesco Paciosi⁴⁴, Pier Giorgio Scotton⁴⁵, Francesca Andretta⁴⁵, Sandro Panese⁴⁵, Renzo Scaggiante⁴⁷, Francesca Gatti⁴⁸ Saverio Giuseppe Parisi⁴⁸, Melania degli Antoni⁴⁹, Isabella Zanella^{51,41}, Matteo Della Monica⁵², Carmelo Piscopo⁵², Mario Capasso^{53,54,55}, Roberta Russo^{53,54}, Immacolata Andolfo^{53,54}, Achille Iolascon^{53,54}, Giuseppe Fiorentino⁵⁵, Massimo Carella⁵⁶, Marco Castori⁵⁶, Filippo Aucella⁵⁷, Pamela Raggi⁵⁸, Carmen Marciano⁵⁸, Rita Perna⁵⁸, Matteo Bassetti^{59,60}, Antonio Di Biagio^{59,60}, Maurizio Sanguinetti^{61,62}, Luca Masucci^{61,62}, Serafina Valente⁶³, Marco Mandalà⁶⁴, Alessia Giorli⁶⁴, Lorenzo Salerni⁶⁴, Patrizia Zucchi⁶⁵, Pierpaolo Parravicini⁶⁵, Elisabetta Menatti⁶⁶ Stefano Baratti⁴⁵, Tullio Trotta⁶⁷, Ferdinando Giannattasio⁶⁷, Gabriella Coiro⁶⁷, Fabio Lena⁶⁸, Domenico A. Coviello⁶⁹, Cristina Mussini⁷⁰, Giancarlo Bosio⁷¹, Enrico Martinelli⁷¹, Sandro Mancarella⁷², Luisa Tavecchia⁷², Mary Ann Belli⁷², Lia Crotti^{73,74,75,76}, Gianfranco Parati^{73,74}, Marco Gori^{77,78}, Maurizio Sanarico⁷⁹, Stefano Ceri⁸⁰, Pietro Pinoli⁸⁰, Francesco Raimondi⁸¹, Filippo Biscarini⁸², Alessandra Stella⁸², Marco Rizzi⁸³, Franco Maggiolo⁸³, Diego Ripamonti⁸³, Claudia Suardi⁸⁴, Tiziana Bachetti⁸⁵, Maria Teresa La Rovere⁸⁶, Simona Sarzi-Braga⁸⁷, Maurizio Bussotti⁸⁸, Katia Capitani^{2,89}, Kristina Zguro², Simona Dei⁹⁰, Sabrina Ravaglia⁹¹, Rosangela Artuso⁹², Antonio Perrella⁹³, Francesco Bianchi^{2,93}, Giuseppe Merla^{53,94}, Gabriella Maria Squeo⁹⁴, Mario Tumbarello^{2,19}, Ilaria Rancan^{2,19}, Davide Romani³⁰, Manola Pisani³¹, Stefano Busani³⁸, Andrea Tommasi⁴³, Francesco Castelli⁴⁹, Eugenia Quiros-Roldan⁴⁹, Alessandra Guarnaccia⁶¹, Oreste De Vivo⁶³, Gabriella Doddato^{1,2}, Annarita Giliberti^{1,2}, Francesca Ariani^{1,2,17}, Gianluca Lacerenza⁹⁵, Elena Andreucci⁹², Giulia Gori⁹², Angelica Pagliazzi⁹², Erika Fiorentini⁹², Paola Bergomi⁹⁶, Emanuele Catena⁹⁶, Riccardo Colombo⁹⁶, Sauro Luchi97, Giovanna Morelli97, Paola Petrocelli97, Sarah Iacopini97, Sara Modica⁹⁷, Silvia Baroni⁹⁸, Francesco Vladimiro Segala⁹⁹, Francesco Menichetti¹⁰⁰, Marco Falcone¹⁰⁰, Giusy Tiseo¹⁰⁰, Chiara Barbieri¹⁰⁰, Tommaso Matucci¹⁰⁰, Davide Grassi¹⁰¹, Claudio Ferri¹⁰¹, Franco Marinangeli¹⁰², Francesco Brancati¹⁰³, Antonella Vincenti¹⁰⁴, Valentina Borgo¹⁰⁴, Lombardi Stefania¹⁰⁴, Mirco Lenzi¹⁰⁴, Massimo Antonio Di Pietro¹⁰⁵, Francesca Vichi¹⁰⁵, Benedetta Romanin¹⁰⁵, Letizia Attala¹⁰⁵, Cecilia Costa¹⁰⁵, Andrea Gabbuti¹⁰⁵, Menè Roberto¹⁰⁶, Umberto Zuccon¹⁰⁷, Lucia Vietri¹⁰⁷, Patrizia Casprini¹⁰⁸, Marcello Maffezzoni¹⁰⁹ and Marta Colaneri¹¹⁰

¹⁹Department of Medical Sciences, Infectious and Tropical Diseases
Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy

²⁰Respiratory Diseases Unit, Department of Medicine, Surgery and

Neurosciences, Siena University Hospital, Siena, Italy ²¹Department of Emergency and Urgency, Medicine, Surgery and Neurosciences, Unit of Intensive Care Medicine, Siena University

Hospital, Italy 22 Department of Medical, Surgical and Neurosciences and Radiological Sciences, Unit of Diagnostic Imaging, University of Siena
²³Rheumatology Unit, Department of Medicine, Surgery and

Neurosciences, University of Siena, Policlinico Le Scotte, Italy 24Department of Specialized and Internal Medicine, Infectious

Diseases Unit, San Donato Hospital Arezzo, Italy 25Department of Emergency, Anesthesia Unit, San Donato Hospital, Arezzo, Italy
²⁶Department of Specialized and Internal Medicine, Pneumology

Unit and UTIP, San Donato Hospital, Arezzo, Italy
²⁷Department of Emergency, Anesthesia Unit, Misericordia Hospital, Grosseto, Italy

 28 Department of Specialized and Internal Medicine, Infectious Diseases Unit, Misericordia Hospital, Grosseto, Italy 29Clinical Chemical Analysis Laboratory, Misericordia Hospital,

Grosseto, Italy 30
Department of Preventive Medicine, Azienda USL Toscana Sud Est,

Italy $\prescript{31}{}{\textrm{Territorial Scientific Technician Department}, Azienda USL Toscana}$

³²Laboratory Medicine Department, San Donato Hospital, Arezzo, Italy33Chirurgia Vascolare, Ospedale Maggiore di Crema, Italy 34Department of Health Sciences, Clinic of Infectious Diseases, ASST

Santi Paolo e Carlo, University of Milan, Italy

1672 \leftrightarrow S. CROCI ET AL.

³⁵Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy 36Department of Internal Medicine and Therapeutics, University of

Pavia, Italy
³⁷Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
³⁸Department of Anesthesia and Intensive Care, University of

Modena and Reggio Emilia, Modena, Italy
³⁹Department of Medical and Surgical Sciences for Children and
Adults, University of Modena and Reggio Emilia, Modena, Italy

⁴⁰HIV/AIDS Department, National Institute for Infectious Diseases, IRCCS, Lazzaro Spallanzani, Rome, Italy 41III Infectious Diseases Unit, ASST-FBF-Sacco, Milan, Italy 42Department of Biomedical and Clinical Sciences Luigi Sacco,

University of Milan, Milan, Italy
⁴³Infectious Diseases Clinic, Department of Medicine, University of

Perugia, Santa Maria della Misericordia Hospital, Perugia, Italy ⁴⁴

 45 Department of Infectious Diseases, Treviso Hospital, Local Health Unit 2 Marca Trevigiana, Treviso, Italy

 46 Clinical Infectious Diseases, Mestre Hospital, Venezia, Italy.
 47 Infectious Diseases Clinic, ULSS1, Belluno, Italy
 48 Department of Molecular Medicine, University of Padova, Italy
 49 Department of Infectio

 50 Department of Molecular and Translational Medicine, University of

Brescia, Italy;
⁵¹Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics
Section, Diagnostic Department, ASST Spedali Civili di Brescia, Italy

⁵²Medical Genetics and Laboratory of Medical Genetics Unit, A.O.R.N. "Antonio Cardarelli", Naples, Italy

⁵³Department of Molecular Medicine and Medical Biotechnology,

University of Naples Federico II, Naples, Italy
⁵⁴CEINGE Biotecnologie Avanzate, Naples, Italy
⁵⁵Unit of Respiratory Physiopathology, AORN dei Colli, Monaldi
Hospital, Naples, Italy

⁵⁶Division of Medical Genetics, Fondazione IRCCS Casa Sollievo
della Sofferenza Hospital, San Giovanni Rotondo, Italy

⁵⁷Department of Medical Sciences, Fondazione IRCCS Casa Sollievo
della Sofferenza Hospital, San Giovanni Rotondo, Italy

58Clinical Trial Office, Fondazione IRCCS Casa Sollievo della

Sofferenza Hospital, San Giovanni Rotondo, Italy 59
Department of Health Sciences, University of Genova, Genova, Italy 60
Infectious Diseases Clinic, Policlinico San Martino Hospital, IRCCS

- for Cancer Research Genova, Italy
⁶¹Microbiology, Fondazione Policlinico Universitario Agostino
- Gemelli IRCCS, Catholic University of Medicine, Rome, Italy
⁶²Department of Laboratory Sciences and Infectious Diseases,
Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
	- ⁶³Department of Cardiovascular Diseases, University of Siena, Siena, Italy
⁶⁴Otolaryngology Unit, University of Siena, Italy
⁶⁵Department of Internal Medicine, ASST Valtellina e Alto Lario,

Sondrio, Italy 66Study Coordinator Oncologia Medica e Ufficio Flussi, Sondrio, Italy 67 First Aid Department, Luigi Curto Hospital, Polla, Salerno, Italy 68Local Health Unit-Pharmaceutical Department of Grosseto, Toscana

⁶⁹U.O.C. Laboratorio di Genetica Umana, IRCCS Istituto G. Gaslini,

Genova, Italy.
⁷⁰Infectious Diseases Clinics, University of Modena and Reggio

Emilia, Modena, Italy.
⁷¹Department of Respiratory Diseases, Azienda Ospedaliera di Cremona, Cremona, Italy 72U.O.C. Medicina, ASST Nord Milano, Ospedale Bassini, Cinisello

Balsamo (MI), Italy
⁷³Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular,

Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy

 74 Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
⁷⁵Istituto Auxologico Italiano, IRCCS, Center for Cardiac

Arrhythmias of Genetic Origin, Milan, Italy
⁷⁶Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular

Genetics, Milan, Italy
⁷⁷University of Siena, Diism-sailab, Siena, Italy
⁷⁸University Cote d'Azur, Inria, CNRS, I3S, Maasai
⁷⁹Independent Data Scientist, Milan, Italy
⁸⁰Department of Electronics, Information and Bi

(DEIB), Politecnico di Milano, Milano, Italy
⁸¹Scuola Normale Superiore, Pisa, Italy
⁸²CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e
Biotecnologia Agraria (IBBA), Milano, Italy

⁸³Unit of Infectious Diseases, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy 84Fondazione per la ricerca Ospedale di Bergamo, Bergamo, Italy 85Direzione Scientifica, Istituti Clinici Scientifici Maugeri IRCCS,

Pavia, Italy
⁸⁶Istituti Clinici Scientifici Maugeri IRCCS, Department of
Cardiology, Institute of Montescano, Pavia, Italy

⁸⁷Istituti Clinici Scientifici Maugeri, IRCCS, Department of Cardiac Rehabilitation, Institute of Tradate (VA), Italy

⁸⁸Istituti Clinici Scientifici Maugeri IRCCS, Department of Cardiology, Institute of Milan, Milan, Italy

⁸⁹IRCCS C. Mondino Foundation,Pavia, Italy
⁹⁰Core Research Laboratory, ISPRO, Florence, Italy
⁹¹Health Management, Azienda USL Toscana Sudest, Tuscany, Italy
⁹²Medical Genetics Unit, Meyer Children's University Hos

Florence, Italy
⁹³Department of Medicine, Pneumology Unit, Misericordia Hospital,

Grosseto, Italy
⁹⁴Laboratory of Regulatory and Functional Genomics, Fondazione
IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy

⁹⁵Department of Pharmaceutical Medicine, Misericordia Hospital, Grosseto, Italy

⁹⁶Department of Anesthesia and Intensive Care Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario,

⁹⁷Infectious Disease Unit, Hospital of Lucca, Lucca, Italy 98
Department of Diagnostic and Laboratory Medicine, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
⁹⁹Clinic of Infectious Diseases, Catholic University of the Sacred

Heart, Rome, Italy
¹⁰⁰Department of Clinical and Experimental Medicine, Infectious Diseases Unit, University of Pisa, Pisa, Italy 101 Department of Clinical Medicine, Public Health, Life and

Environment Sciences, University of L'Aquila, L'Aquila, Italy ¹⁰²Anesthesiology and Intensive Care, University of L'Aquila,

L'Aquila, Italy
¹⁰³Medical Genetics Unit, Department of Life, Health and
Environmental Sciences, University of L'Aquila, L'Aquila, Italy

¹⁰⁴Infectious Disease Unit, Hospital of Massa, Massa Carrara, Italy
¹⁰⁵Unit of Infectious Diseases, S.M. Annunziata Hospital, Florence, Italy
¹⁰⁶Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital;

Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
¹⁰⁷Respiratory Diseases Unit, "Santa Maria degli Angeli" Hospital,
Pordenone, Italy

¹⁰⁸Laboratory of Clinical Pathology and Immunoallergy, Florence-

Prato, Italy 109University of Pavia, Pavia, Italy 109University of Pavia, Pavia, Italy 110Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy