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Quantum entangling power of adiabatically connected Hamiltonians
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The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically
deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state
space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate
entanglement by moving through energy eigenstates corresponding to different values of the control param-
eters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for
generald X d quantum systems, and specific two-qubit examples are studied
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[. INTRODUCTION states associated with different control parameters will have
ifferent entanglement, therefore the described dynamical
rocess will result in a protocol for entanglement manipula-
on. We would like to characterize a parametric family of

Hamiltonians in terms of its capability of entanglement gen-

: i . @ration according to the above protocol. In this paper, we

technlques. for quantum |_nformat|on process(@P) [1]. will focus on bipartite, e.g., two-qubit, guantum systems. The

The notion of adiabatic quantum computing emerged ag;, il pe, given a Hamiltonian family, to characterize its

an novel intriguing paradigm for the development of efﬁdententangling capabilities by means of adiabatic manipulations.
quantum algorithmg2-4]. In this approach, information,

e.g., the solution of a hard combinatorial problem, is encoded Il. ADIABATIC CONNECTIBILITY

in the ground state of a properly designed many-qubit Hamil-

tonianH;. This ground state is then generated by letting the Let us start with a few simple general considerations
system evolve in an adiabatic fashion from the ground Stat@bOUt adiabatically connectible Hamiltonians. We would like
of a simple initial HamiltoniarH, [2]. In view of the adia- t0 understand how the space of Hamiltonians ofex C°
batic theorentsee, e.g.[5]), the crucial property which gov- Splits in classes of elements that can be adiabatically de-
erns the scaling behavior of the computational time is thdormed into each other.

spectral gap, i.e., the energy difference between the ground Definition Two HamiltoniansH, andH; are adiabatically
and the first excited state. The larger the gap, the faster thgonnectible if a continuous family of Hamiltoniafid ;0,1
computation can be. exist such thati) H(0)=Hy and H(1)=H,, and(ii) the de-

In adiabatic quantum computing as defined in R2f.the  generacies of the spectra of thigs do not depend on
parametric family of Hamiltonians has the simple form of a The notion of adiabatic deformability of Hamiltonians is
convex combination oHy and H;; one can also consider a an important concept in many-body and field theory quantum
more general family of Hamiltonians and more complexsystems. Indeed, when two Hamiltonians can be connected
paths in the control parameter space. For example, in thie this way they share several properties, e.g., ground-state
so-calledgeometric quantum computati¢], one considers degeneracy, quasiparticle quantum numbers, etc., so that in
loopsin the control space of a nondegenerate set of Hamilmany respects they can be regarded as belonging to the same
tonians for the purpose of controlled Berry phase generatiokind of universality clas§11]. On the other hand, an obstruc-
[7]. When even the nondegeneracy constraint is lifted andion to such a process will be typically associated with some
high-dimensional eigenspaces are allowed, one is led to corsort of quantum phase transition. Unconnectible Hamilto-
sider nonAbelian holonomies which mix nontrivially the nians show qualitative different features. Since we will study
ground states of the system. This latter method, which prohow entanglement changes while remaining in the same
vides a general approach to QIP as well, is terfmeldnomic  adiabatic class, our analysis can be regarded as complimen-

Adiabatic evolutions represent a very special class o
quantum evolutions, nevertheless they allow for a broad s
of quantum state manipulations. In particular, a great deal o
activity has been devoted recently to the study of adiabati

quantum computatiof8]. tary to that of entanglement behavior in quantum phase tran-
In this paper, we shall investigate how one can adiabatisitions[12].
cally generate quantum entanglem¢@tl(. The idea is a In the simple finite-dimensional case we are interested in,

simple one. One first prepares a bipartite quantum system ione can prove the following

one of its eigenstates, e.g., the ground state, and then drives Proposition 1. Two HamiltoniansHy, and H,; over ‘H

the control parameters of the system Hamiltonian along=CP are adiabatically connectible if and only if they belong
some path. If this path is adiabatic, the system will stand ato the same connected component of the set of isodegenerate
any time in the corresponding eigenstate. In general, eigerHamiltonians.
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Proof. LetH,=3R, € IT' («=0,1) be the spectral resolu- to any other nontotally) degenerate Hamiltonian. Notice
tion of Hy andH,. We now order their eigenvalues in ascend-that this latter statement holds for any dimensiortof
ing order, i.e.,es<---<€X. We define two vector®,, (a
=0,1 in RR as follows: Da:=(trHi, ,HS), where the I1l. ADIABATIC ENTANGLING POWER

components are ordered according to the corresponding ei- We move now to introduce our definition of adiabatic

genvalues. The Hamiltoniart$, andH, belong to the same entangling power. Let{= (9 (4 be a bipartite quantum

cpnnepted component of the set of |sodegen§rate HamiltQte space. We consider a famffyof nondegenerate Hamil-
nians if and only ifDy=D,. Isodegeneracy is given by the

K diti h i of R obi ) tonians overH, Fy:={H(\)/\ e M}, where M is an
weaker condition that a _permutatl of R objects exists . 4imensional compact and connected manifold. The points
such that(D,);=(Dg)pu) (i=1,... R).

It is an elementary ot \( are to be seen as dynamically controllable parameters.
fact that, given the two systems of orthoprojectorsi et E:— R be a measure of bipartite pure state entangle-
{IL}R, (@=0,1) such that TF,=TrI, (i=1,...R), @ mentoverE, e.g., von Neumann entropy of the reduced den-
(nonunique unitary W exists such thatW Ilo W'=II (i sity matrix. If HA)=3&, &[W0))W(\)| is the spectral
=1,...R). Let us introduce R real-valued functions resolution of an element of, we define theadiabatic en-
€:[0,1]—R such that'(0)= ¢, ande'(1)=¢€,(i=1, ... R). In tangling powerof F by
view of the ordering assumption, we can choose them to
satisfy the no-crossing constraing$'(t)>é€'(t) (i=1,... R
-1). Consider now the following family of Hamiltonians:
H()=3R, é(tUIT,U], where the continuous unitary family (i=1.....d% \,\" e M). _
{Ugt, is such thatyy=1 and U;=U. Clearly H(0)=H, and We will assume thaH, e Fy such that the associated
H(1)=H,. Moreover, for the very way they have been con-eigenvectors are afiroduct statesLet us stress once again
structed, all theH(t) belong to the same connected Compo_that the physical idea behind thes_e definitions is quite simple:
nent of the set of isodegenerate HamiltoniangigfandH,. ~ One starts from theunentangleyieigenvectors of, ; then
This shows that the latter condition is sufficient in order thatPy adiabatically driving the control parametersthe states
H, andH, are adiabatically connectible. |W;(\)) can be reached. K~ denotes the point at which the
Isodegeneracy dfl, andH, is also an obvious necessary maximum (1) is achieved(M is compac}, any adiabatic
condition for adiabatic connectibility because otherwise levepath connecting\, to A" realizes anoptimal entanglement
crossing would necessarily occur. But level crossing woulddeneration procedure within the famif,.

e(Fn): = maxsudE(W;(\)) —E(W:NM)] (D)

PN

necessarily occur even iDy#D; because, for somé An explicit evaluation of Eq(1) is, for a generalF, quite
€[0,1] and I1<i<R, it would be é*1=¢. This proves the a difficult task. In light of the observations after Proposition
necessity part of the Proposition. 1, we can, without loss of generality, consider only the case

The role of the functions'(t) in the Proof above is to map in Which Fis anisospectrafamily of nondegenerate Hamil-
the spectrum oH, onto that ofH,, whereas all the informa- tonians. LetF,CU(C?® () be a set(compact and con-
tion about the eigenvectors is contained in the family of uni-nected of unitary transformations containing the identity.
tariesU,. By setting all the connecting functiond/ e, to 1, ~ The isospectral family is

one gets a final HamiltoniaH, isospectral tdd, having the Fu:={U HUU e 7}, (2)
same eigenvectors ¢f;. This latter remark is important for 5
the following in that it allows one to restrict to isospectral whereHo:Eid=1 | WXV, i#]0 & +#¢j, and the|¥;)'s are
Hamiltonian families. The actual spectrum structure, e.g., than orthonormal basis of product states. Moreover we can also
energy gaps, just imposes an upper bound over the speedraktrict ourselves tground-stateentanglement, i.e., to con-
which the adiabatic deformation process can be carried orsider the entanglement contents of just the eigenvetitgr
Moreover, in order to have a one-to-one correspondence beorresponding to the minimum energy eigenvalue. If this is
tween eigenvalues and eigenstates, we shall assume that abe case, one can forget about the maximization over the
Hamiltonians arenondegeneratei.e., di=1(i=1,... R).  eigenvalue index in Eq.(1). The ground state dfi(\) (Ho)
Notice that in Hamiltonian space the condition of nondegenwill be denoted a$¥y(\)) (|¥q)). For an isospectral family
eracy is agenericone. as in Eq.(2), we will use the notatiom(F).

The simplest case one can consider is of course provided The adiabatic entangling powet) induces, for the class

by two-level Hamiltonians with eigenvalueg ande,. Using  of Hamiltonian families(2), the following real-valued func-
the standard Pauli matrices, one can writt=esl  tion over the subset&, of ¢(C9® CY):

+epn-o(eg: =(€1+€)12), €. =(€,—€,)/ 2. Here we have just

two possibilities(i) e4=0: the Hamiltonian is a rescaled iden- e(Fy) = maxsup E[U[¥;)]. 3)

tity and we have just one degree of freedom, éinde, # O: b UeFy

all possible operators of this kind are then parametrized by & is important to stress that this expression has the physical
triple (es,ea,N), Where excR,eac R—{0}, and e S  meaning of entanglement achievable by adiabatically ma-
=SU(2)/U(1). For each of the two isodegeneracy classesipulating the parameters found on a manifold, gy upon
above there is just one connected component, i.e., any namhich the U's in 7, depend. Indeed, for an isospectral
(totally) degenerate Hamiltonian is adiabatically connectibleHamiltonian family(2), the adiabatic evolution operator cor-
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responding to the path:[0,T]— M is given by the product Before doing that, let us recall a few basic facts about two-
of three different kinds of contributionsU.{y)  qubit entanglement in pure states. We denote the standard
=U(pT))eHoTUg(y). The first termU(¢(T)) is simply the  product basis by¥;) (i=1,...,4 and consider a generic
unitary corresponding to the end-point of the patiDue to  two-qubit state|®)=U|¥)=3% &|¥;). The eigenvalues of
the adiabatic theorem, an initial eigenstde) is indeed the associated reduced density matrix are given\by1l
mapped, up to a phase, onto the final eigendtitgT))|¥;).  +V1-4C?)/2 and 1\, whereC?=|a;,a,—aza,/*> and 2C is
The second factor itqis clearly just the dynamical phase the so-called “concurrence.” The entanglement measure is
associated witiH,, whereas the third is an operator taking given byE=—[\ log,A +(1-\)log,(1-\)]. SincedE/d\ <0,
into account the geometric contribution to the phase accumuinding the maximum possible entanglement for the output
lated by the eigenvectorMB(y):E?jl %P\ (Wi, in state|®) means minimizing\, or, which is the same, 1rnaxi—
which ¢g(y)=if, (¥;(\)|d]W;(\)) are Berry’s phases associ- mizirllg C2. The statg®) is maximally entangled fok=3 or
ated with y. Notice in passing that whew is a loop, i.e., CZ:z-
Y0)=HT)=\q, thenU(¢(T))=1. As far as the adiabatic en- Example_ 1 It.is usefull to sf[art with an example ofa t_wo—
tangling power(1) is concerned, the phases can be obviouslydubit Hamiltonian family with zero adiabatic entangling
neglected. power. LetH(\)=Z -, , N,0,® 0, Where the\'s are such
The adiabatic entangling power is invariant under leftthat the corresponding Hamiltonian is always nondegenerate.
(and not right in generalmultiplication by bilocal unitary =~ One has thatH(A),H(A")]=0(C\,\'). Then all the elements
operators, i.e., e(Fy)=e(U;@U,)F,),0U;,U,eld(d).  of the family can be diagonalized simultaneously. The joint
This implies that, as far as adiabatic entangling capabilitiegigenvectors are clearly given by Bell's basj®*):
are concerned, a unitary fami§, can always be considered =1/12(|00)£[11)),[¥*):=1/2(]10)£(01)). Entanglement
closed under the left multiplication by local unitary operatorsin the eigenstates is therefore maximal and cannot be
[13]. changed by varying the control parametarsAnalogously
We want now to establish a connection between the adiaene can easily build examples of Hamiltonian families hav-
batic entangling power3) and a variation of entangling ing joint constant eigenvectors given by products.
powere(av) of bipartite unitaries introduced in RgfL4] (for Example 2 The nondegenerate Hamiltonian we consider
a different definition, based oaverageentanglement pro- is the following:
duction, see als19]). In this paper, we defing,(U) as the

maximumentanglement obtainable by the actionlfover Ho=N\o, @ L+ M1 ®@ 0 (A1 7 Np). (6)
all possible product states, i.egy(U)=sup, ,E[U|) _ ) _
® |yn)]. vre The eigenvectors are given by the standard product basis. We

Since the|W,)'s are by hypothesis product states, oneintroduce the family of unitaries)(u, ;) =exdiK (1, 1),
clearly hasE[U|W)]<sup, ,E[Uly)®|¢1]. Therefore, where

one obtains the upper bound _
PP Kl u):=puo" @ o +uo @ 0+ u,(0,21-1® o)

e(Fy) < Useu% ep(V). (4) 7)

In some circumstances one can get the equality. and the associated isospectral familyH(w,u,):
Proposition2. Suppose that the unitary famif, is such  =U(u, u,)HoU(u, u,)T. The Hilbert space is given b§{
that for allU;, U, e U(d) one hasFy(U;® Uy) C Fy, i.e., the  =spar|00),|01),|10),|11)} and we can split it in the two
family is closed also under right multiplication of bilocal sybspaces#,=sparf|00),|11)} and H;=spad|01),|10)},

operators. It follows that the adiabatic entangling power coyyhere obviouslyH =Hy® H;.

incides with the supremum ovéf of the entangling power The evolution operatdd is the identity orf,, while it is

(V). ) ) a straightforward exercise to verify that ol, it yields
Proof. It is straightforward that Ul =|&=al01)+b|10) and U|10)= |§>E—E|Ol>+5[10>,
e(F)=max sup E[UU;® Uy¥;)] where a=cos#+(2i sin 6/ 6)u,, b=(4i sin 9/6)u and 0
PUefutil, =2(u+u,i(u—m), ). For the generic staté¥)=qa|01)

= sup E[Uly) @ [¢)]= supey(U). (5)  +pB|10)++/00)+511) one hasC?=|xy-yd?, wherex=ca
UeFy _

VeFudade -Bb andy=ab+fga.
Therefore, using Eq4) one obtainse(F) =supy . x,p(U)). For |01) the evolved state i§)=a|01)+b|10) and its re-
Notice also that for such a family the maximization over theduced density matrix is obviously=diag|al?,|b|?) whose
eigenvalue index in Eq. (1) is irrelevant. B  eigenvalues aréa]? and 1-a>. The condition to obtain a

maximally entangled state is hent@?=3, that is, sif 6

:%[1+(,uz/2|,u|)2]. This equation admitgat leas} one solu-
tion iff |u,| <2|u|. Thus a maximally entangled state can be
We will now illustrate the use of the general notions in- reached starting from eithé®1),|10). In Fig. 1 is shown the
troduced so far by considering in a detailed fashion someeachable entanglement from the input stét® as a func-
concrete Hamiltonian families acting on a two-qubit spacetion of the parameterg.,u,. We see how moving in the

IV. EXAMPLES
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FIG. 2. (Color onling Entanglement for the unitaryJ
=32 No'®o, with the input state(1/V2)(|Wy)+i|¥,) as a
function of A5, N3, with A;=1

FIG. 1. (Color onling Entanglement generated by the Hamil-
tonian of the example 2 for the input staéd) as a function of the
parametersu, u,.

parameter space to higher values.gfspoils the reachability b€ written asB- o, where a fictitious magnetic fiel has
of a maximally entangled state. been introduced. One can then use the standard Berry-phase
Example 3 Let us examine now the following unitary argument for a spir%j particle in an adiabatically changing
family: U= exp(iz 1 \jo;® g)). In the so-called magic basis magnetic field to claim that underB gmgg along an adia-
[9=(00+ 1)\, [ =-i(00)-1D)/\2 ¥ =(op  D2UC Io0p. one hai0)-—e710) and1)-—e . Here y de-
_|10>)/\2 W,y =-i(|0D) +]10)/+2] (as well in the Bell ba- notes the standard geometric phase, i.e., proportional to the
4 v solid angle swept byB. The final equivalence claim stems
5'5)4 thhese unitaries are diagonal and readl o5 5 known result in the literaturdg). [ |
=Sy MWWy where 1h1=N 1= A+ hg, hp=hg +1, Of course the general fact that entangling gates can be
~Ng,Ng= N1+ Ao+ A3, M,="A1~\;~Ag}. So in this basis the  gptained via adiabatic manipulations is not new; see, e.g.,
Input Sta_ae is|W)=3, w¥) and the output state iBP)  [8,17]. The point of proposition 4 is to show explicitly how
=3 we Wy, The concurrence is given byC®  the particular two-qubit Hamiltonian family associated with
=2y (W& ™)*(w;eM)%. Following Ref.[16], we find that  the untarieg7) can be exploited to enact a controlled phase
the maximum reachable concurrence @ max|sin(hy via a simple adiabatic protocol.

-h))| and the product input state which gives the best entan-

gling capability as a function of the parameteygis then V. CONCLUSION
(L/N2)(|Wy +i[W))). So, for instance, a maximally entangled
state can be reached from the input stafigy2)(|¥,)
+i|W,))=|00) for parameters such thag—\,=/4 (see Fig.

2).

Before proceeding to the conclusions, we would like to
show that the first two-qubit Hamiltonian family associated
with the unitaries(7) can be used to generate a nontrivial
entangling gate in an adiabatic fashion.

Proposition 3 An adiabatic loop in the parameter space
(e, ) (|u|?+ us=cons} gives rise to the diagonal unitary
mapping|aB) — expli ¢,p)|aB), where, if y denotes the geo-

In this paper we analyzed the entanglement generation
capabilities of a parametric family of adiabatically connected
nondegenerate Hamiltonians. One prepares the system in a
separable eigenstate of a distinguished Hamiltokigim the
family and then the space of parameters is adiabatically ex-
plored. The system remains then in an energy eigenstate and
the (bipartite) entanglement contained in such an eiegenstate
can be maximized over the manifold of control parameters.
We introduced an associated measeref adiabatic entan-
gling power and discussed its properties and relations with a
! e / ) previously introduced measure for the case of isospectral
metric contributionE, the eigenvelues, anlis the opera- 5 ijies of Hamiltonians. We illustrated the general ideas by
tion time, one has ¢o=Eo T+v, ¢10=Eo1 T~7, oo studying explicitly the adiabatic entangling power of con-
=Eoo T, and ¢y,=Eyy T. FOr dog+ dro=(Poot b10="4T  (rete two-qubit Hamiltonian families. We also showed how

#0 mod 2m, the obtained transformation is equivalent to ay, generate a nontrivial two-qubit entangling gate by means
controlled-phase-shift. of adiabatic loops.

Proof. Indeed it is easy to check thay by the adiabatic
theorem the evolution has to be diagonal in the product basis,
(i) the geometric contribution of the statesy) («=0,1) is
zero[O U(u, up)|@a)=|aa)], and(iii) in the one-qubit sub- We thank M. C. Abbati, A. Mania, and L. Faoro for useful
space spanned H9): =|01) and|1): =|10), the unitaries€’  comments. P.Z. gratefully acknowledges financial support by
with the K defined in Eq. (7) look like U(w,u,) Cambridge-MIT Institute Limited and by the European
=exdi(uo* +uo +u,0,)]. This latter equation can of course Union project TOPQIRContract No. IST-2001-39235
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