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The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically
deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state
space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate
entanglement by moving through energy eigenstates corresponding to different values of the control param-
eters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for
generald3d quantum systems, and specific two-qubit examples are studied
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I. INTRODUCTION

Adiabatic evolutions represent a very special class of
quantum evolutions, nevertheless they allow for a broad set
of quantum state manipulations. In particular, a great deal of
activity has been devoted recently to the study of adiabatic
techniques for quantum information processing(QIP) [1].

The notion of adiabatic quantum computing emerged as
an novel intriguing paradigm for the development of efficient
quantum algorithms[2–4]. In this approach, information,
e.g., the solution of a hard combinatorial problem, is encoded
in the ground state of a properly designed many-qubit Hamil-
tonianHf. This ground state is then generated by letting the
system evolve in an adiabatic fashion from the ground state
of a simple initial HamiltonianH0 [2]. In view of the adia-
batic theorem(see, e.g.,[5]), the crucial property which gov-
erns the scaling behavior of the computational time is the
spectral gap, i.e., the energy difference between the ground
and the first excited state. The larger the gap, the faster the
computation can be.

In adiabatic quantum computing as defined in Ref.[2], the
parametric family of Hamiltonians has the simple form of a
convex combination ofH0 and Hf; one can also consider a
more general family of Hamiltonians and more complex
paths in the control parameter space. For example, in the
so-calledgeometric quantum computation[6], one considers
loops in the control space of a nondegenerate set of Hamil-
tonians for the purpose of controlled Berry phase generation
[7]. When even the nondegeneracy constraint is lifted and
high-dimensional eigenspaces are allowed, one is led to con-
sider nonAbelian holonomies which mix nontrivially the
ground states of the system. This latter method, which pro-
vides a general approach to QIP as well, is termedholonomic
quantum computation[8].

In this paper, we shall investigate how one can adiabati-
cally generate quantum entanglement[9,10]. The idea is a
simple one. One first prepares a bipartite quantum system in
one of its eigenstates, e.g., the ground state, and then drives
the control parameters of the system Hamiltonian along
some path. If this path is adiabatic, the system will stand at
any time in the corresponding eigenstate. In general, eigen-

states associated with different control parameters will have
different entanglement, therefore the described dynamical
process will result in a protocol for entanglement manipula-
tion. We would like to characterize a parametric family of
Hamiltonians in terms of its capability of entanglement gen-
eration according to the above protocol. In this paper, we
will focus on bipartite, e.g., two-qubit, quantum systems. The
aim will be, given a Hamiltonian family, to characterize its
entangling capabilities by means of adiabatic manipulations.

II. ADIABATIC CONNECTIBILITY

Let us start with a few simple general considerations
about adiabatically connectible Hamiltonians. We would like
to understand how the space of Hamiltonians overH>CD

splits in classes of elements that can be adiabatically de-
formed into each other.

Definition. Two HamiltoniansH0 andH1 are adiabatically
connectible if a continuous family of HamiltonianshHtjtPf0,1g
exist such that(i) Hs0d=H0 and Hs1d=H1, and (ii ) the de-
generacies of the spectra of theHt’s do not depend ont.

The notion of adiabatic deformability of Hamiltonians is
an important concept in many-body and field theory quantum
systems. Indeed, when two Hamiltonians can be connected
in this way they share several properties, e.g., ground-state
degeneracy, quasiparticle quantum numbers, etc., so that in
many respects they can be regarded as belonging to the same
kind of universality class[11]. On the other hand, an obstruc-
tion to such a process will be typically associated with some
sort of quantum phase transition. Unconnectible Hamilto-
nians show qualitative different features. Since we will study
how entanglement changes while remaining in the same
adiabatic class, our analysis can be regarded as complimen-
tary to that of entanglement behavior in quantum phase tran-
sitions [12].

In the simple finite-dimensional case we are interested in,
one can prove the following

Proposition 1. Two HamiltoniansH0 and H1 over H
>CD are adiabatically connectible if and only if they belong
to the same connected component of the set of isodegenerate
Hamiltonians.
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Proof. Let Ha=oi=1
R ea

i Pa
i sa=0,1d be the spectral resolu-

tion of H0 andH1. We now order their eigenvalues in ascend-
ing order, i.e.,ea

1 , ¯ ,ea
R. We define two vectorsDa sa

=0,1d in RR as follows: Da : =strPa
1 , . . . ,Pa

Rd, where the
components are ordered according to the corresponding ei-
genvalues. The HamiltoniansH0 andH1 belong to the same
connected component of the set of isodegenerate Hamilto-
nians if and only ifD0=D1. Isodegeneracy is given by the
weaker condition that a permutationP of R objects exists
such thatsD1di =sD0dPs1d si =1, . . . ,Rd. It is an elementary
fact that, given the two systems of orthoprojectors
hPa

i ji=1
R sa=0,1d such that TrP1

i =TrP2
i si =1, . . . ,Rd, a

(nonunique) unitary W exists such thatW P0
i W†=P1

i si
=1, . . . ,Rd. Let us introduce R real-valued functions
ei : f0,1g°R such thateis0d=e0

i andeis1d=e1
i si =1, . . . ,Rd. In

view of the ordering assumption, we can choose them to
satisfy the no-crossing constraintsei+1std.eistd si =1, . . . ,R
−1d. Consider now the following family of Hamiltonians:
Hstd=oi=1

R eistdUtP0
i Ut

†, where the continuous unitary family
hUtjt=0

1 is such thatU0=1 andU1=U. Clearly Hs0d=H0 and
Hs1d=H1. Moreover, for the very way they have been con-
structed, all theHstd belong to the same connected compo-
nent of the set of isodegenerate Hamiltonians ofH0 andH1.
This shows that the latter condition is sufficient in order that
H0 andH1 are adiabatically connectible.

Isodegeneracy ofH0 andH1 is also an obvious necessary
condition for adiabatic connectibility because otherwise level
crossing would necessarily occur. But level crossing would
necessarily occur even ifD0ÞD1 because, for somet
P f0,1g and 1ø i øR, it would be ei+1=ei. This proves the
necessity part of the Proposition.

The role of the functionseistd in the Proof above is to map
the spectrum ofH0 onto that ofH1, whereas all the informa-
tion about the eigenvectors is contained in the family of uni-
tariesUt. By setting all the connecting functionset

i /e0
i to 1,

one gets a final HamiltonianH̃1 isospectral toH0 having the
same eigenvectors ofH1. This latter remark is important for
the following in that it allows one to restrict to isospectral
Hamiltonian families. The actual spectrum structure, e.g., the
energy gaps, just imposes an upper bound over the speed at
which the adiabatic deformation process can be carried on.
Moreover, in order to have a one-to-one correspondence be-
tween eigenvalues and eigenstates, we shall assume that our
Hamiltonians arenondegenerate, i.e., di =1 si =1, . . . ,Rd.
Notice that in Hamiltonian space the condition of nondegen-
eracy is agenericone.

The simplest case one can consider is of course provided
by two-level Hamiltonians with eigenvaluese1 ande2. Using
the standard Pauli matrices, one can writeH=eS1
+eAnW ·sW (eS: =se1+e2d /2) ,eA: =se1−e2d /2. Here we have just
two possibilities(i) eA=0: the Hamiltonian is a rescaled iden-
tity and we have just one degree of freedom, and(ii ) eAÞ0:
all possible operators of this kind are then parametrized by a
triple seS,eA,nWd, where eAPR ,eAPR−h0j, and nW PS2

>SUs2d /Us1d. For each of the two isodegeneracy classes
above there is just one connected component, i.e., any non
(totally) degenerate Hamiltonian is adiabatically connectible

to any other non(totally) degenerate Hamiltonian. Notice
that this latter statement holds for any dimension ofH.

III. ADIABATIC ENTANGLING POWER

We move now to introduce our definition of adiabatic
entangling power. LetH>Cd ^ Cd be a bipartite quantum
state space. We consider a familyF of nondegenerate Hamil-
tonians over H, FH : =hHsld /lPMj, where M is an
n-dimensional compact and connected manifold. The points
of M are to be seen as dynamically controllable parameters.
Let E:H→R0

+ be a measure of bipartite pure state entangle-
ment overE, e.g., von Neumann entropy of the reduced den-

sity matrix. If Hsld=oi=1
d2

«iuCisldlkCisldu is the spectral
resolution of an element ofF, we define theadiabatic en-
tangling powerof F by

esFHd: = max
i

sup
l,l8

zE„uCisldl… − E„uCisl8dl…z s1d

si =1, . . . ,d2,l ,l8PMd.
We will assume thatHl0

PFH such that the associated
eigenvectors are allproduct states. Let us stress once again
that the physical idea behind these definitions is quite simple:
one starts from the(unentangled) eigenvectors ofHl0

; then
by adiabatically driving the control parametersl, the states
uCisldl can be reached. Ifl* denotes the point at which the
maximum (1) is achieved(M is compact), any adiabatic
path connectingl0 to l* realizes anoptimal entanglement
generation procedure within the familyFH.

An explicit evaluation of Eq.(1) is, for a generalF, quite
a difficult task. In light of the observations after Proposition
1, we can, without loss of generality, consider only the case
in which F is anisospectralfamily of nondegenerate Hamil-
tonians. LetFU,UsCd ^ Cdd be a set(compact and con-
nected) of unitary transformations containing the identity.
The isospectral family is

FH: = hU H0U
†/U P FUj, s2d

whereH0=oi=1
d2

«iuCilkCiu , i Þ j ⇒«i Þ« j, and theuCil’s are
an orthonormal basis of product states. Moreover we can also
restrict ourselves toground-stateentanglement, i.e., to con-
sider the entanglement contents of just the eigenvectoruC0l
corresponding to the minimum energy eigenvalue. If this is
the case, one can forget about the maximization over the
eigenvalue indexi in Eq. (1). The ground state ofHsld sH0d
will be denoted asuC0sldl suC0ld. For an isospectral family
as in Eq.(2), we will use the notationesFUd.

The adiabatic entangling power(1) induces, for the class
of Hamiltonian families(2), the following real-valued func-
tion over the subsetsFU of UsCd ^ Cdd:

esFUd = max
i

sup
UPFU

EfUuCilg. s3d

It is important to stress that this expression has the physical
meaning of entanglement achievable by adiabatically ma-
nipulating the parameters found on a manifold, sayM, upon
which the U’s in FU depend. Indeed, for an isospectral
Hamiltonian family(2), the adiabatic evolution operator cor-
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responding to the pathg : f0,Tg°M is given by the product
of three different kinds of contributions Uadsgd
=U(gsTd)e−iH0TUBsgd. The first termU(gsTd) is simply the
unitary corresponding to the end-point of the pathg. Due to
the adiabatic theorem, an initial eigenstateuCil is indeed
mapped, up to a phase, onto the final eigenstateU(gsTd)uCil.
The second factor inUad is clearly just the dynamical phase
associated withH0, whereas the third is an operator taking
into account the geometric contribution to the phase accumu-

lated by the eigenvectorsUBsgd=oi=1
d2

eifgsgduCilkCiu, in
which fgsgd= ieg kCislduduCisldl are Berry’s phases associ-
ated with g. Notice in passing that wheng is a loop, i.e.,
gs0d=gsTd=l0, thenU(gsTd)=1. As far as the adiabatic en-
tangling power(1) is concerned, the phases can be obviously
neglected.

The adiabatic entangling power is invariant under left
(and not right in general) multiplication by bilocal unitary
operators, i.e., esFUd=e(sU1 ^ U2dFU) , ∀U1,U2PUsdd.
This implies that, as far as adiabatic entangling capabilities
are concerned, a unitary familyFU can always be considered
closed under the left multiplication by local unitary operators
[13].

We want now to establish a connection between the adia-
batic entangling power(3) and a variation of entangling
powerep

savd of bipartite unitaries introduced in Ref.[14] (for
a different definition, based onaverageentanglement pro-
duction, see also[15]). In this paper, we defineepsUd as the
maximumentanglement obtainable by the action ofU over
all possible product states, i.e.,epsUd=supc1,c2

EfUuc1l
^ uc1lg.

Since the uCil’s are by hypothesis product states, one
clearly has EfU uCilgøsupc1,c2

EfUuc1l ^ uc1lg. Therefore,
one obtains the upper bound

esFUd ø sup
UPFU

epsUd. s4d

In some circumstances one can get the equality.
Proposition2. Suppose that the unitary familyFU is such

that for allU1,U2PUsdd one hasFUsU1 ^ U2d,FU, i.e., the
family is closed also under right multiplication of bilocal
operators. It follows that the adiabatic entangling power co-
incides with the supremum overFU of the entangling power
epsUd.

Proof. It is straightforward that

esFd = max
i

sup
UPFU,U1,U2

EfUsU1 ^ U2duCilg

= sup
UPFU,c1,c2

EfUuc1l ^ uc2lg ù sup
UPFU

epsUd. s5d

Therefore, using Eq.(4) one obtainsesFd=supUPFU
epsUld.

Notice also that for such a family the maximization over the
eigenvalue indexi in Eq. (1) is irrelevant. j

IV. EXAMPLES

We will now illustrate the use of the general notions in-
troduced so far by considering in a detailed fashion some
concrete Hamiltonian families acting on a two-qubit space.

Before doing that, let us recall a few basic facts about two-
qubit entanglement in pure states. We denote the standard
product basis byuCil si =1, . . . ,4d and consider a generic
two-qubit stateuFl=UuCl=oi=1

4 aiuCil. The eigenvalues of
the associated reduced density matrix are given byl=s1
+Î1−4C2d /2 and 1−l, whereC2= ua1a2−a3a4u2 and 2C is
the so-called “concurrence.” The entanglement measure is
given byE=−fl log2l+s1−ldlog2s1−ldg. SincedE/dl,0,
finding the maximum possible entanglement for the output
stateuFl means minimizingl, or, which is the same, maxi-
mizing C2. The stateuFl is maximally entangled forl= 1

2 or
C2= 1

4.
Example 1. It is useful to start with an example of a two-

qubit Hamiltonian family with zero adiabatic entangling
power. LetHsld=oa=x,y,z lasa ^ sa, where thel’s are such
that the corresponding Hamiltonian is always nondegenerate.
One has thatfHsld ,Hsl8dg=0s∀l ,l8d. Then all the elements
of the family can be diagonalized simultaneously. The joint
eigenvectors are clearly given by Bell’s basisuF±l :
=1/Î2su00l± u11ld , uC±l : =1/Î2su10l± u01ld. Entanglement
in the eigenstates is therefore maximal and cannot be
changed by varying the control parametersl. Analogously
one can easily build examples of Hamiltonian families hav-
ing joint constant eigenvectors given by products.

Example 2. The nondegenerate Hamiltonian we consider
is the following:

H0 = l1sz ^ 1 + l21 ^ sz sl1 Þ l2d. s6d

The eigenvectors are given by the standard product basis. We
introduce the family of unitariesUsm ,mzd=expfiKsm ,mzdg,
where

Ksm,mzd: = ms+
^ s− + m̄s−

^ s+ + mzssz ^ 1 − 1 ^ szd

s7d

and the associated isospectral familyHsm ,mzd :
=Usm ,mzdH0Usm ,mzd†. The Hilbert space is given byH
=spanhu00l , u01l , u10l , u11lj and we can split it in the two
subspacesH0=spanhu00l , u11lj and H1=spanhu01l , u10lj,
where obviouslyH=H0 % H1.

The evolution operatorU is the identity onH0, while it is
a straightforward exercise to verify that onH1 it yields

Uu01l;ujl;au01l+bu10l and Uu10l;uzl;−b̄u01l+ āu10l,
where a=cosu+s2i sin u /udmz, b=s4i sin u /udm̄ and uW

;2(m+m̄ , ism−m̄d ,mz). For the generic stateuCl=au01l
+bu10l+gu00l+du11l one hasC2= uxy−gdu2, where x=aa

−bb̄ andy=ab+bā.
For u01l the evolved state isujl=au01l+bu10l and its re-

duced density matrix is obviouslyr=diagsuau2, ubu2d whose
eigenvalues areuau2 and 1−uau2. The condition to obtain a
maximally entangled state is henceuau2= 1

2, that is, sin2 u
= 1

2f1+smz/2umud2g. This equation admits(at least) one solu-
tion iff umzu ø2umu. Thus a maximally entangled state can be
reached starting from eitheru01l , u10l. In Fig. 1 is shown the
reachable entanglement from the input stateu01l as a func-
tion of the parametersm ,mz. We see how moving in the
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parameter space to higher values ofmz spoils the reachability
of a maximally entangled state.

Example 3. Let us examine now the following unitary
family: U=expsio j=1

3 l js j ^ s jd. In the so-called magic basis

fuC1l=su00l+ u11ld /Î2,uC2l=−isu00l− u11ld /Î2,uC3l=su01l
− u10ld /Î2,uC4l=−isu01l+ u10ld /Î2g (as well in the Bell ba-
sis) these unitaries are diagonal and readU
=ok=1

4 eihkuCklkCku where hh1=l1−l2+l3,h2=l1+l2

−l3,h3=−l1+l2+l3,h4=−l1−l2−l3j. So in this basis the
input state isuCl=ok wkuCkl and the output state isuFl
=ok wke

−ihkuCkl. The concurrence is given byC2

=ok,l swke
−ihkd2swl

*eihld2. Following Ref. [16], we find that
the maximum reachable concurrence isC=maxk,l usinshk

−hldu and the product input state which gives the best entan-
gling capability as a function of the parameterslk is then
s1/Î2dsuCkl+ i uClld. So, for instance, a maximally entangled
state can be reached from the input states1/Î2dsuC1l
+ i uC2ld= u00l for parameters such thatl3−l2=p /4 (see Fig.
2).

Before proceeding to the conclusions, we would like to
show that the first two-qubit Hamiltonian family associated
with the unitaries(7) can be used to generate a nontrivial
entangling gate in an adiabatic fashion.

Proposition 3. An adiabatic loop in the parameter space
sm ,mzdsumu2+mz

2=constd gives rise to the diagonal unitary
mappinguabl→expsifabduabl, where, ifg denotes the geo-
metric contribution,Eab the eigenvelues, andT is the opera-
tion time, one has f01=E01 T+g , f10=E01 T−g , f00
=E00 T, and f11=E11 T. For f01+f10−sf00+f11d=−4 T
Þ0 mod 2p, the obtained transformation is equivalent to a
controlled-phase-shift.

Proof. Indeed it is easy to check that(i) by the adiabatic
theorem the evolution has to be diagonal in the product basis,
(ii ) the geometric contribution of the statesuaal sa=0,1d is
zero f⇐Usm ,mzduaal= uaalg, and(iii ) in the one-qubit sub-
space spanned byu0l : = u01l and u1l : = u10l, the unitarieseiK

with the K defined in Eq. (7) look like Usm ,mzd
=expfisms̃++m̄s̃−+mzs̃zdg. This latter equation can of course

be written asB ·ṡ, where a fictitious magnetic fieldB has
been introduced. One can then use the standard Berry-phase
argument for a spin-12 particle in an adiabatically changing
magnetic field to claim that under aB going along an adia-
batic loop, one hasu0l°eigu0l and u1l°e−igu1l. Hereg de-
notes the standard geometric phase, i.e., proportional to the
solid angle swept byB. The final equivalence claim stems
from a known result in the literature[18]. j

Of course the general fact that entangling gates can be
obtained via adiabatic manipulations is not new; see, e.g.,
[8,17]. The point of proposition 4 is to show explicitly how
the particular two-qubit Hamiltonian family associated with
the untaries(7) can be exploited to enact a controlled phase
via a simple adiabatic protocol.

V. CONCLUSION

In this paper we analyzed the entanglement generation
capabilities of a parametric family of adiabatically connected
nondegenerate Hamiltonians. One prepares the system in a
separable eigenstate of a distinguished HamiltonianH0 in the
family and then the space of parameters is adiabatically ex-
plored. The system remains then in an energy eigenstate and
the (bipartite) entanglement contained in such an eiegenstate
can be maximized over the manifold of control parameters.
We introduced an associated measuree of adiabatic entan-
gling power and discussed its properties and relations with a
previously introduced measure for the case of isospectral
families of Hamiltonians. We illustrated the general ideas by
studying explicitly the adiabatic entangling power of con-
crete two-qubit Hamiltonian families. We also showed how
to generate a nontrivial two-qubit entangling gate by means
of adiabatic loops.
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FIG. 1. (Color online) Entanglement generated by the Hamil-
tonian of the example 2 for the input stateu01l as a function of the
parametersm ,mz.

FIG. 2. (Color online) Entanglement for the unitaryU
=eioi=1

3 lis
i ^ si, with the input states1/Î2dsuC1l+ i uC2ld as a

function of l2,l3, with l1=1.

A. HAMMA AND P. ZANARDI PHYSICAL REVIEW A 69, 062319(2004)

062319-4



[1] D. P. DiVincenzo and C. Bennett, Nature(London) 404, 247
(2000).

[2] E. Farhiet al., Science292, 472 (2001).
[3] Wim van Dam, M. Mosca, and U. Vazirani, e-print quant-ph/

0206003.
[4] D. Aharonov and A. Ts-Shma, e-print quant-ph/0301023.
[5] A. Messiah,Quantum Mechanics(North Holland, Amsterdam,

1976).
[6] A. Joneset al., Nature (London) 403, 869 (2000); G. Falci

et al., ibid. 407, 355 (2000).
[7] M. V. Berry, Proc. R. Soc. London, Ser. A392, 45 (1984).
[8] P. Zanardi and M. Rasetti, Phys. Lett. A264, 94 (1999); J.

Pachos, P. Zanardi, and M. Rasetti, Phys. Rev. A61,
010305(R) (2000); L.-M. Duan, J. I. Cirac, and P. Zoller,
Science292, 1695(2001).

[9] R. G. Unanyanet al., Phys. Rev. Lett.87, 137902(2001); S.
Gurin et al., Phys. Rev. A66, 032311(2002); R. G. Unanyan

et al., ibid. 66, 042101 (2002); R. G. Unanyan and M.
Fleischhauer, e-print quant-ph/0208144.

[10] U. Dorneret al., Phys. Rev. Lett.91, 073601(2003).
[11] P. W. Anderson,Concepts in Solids: Lectures on the Theory of

Solids, Lecture notes in Physics, Vol. 58(World Scientific,
Singapore, 1998).

[12] A. Osterloh et al., Nature (London) 416, 608 (2002); T. J.
Osborne and M. A. Nielsen, Phys. Rev. A66, 032110(2002);
G. Vidal et al., Phys. Rev. Lett.90, 227902(2003).

[13] Here we are assuming, without loss of generality, that Ker
H0=h0j.

[14] W. Dür et al., Phys. Rev. Lett.87, 137901(2000).
[15] P. Zanardiet al., Phys. Rev. A62, 030301(R) (2000).
[16] B. Krauss and I. Cirac, Phys. Rev. A63, 062309(2001).
[17] A. Ekert et al., J. Mod. Opt.47, 2501(2000).
[18] See Appendix B 1 of T. Calarco, I. Cirac, and P. Zoller, Phys.

Rev. A 63, 062304(2001).

QUANTUM ENTANGLING POWER OF ADIABATICALLY … PHYSICAL REVIEW A 69, 062319(2004)

062319-5


