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We explore the constraints following from requiring the area law in the entanglement entropy in the
context of loop quantum gravity. We find a unique solution to the single-link wave function in the large j
limit, believed to be appropriate in the semiclassical limit. We then generalize our considerations to
multilink coherent states, and find that the area law is preserved very generically using our single-link
wave function as a building block. Finally, we develop the framework that generates families of multilink
states that preserve the area law while avoiding macroscopic entanglement, the space-time analogue of
“Schrödinger’s cat.” We note that these states, defined on a given set of graphs, are the ground states of
some local Hamiltonian that can be constructed explicitly. This can potentially shed light on the
construction of the appropriate Hamiltonian constraints in the LQG framework.
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I. INTRODUCTION

In recent years, the study of entanglement has shed
new lights in the fields of quantum field theory, quantum
statistical mechanics and condensed matter theory.
Whenever quantum fluctuations are important, entanglement
plays an important role [1]. In the context of condensed
matter physics, it has played a key role in classifying phases
of matter, notably those with mass gaps, leading to the notion
of topological orders [2–5] characterized by long-range
entanglement [6–9]. A crucial quantifier of quantum entan-
glement is the entanglement entropy. For a wave-function
that is the ground state of a local Hamiltonian, it is believed
that the entanglement entropy should obey the so called area
law [10]: in the limit of a large subregion A, its entanglement
entropy is given by SA ¼ −TrρA ln ρA, where ρA is the
reduced density matrix of subsystem A, and SA scales to
leading order as the area of the boundary of A.
From lessons that have been drawn from black hole

entropy, which is proposed to be understood as an entangle-
ment entropy between degrees of freedomwithin and outside
the horizon [11–13], and more recently evidence from
the computation of entanglement entropy via the Ryu-
Takayanagi formula [14] in the AdS=CFT correspondence,
it appears that one very important feature of quantum gravity
at least in the semiclassical limit, in which some classical
background geometry can be defined, is that the leading
contribution to the entanglement entropy associated to a
sub-region A should also satisfy the area law [15].
Loop quantum gravity (LQG) [16–18] provides a perfect

arena to test the requirement of area law, in which explicit
calculations can be done. A long standing and central

question in the LQG is to understand the semi-classical
limit. Thus far, semi-classical states have been proposed
[19–22] in LQG, and studied in many contexts [23–40].
However, it is still by far an open question whether a
semiclassical geometry has been undisputedly recovered.
The current paper is partly inspired by recent work in LQG
that recovers the Bekenstein’s black hole entropy [41–51]
and several attempts in computing entanglement entropy in
terms of spin network states [52–57], which is intimately
related to the area law of the entanglement entropy [15,57].
In this letter, we inspect the semi-classical limit through

the lens of entanglement entropy of a bounded subregion in
LQG. We find that imposing the area law across a single
triangular surface, the simplest possible scenario, already
leads to a very tight constraint on the possible wave function,
which admits an almost unique solution, one that acquires an
interesting correction from what is envisaged in [15].
Ultimately the main goal of this paper is to show that

entanglement imposes very stringent requirement to a
theory of quantum gravity. We show how to use this guide
in a constructive way. In particular, we impose that,
together with the area-law, entanglement has to obey
(i) SU(2) gauge invariance, and (ii) it must be microscopic,
implying that fluctuations in quantum space-times should
be confined to microscopic scales. These are very natural
requirements if Entanglement is physically measurable.
Gauge invariance means that entanglement does result in
stronger than classical correlations in actual physical
observables [58], and microscopic entanglement means
that we do not allow arbitrarily large Schrödinger cat-
spacetimes [59]. These considerations, together with the
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single-link result, allows us to construct the many-body or
multi-facet state of a general quantum geometry. As a bonus,
we obtain a constructive method to build local Hamiltonians
for given set of graphs, potentially important towards
understanding the Hamiltonian constraints of LQG.

II. ONE-LINK STATES

Let us begin by setting the stage and notations. Our
starting point is the SU(2) spin-network states in the graph-
fixed kinematical Hilbert space HΓ of LQG. An SU(2)
spin-network state is a triplet

jSi ¼ jΓ; jl; ini:

Γ is the given proper graph with L oriented links and N
nodes. jl ∈ Zþ=2 is an assignment of an SU(2) unitary
irreducible representation to each link l, and in is an
assignment of an SU(2) intertwiner to each node n. The
spin-jl representation is isomorphic to a SLð2;CÞ repre-
sentation ðγjl; jlÞ selected by the linear version of the
simplicity constraints [60], namely

K⃗ ¼ γL⃗;

in which K⃗ and L⃗ are boost and rotation generators,
respectively. The simplicity constraints are used in the
spin foam formalism [61–64] for recovering gravity ampli-
tudes from BF(topological) amplitudes [65,66] and for
regaining the real connection [64,67]. Spin-network states
correspond to the so called twisted geometries [68,69],
which describe the geometries of three dimensional fuzzy
discrete manifolds. Each N-valent node corresponds to a
N-facet polyhedron, while each link is dual to the face of
the polyhedron [70]. The areas of the faces are realized as
the expectation value of the SU(2) Casimir operator acting
on the spin-network states, i.e., the area of the face dual to
link l is

hÂli ¼ 8πγl2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlðjl þ 1Þ

p
; ð1Þ

where γ ∈ Rþ in the rest of the paper, and lp is the Planck
length.
Given a state jΨi in HΓ and cut the graph Γ into two

regions A and Ā, the entanglement entropy SA between
these two regions is defined as the von Neumann entropy of
the reduced density matrix

ρA ≡ TrĀjΨihΨj:

TrĀ is the partial trace over the states (i.e., the intertwiners’
and spins’ degrees of freedom) inside A. To recover locally
a Minkowskian vacuum that respects the Bisognano-
Wichmann theorem, it is proposed that the reduced density
matrix ρA should be proportional to the exponentiation of

the boost operatorK, leading to the following proposal for a
single-link state [15,71]

jΨi ¼
X
j

αj expð−γKÞmnjj; m; ni:

A careful check however suggests that it does not satisfy
the area law in the large j limit, which is another crucial
ingredient of the semiclassical limit, opposing naive
expectation. Indeed, one can readily check that the nor-
malization of the reduced density matrix always cancel the
area term in this limit. Surprisingly, in the large j regime,
there is a natural and arguably unique solution that recovers
the area law across each link.
By construction, we will implement invariance under

gauge and space-diffeomorphisms of the states jΨi that we
seek to fulfill the area law requirement. More in general, any
reduced density matrix that is related by unitary trans-
formation to the density matrix associated to the jΨi state
will have the entanglement entropy scaling as area, because
of the expressions of the entanglement entropy involved.
This ensures that our procedure is effective in order to
determine a generic state jΨi with area law scaling in the
large j limit, which is unique up to unitary transformations.
At this purpose, we first recover in this section the single-link
state that achieves this goal, then generalize in the next
sections our proposal to multilink coherent states and to
multinodes states, so to fully encode gauge and space-
diffeomorphism invariance in the construction.
For a single-link, see e.g. Fig. 1, we can conveniently

choose a state in the diagonalized basis with fixed spin j.
This is expressed by

jΨi ¼ 1

N

Xj

m;n¼−j
Fj
mnjj; m; ni ¼ 1

N

Xj

m¼−j
Fj
mmjj; mi;

having used the form of the coefficients in the diagonalized
basis, i.e. Fj

mn ¼ Fj
mmδmn and jj; mi≡ jj; m;mi. The

reduced density matrix casts

ρA ≡ 1

N

Xj

n¼−j
F̄nmFnm0 jj; m; nihj; m0; nj;

and because of the diagonalized basis involved, satisfies

FIG. 1. A face Al dual to link l.
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ρA ¼
Xj

m¼−j
pðmÞjj; mihj; mj;

pðmÞ≡ fðmÞPj
m¼−j fðmÞ ; ð2Þ

with fðmÞ ¼ F̄mmFmm. Note that the function fðmÞ is
assumed not to carry explicit j dependence.
In what follows, by determining the form of fðmÞ, we

show that

Fj
mn ¼ Dj

mnðe−πγLz−
expð1−2πγLzÞ

4πγ Þ;

where Dj
mnð� � �Þ is defined as hj; mj � � � jj; ni and Lz

represents the suð2Þ generator in the z axis. In the next
sections, we will use this single-link state as the building
block to construct generalized multilink and multinode
states.
We now focus on (2). Since we are interested in the large

spin regime, the sum can be replaced by an integral

Xj

m¼−j
→

Z
j

−j
dj:

Requiring that the entropy admits an area law and taking
into account (1), we impose

SA ¼ cjþ � � � ;

the derivative of which with respect to j is thus a constant
c > 0. This leads to a constraint on fðmÞ.1:

c
pðjÞ þ cj − 1þ lnpðjÞ ¼ 0: ð3Þ

Equation (3) cannot be solved exactly in complete general-
ity. However, anticipating that we are considering the
large spin limit, and motivated by the original proposal,
we consider the limit in which

c
pðjÞ ≪ jcj − 1j:

In this limit, we have pðjÞ ¼ expð1 − cjÞ, which finally
gives

fðmÞ ¼ exp

�
−cm −

expð1 − cmÞ
c

�
: ð4Þ

One can readily check that c=pðjÞ ≪ jcj − 1j is satisfied in
the large j limit, namely given J ∈ Rþ in the limit J ≪ j,
if c satisfies

0 < J−1 ≪ c ≪ J−
1
2 ≪ 1: ð5Þ

In this limit the leading term in the entanglement entropy is
indeed linear in cj, recovering the long sought area law.
The expression for c is then straightforwardly determined
to be c ¼ 2πγ.
We remark that the area law is indeed an upper bound for

the entanglement reachable by these states. In particular,
there are non-logarithmic corrections scaling like the
volume of the system. One consequence is that these states
cannot be seen even locally as finite temperature equilib-
rium states. In quantum cosmology, if one sought to find
reduced density matrices that represent thermal states, these
should be obtained by tracing out high energy states. The
ground state—or the low lying states—will only feature the
area law. On the other hand, these states can be topologi-
cally ordered. Topological order does indeed consist in a
global constraint on the allowed configurations on the
boundary, resulting in a negative correction to the entan-
glement entropy [7–9,72].
The function pðmÞ also naturally suppresses contribu-

tions at small values of m in this limit, justifying the
approximation that replaces the sum by the integral. It is
very interesting that the state that we have found is very
similar to the original proposal, up to an exponentially
suppressed factor, which is negligible where fðmÞ actually
contributes, but suppresses regions which would otherwise
have contributed in the original proposal. The constant c
also emerges naturally and plays precisely the same role as
the Barbero-Immirzi parameter γ, and (5) is exactly the
semiclassical large j regime in the covariant formalism of
LQG [31]. Recall that the boost operator Kz was related
to Lz via the simplicity constraint

K⃗ ¼ γL⃗;

which followed from an action quadratic in the tetrad. One
might be tempted to interpret the extra exponential cor-
rection we find here as a nonlinear correction arising from
quantum effects.
We can extend our construction to the more complicated

case of one node, with many links protruding from it. For
simplicity, the graph Γ used in the following calculation
is the graph with L out-pointing links attaching to only
one node.

III. MULTILINK STATES

Combining our previous one-link proposal with the well
known construction of multiple link coherent spin-network
state [19–22], we are led to consider the state jΨi supported
on HΓ, which reads

1We have made the simplifying assumption that the probability
density form < 0 is negligible compared to m > 0. Relaxing this
assumption does not lead to any material change.
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jΨi ¼ 1

N

X
fjlg

Z
SUð2Þ

dh

�YL
l

Δjl
ðtl;JlÞ

�

×
X

fmlgfklg

X
fnlg

YL
l

Fjl
mlnlD

jl
nlkl

ðhÞjjl; ml; k
†
l i: ð6Þ

In (6) we defined: the normalization factor N , which is
recovered in Sec. B of the Appendix;

Δjl
ðtl;JlÞ ≡ djle

−ðjl−JlÞ2tl

with djl ¼ 2jl þ 1; Jl, a given spin for the link l, and tl,
similar to a heat kernel time; theWigner matrix of the group
elements that encodes the correction found in (4), i.e.

Fjl ≡Djlðgle−πγLzþiϕlLz−
expð1−2πγLzÞ

4πγ g̃†l Þ; ð7Þ

in which Dj
mnð� � �Þ is defined as hj; mj � � � jj; ni; ϕl is a

phase; gl and g̃l are SU(2) elements; Lz is the suð2Þ
generator in the z axis; vi is the normalized intertwiner with

v̄i · vi0 ¼ δii0 :

Note that this is a state that is factorizable into wave-
functions of individual links up to gauge constraints.
We cut the graph into two regions as in Fig. 2. Region Ā

contains the node. The reduced density matrix ρA is
recovered by tracing out the link source states (or the
intertwiner degrees of freedom) in jΨi. Furthermore, ρA can
be rewritten in the block-diagonal form

ρA ¼
X
fjlg

ρfjlg ¼
X
fjlg

Pfjlgρ̂fjlg;

where each block is characterized by the configuration of
the fjlg eigenvalues of the boundary links. Crucially, such
a block factorization follows from the SU(2) invariance

imposed at the node and the properties of the intertwiners.
We can write Pfjlg, the norm of the fjlg’s block ρfjlg, as

Pfjlg ≡
1

N 2

Z
SUð2Þ

dh
YL
l

½Δjl
ðtl;JlÞ�2χjl ½g̃lfðLzÞg̃†l h�: ð8Þ

In (8) we use that: fðLzÞ is given by (4) with c≡ 2πγ;
χjlðMÞ is the trace over matrix M; ρ̂fjlg is the reduced
density matrix with fixed fjlg

ρ̂fjlg ≡
1

Zfjlg

Z
SUð2Þ

dh
YL
l

Fjl ·DðhÞ · Fjl†; ð9Þ

where Fjl is given by (7); Zfjlg is the normalization such
that Trρ̂ ¼ 1. The integration over SU(2) element h follows
from the summation of intertwiner, which is proportional
to an integration over Wigner matrices on SU(2)

X
i

vfplg
i v

fp0
lg

i ∝
Z
SUð2Þ

dh
YL
l

Djl
plp0

l
ðhÞ:

The normalization has been absorbed into N . Then the
entanglement entropy

SA ¼ −TrρA ln ρA

evaluates to

SA ¼ −
X
fjlg

PfjlgTrρ̂fjlg ln ρ̂fjlg −
X
fjlg

Pfjlg lnPfjlg:

Note that:
(i) Pfjlg can be understood as the probability density of

detecting the given boundary configuration fjlg,
and that

X
fjlg

Pfjlg ¼ 1;

(ii) it is a subtle issue to define the entanglement entropy
in a gauge theory [73,74]—moving from the pro-
posal in [15], the resultant SA is in fact a SU(2)
gauge invariant quantity which only has dependence
on the eigenvalues of the Casimir of the boundary
links, a choice equivalent to the proposal in [75];

(iii) the entanglement entropy with a unique boundary
link-configuration is given in the first term of (10),
and it will be proved later to be the area term in the
large spin limit.

To calculate SA, we first give an explicit expression for
Pfjlg and Trρ̂fjlg ln ρ̂fjlg. As such, we introduce the coher-
ent states on SU(2) [21], namelyFIG. 2. A graph with L links and one node.
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Dj
mjðnÞjj; mi ¼ njj; ji ¼ nj↑i⊗2j;

with n ∈ SUð2Þ. Imposing the SU(2) coherent states
resolution of identity into each χjl in (8), Pfjlg becomes,

Pfjlg ¼
1

N 2

Z
dh

YL
l

dnl½Δtl
ðjl;JlÞ�2djl

X∞
pl

ð−eÞpl

pl!ð2πγÞpl
eSp ;

where the “action” Sp is given by

Sp ≡
XL
l

2jl lnh↑jn†l g̃le−2πγð1þplÞLz g̃†l hnlj↑i: ð10Þ

In order to study the large spin behavior of Pfjlg, we rescale
jl → λkl and assume λ ≫ 1. It is convenient to perform the
asymptotic expansion to get the major contribution of Pfjlg.
The solutions of the equations of motion δnlSp ¼ δhSp ¼ 0

control the semiclassical behavior of Pfjlg. For δnlSp ¼ 0,
the only possible solutions2 are nl ¼ g̃l; h ¼ 1. Note that
δhSp ¼ 0 is equivalent to the Gauss constraint. Then Pfjlg,
to leading order of the asymptotic expansion and in the
limit of (5), becomes

Pfjlg ¼
1

N 2

YL
l

½Δtl
ðjl;JlÞ�2

1

j3=2
exp

�
−1 −

e1−2πγj

2πγ

�
: ð11Þ

where j is the average of jl. In order to estimate the term
Trρ̂fjlg ln ρ̂fjlg, it is easier to use the replica trick to compute
Sn, the Rényi entropy of order n [76]. From

Trρ̂nfjlg ¼
YL
l

eðn−1Þð1−2πγjlÞ

and taking the n → 1 limit, we get

−Trρ̂fjlg ln ρ̂fjlg ¼
XL
l

2πγjl − 3=2 ln
X
l

j2l :

The logarithmic terms is from the gauge invariance [48].
Finally, we have

SA ¼
XL
l

h2πγjli −
3

2

�
ln
X
l

j2l

�
− hlnPfjlgi; ð12Þ

where we have denoted

h� � �i≡X
fjg

ð� � �ÞPfjg:

The first term is the area A of region A’s boundary. The
second term has contribution which are proportional to
link number L. Disregarding terms independent from the
boundary area, when t ¼ J−k the logarithmic correction
amounts to −3k=2 lnðA=l2

pÞ. So in the semiclassical limit
of LQG (5), the entanglement entropy is

SA ¼ A
4l2

p
þ μL −

3k
2
ln

A
l2
p
; ð13Þ

where the “chemical potential” term now carries only 1=j
suppressed contributions.

IV. MULTINODE STATES

At this point, we generalize to multinode states. In the
following, we show how we can produce a class of many-
body states that satisfy all the requirements of area law and
gauge invariance spelled above, and that can be the ground
states of a local Hamiltonian.
Let us start with the simples possible multinode state

obtained by considering the tensor product of single-node
states over all the nodes of the graph and then summing
over all the fjlg; fing in order to enforce gauge invariance.
This state reads

jΨi≡ 1

N

X
fjlg;fing

Y
l;n

Δjl
ðtl;JlÞF

jl · v̄in jΓ; jl; ini

¼ 1

N

X
fjlg;fing

Y
l;n

jφin;l: ð14Þ

The above many-body state still satisfies the area law,
because, although the number of nodes and links contained
in Ā scales with its volume, however links that are
completely enclosed within the region Ā would not
contribute to the entanglement entropy, which will in stead
scale with the number of links crossing the boundary ∂Ā
yielding the area law,

A ¼
X
l∈∂Ā

hÂli:

This statement is confirmed by a series of results within
LQG that describe the space of black hole microstates—see
e.g. Ref. [47] and formerly Ref. [77]. In particular, in
Ref. [78] was argued that for an observer at infinity a black
hole can be described by an SU(2) intertwining operator,
effectively corresponding to a “gigantic” single tensor
operator intertwining all the links that puncture its horizon.

2Another solution −ϵn̄l ¼ g̃l;ReðαlÞ ¼ −2πγ will lead Pfjlg ∝
expð−e2πγjÞ and suppressed faster than the solution nl ¼
g̃l;ReðαlÞ ¼ 2πγ in the large spin limit.
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This procedure corresponds to the large j limit we are
interested in for this analysis3

From the many-body point of view, this state is trivial, as
there are no quantum fluctuations other than the single-
body ones. However, exactly because it is trivial, it is easy
to build a local quantum Hamiltonian such that the state
in Eq. (14) is its ground state. Let π be the projector onto
the gauge-invariant Hilbert space and πn;l ¼ jφihφijn;l the
projector onto the local state jφin;l. Then the Hamiltonian

Hð0Þ ¼ −π
�X

n;l

πnl

�
π†

is a local Hamiltonian whose ground state is state jΨi
in Eq. (14).
Moreover, one has to admit that the ansatz Eq. (14),

although motivated by the requirements of entanglement
and gauge invariance discussed so far, still seems very
arbitrary and fine tuned. We have no reason to care about a
particular kinematical state, after all. What counts, are the
physical states. And yet, physical states should be in the
same “equivalence class” of the kinematical state defined
above, in the sense that they must retain all the properties
we want. Unfortunately, one cannot simply preserve these
properties by just writing any state in the kinematical
subspace. Indeed, a generic superposition of such kind of
states, though, will first of all not respect the area law, and
will contain arbitrarily macroscopic superpositions.
In order to form the right equivalence class, we need to

deform the trivial state in a way that some many-body
entanglement and quantum fluctuations are produced, but
without violating the constraints we set up. This can be
obtained by the technique of quasiadiabatic continuation
introduced in [79]. In this way, a whole class of states can
be defined, that constitute what is known in condensed
matter theory as a quantum phase. This technique allows
to continuously deform a quantum state that is the ground
state of a local Hamiltonian in order that it is still the
ground state of a local Hamiltonian. Let HðλÞ be a smooth
family of local Hamiltonians parametrized by λ ∈ ½0; 1�
such that

jΨNi ¼ jΨð0Þi

is the ground state of Hðλ ¼ 0Þ just like in Eq. (14). Here,
local means that HðλÞ is the sum of local operators,

HðλÞ ¼
X
X

T̂X⊂ΓðλÞ;

where X denotes a subset of the graph Γ and T̂XðλÞ means
that this operator has only support on X. Also assume that
HðλÞ has a finite gap ΔE between ground and first excited

state for all λ’s. One way to think of HðλÞ is as the
perturbation of the initial Hamiltonian Hð0Þ, namely,

HðλÞ ¼ Hð0Þ þ λ
X
X

K̂X

and K̂X are any local operators with support on X. Then,
following [80], one can define a unitary operator

UðλÞ ¼ T exp

	
−i

Z
λ

0

H̃ðsÞds



with T the time ordering operator, and

H̃ðsÞ ¼ i
Z

dtFðtÞeiHðsÞt∂sHðsÞe−iHðsÞt;

with FðtÞ an appropriate fast decaying smooth function—
see [80] for details. The unitary operator UðλÞ so defined
interpolates among ground states of HðλÞ and it is there-
fore called adiabatic continuation [79]. The ground state
of HðλÞ, jΨðλÞi, can be written as the adiabatic continu-
ation of jΨð0Þi, namely

jΨðλÞi ¼ UðλÞjΨð0Þi:
Now, the adiabatic continuation preserves the area law
[10]. In this way, we can always deform jΨð0Þi in a way to
obtain a new state jΨðλÞi such that its parent Hamiltonian
HðλÞ is nonintegrable. The above definition is construc-
tive as for any choice of the K̂X we can construct a family
of local Hamiltonians and their gauge-invariant, area-law
ground states.
As an application of this method, let us show that the

so defined states do not have macroscopic superpositions,
like macroscopic space-time Schrödinger cat states. The
initial state jΨi is by construction not macroscopically
entangled. We now show that by adiabatic continuation we
also preserve the physicality of entanglement as being
microscopic. Adiabatic continuation preservers macro-
scopic entanglement. So, if one continues a state that is
not a Schrödingers’ cat, one will not obtain a Schrödingers’
cat. On the other hand, continuing a Schrödingers’ cat will
still yield a macroscopically entangled state. To show this,
we apply a result obtained in [59]. The superselection rule
is imposed by stating that states with non vanishing mutual
information I∞ between two distant macroscopic regions
must be ruled out. The mutual information is defined as

IðAjBÞ ≔ SðAÞ þ SðBÞ − SðABÞ:
Here, S is chosen to be the 2—Rényi entropy

S2 ¼ − log Trρ2A;

namely, the logarithm of the purity instead the von
Neumann entropy. The technical reason for making this3We thank the referee for whipping this clarification up.
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choice is that one can prove that I∞ is preserved by quasi
adiabatic continuation. The physical reason, is that this
quantity is a physical observable (unlike the Von Neumann
entropy) [81–83], but still captures all the entanglement
properties that are important in quantum many-body theory
[72,84]. As a bonus, starting with a trivial noninteracting
Hamiltonian that is the sum of commuting local terms in the
tensor product structure of Eq. (14), one can adiabatically
continue the very Hamiltonian by means of any other
Hamiltonian with a gap, which is the sum of local operators
with couplings depending on some parameter λ. This is thus a
systematic construction of local Hamiltonians whose ground
states satisfy the desired properties we have set forth.

V. SUMMARY AND OUTLOOK

To conclude, we have shown that entanglement can
provide stringent guiding principles in selecting states with
sensible semiclassical limits in LQG. We obtain these
results by imposing that entanglement must be physical
(gauge invariant and not macroscopic), deploying methods
from quantum information and quantum many-body
theory. In perspective, the framework here developed will
allow for the study of notions like quantum order or
thermalization in a closed quantum system in the context
of quantum gravity.
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APPENDIX A: THE ENTANGLEMENT
BETWEEN HALF LINKS

In this section of the appendix we provide an asymptotic
analysis of the one-link state entanglement calculated
between its two half links. We start by first checking the
asymptotic analysis of the normalization of the one-link state.
The normalization of the state can be written as

N 2 ≡ I ¼ dj

Z
dnhj; jjn†e−cLz−

exp ð1−cLzÞ
c njj; ji

¼ dj

Z
dnhj; jjn†e−cLz

X∞
k

ð−Þk
k!ck

ek½ð1−cLzÞ�njj; ji

¼ dj
X∞
k

ð−Þk
k!ck

Z
dnhj; jjn†e−cLzek½ð1−cLzÞ�njj; ji

¼ dj
X∞
k

ð−Þkek
k!ck

Z
dneSk ;

where

Sk ¼ 2j lnh↑jn†e−cð1þkÞLznj↑i:

The latter is the “action” defined in Eq. (10) of the
manuscript. We search the saddle point of Sk by varying
it with respect to n, and obtain

δnSk¼2j
η̄h↓jn†e−cð1þkÞLznj↑iþηh↑jn†e−cð1þkÞLznj↓i

h↑jn†e−cð1þkÞLznj↑i ¼0:

The latter relation leads to

n†e−cð1þkÞLzn ¼ e−αLz ; ðA1Þ

with α a complex number. Equation (A1) has two solutions:
one is

nLzn† ¼ Lz; αþ ¼ cð1þ kÞ;

the other one is

nLzn† ¼ −Lz; α− ¼ −cð1þ kÞ:

On the saddle point, we then obtain

S�k ¼∓ cð1þ kÞj:

One of the leading contribution to the normalization I is
given by

dj
X
ϵ¼�

e−ϵcj
X∞
k

ð−Þk
k!ck

eð1−ϵcjÞk

¼ dj
X
ϵ¼�

exp

�
−ϵcj −

eð1−ϵcjÞ

c

�
≡ dj

X
ϵ¼�

eS
ϵ
0 :

Another leading contribution comes from the Hessian.
Indeed, the total leading contribution of I can be written as

I ∼ dj
X
ϵ¼�

eS
ϵ
0ffiffiffiffiffiffiffiffiffiffiffiffiffi

detHϵ
p ≡X

ϵ¼�
Iϵ:

In order to compute the Hessian, we introduce the variation
of n on a spin j representation:

δnnjj; ji ¼ δnjj; ni
¼ δnjni2j

¼ η
X2j
i¼1

n⊳j↑ � � �↓i � � �↑i

¼ η
ffiffiffiffiffi
2j

p
njj; j − 1i:

The total “action” now reads
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S ¼ lnhj; jjn†e−cLz−
e exp ð−cLzÞ

c njj; ji:

Moving from its definition, the Hessian is found to be

−
1

2
ηaHϵ

abηb≡−
1

2
δ2nSjϵ

¼−2j
−η̄ηe−ϵcj−

eexp ð−ϵcjÞ
c þ η̄ηe−ϵcðj−1Þ−

eexp ð−ϵcðj−1ÞÞ
c

e−ϵcj−
eexpð−ϵcjÞ

c

∼ 2jη̄ηð−ϵcþ expð1− ϵcjÞÞ:

Consequently, the determinant of the Hessian can be
expressed in following way:

detHϵ ¼ j2ð−ϵcþ e1−ϵcjÞ2:

For ϵ ¼ 1 and within the semiclassical limit we are
considered in Eq. (4) of the manuscript, we find

c ∼ αe1−cj: ðA2Þ

In equation (A2), we are assuming α to be Oð1Þ, and at the
same time α > 1. Then we find

detHþ ∼ j2½ð1 − αÞe1−cj�2;

which entails for Iþ the following expression:

Iþ ∼
dj

jðα − 1Þ exp
�
−1 −

eð1−cjÞ

c

�
:

For ϵ ¼ −1, we find

detH− ∼ j2ðexp ð1þ cjÞÞ2;

and finally

I− ∼
dj
j
exp

�
−1 −

eð1þcjÞ

c

�
:

It is obvious that in the semiclassical limit it holds

Iþ ≫ I−:

Thus the leading contribution of the normalization reads

I ∼ Iþ ∼ exp

�
−1 −

eð1−cjÞ

c

�
;

which coincides with the explicit calculation. For one-link
the reduced density matrix ρj is found to be

ρj ¼
1

I

X
m

e−cm−exp ð1−cmÞ
c jj; mihj;mj:

In order to calculate the entanglement entropy, we use the
replica trick. We then consider

SEE ¼ lim
N→1

1

1 − N
ln trρNj :

The trace of ρNj is found to be

trρNj ¼ 1

IN
χjðe−Ncm−Nexp ð1−cmÞ

c Þ:

Using the same asymptotic analysis we have performed
above, it is straightforward to see that

χjðe−Ncm−Nexp ð1−cmÞ
c Þ ∼ 1

N
e−1þð1−NÞcj−Nexp ð1−cjÞ

c :

Therefore, we can now calculate the trace of ρNj in the
asymptotic limit, and find

trρNj ∼
exp ð−1þ ð1 − NÞcj − N exp ð1−cjÞ

c Þ
N exp ð−N − N eð1−cjÞ

c Þ

¼ 1

N
exp ð−ð1 − NÞ þ ð1 − NÞcjÞ:

As a consequence, the entanglement entropy of a one-link
state is immediately recovered

SEE ∼ lim
N→1

1

1 − N
ð−ð1 − NÞ þ ð1 − NÞcj − lnNÞ ¼ cj;

which is a result that implies the area law.

APPENDIX B: ENTANGLEMENT IN
MANY-LINK STATES

For many-link states, we can perform the same analysis
deployed in the previous section. Again, we first focus on
the normalization of the state:

I ¼
Z

dh
Y
l

djl

Z
dnlhjl; jljn†l e−cLgl

−
exp ð1−cLgl Þ

c hnljjl; jli

¼
Z

dh
Y
l

djl

Z
dnleSl

¼
Z

dh
Y
l

djl
X∞
kl

ð−Þklekl
kl!ckl

Z
dnle

Slkl ;

where

S ¼
X
l

lnhjl; jljn†l e−cLgl
−
exp ð1−cLgl Þ

c hnljjl; jli:

In the semiclassical limit, the saddle point solution which
gives the leading contribution is expressed by
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h ¼ 1; nl ¼ gl;
X
l

jln⃗l ¼ 0:

The leading contribution of the action Sl in the saddle point
is found to be

Sl ∼ −cjl −
exp ð1 − cjlÞ

c
:

The Hessian can also be calculated explicitly. Using the
parametrization h ¼ exp ðiθaLaÞ, with a ¼ 1, 2, 3, we find
three kinds of components for the Hessian,

−
1

2
H ¼

�
A B

BT C

�
;

where

A≡ −
1

2
δ2nlSj ∼ 2jlη̄lηlð−cþ exp ð1 − cjlÞÞ;

B≡ δθaδnlS

¼ −iη̄lθaec−exp
1−cj

jlh↓jn†l Lanlj↑i − iηlθajlh↑jn†l Lanlj↓i;

C≡ δθbδθaS ¼
X
l

θaθb
jl
4
ððδba þ iϵbacncl Þ − nbl n

a
l Þ:

For the third one of these latter relations, when a ¼ b
we find

δ2θaS ¼
X
l

θ2a
jl
4
ð1 − ðnal Þ2Þ;

while when a ≠ b we recover

δθbδθaS ¼
X
l

θaθb
jl
4
ðiϵbacncl − nbl n

a
l Þ

≡X
l

θaθbjlCab:

The determinant for the Hessian can be recast as

det

�
−
1

2
H

�
¼ detA det ðC − BTA−1BÞ:

It is straightforward to convince ourselves that

ðdetAÞ−1=2 ∼
Y
l

jl exp ð1 − cjlÞ;

and then that

ðBTA−1BÞab ∼
X
l

− jlecjlh↓jn†l Lanlj↑ih↑jn†l Lbnlj↓i:

Furthermore, an easy computation shows that

h↑jn†Lanj↓ih↓jn†Lbnj↑i
¼ h↑jn†LaLbnj↑i − h↑jn†Lanj↑ih↑jn†Lbnj↑i

¼ 1

4
ððδab þ iϵabcncÞ − nanbÞ

¼
	 1

4
ð1 − ðnaÞ2Þ; for a ¼ b;

1
4
ðiϵabcnc − nanbÞ; for a ≠ b:

As a consequence, we can write

ðBTA−1BÞab ∼
X
l

− jlecjlCl
ab;

from which it follows that

det ðC − BTA−1BÞ ¼ det

�X
l

jlð1 − ecjlÞCl
ab

�

¼ det

�X
l

jlð1 − ecjlÞCl
ab

�

∼ j3e3cj;

j denoting the average of jl. Then the leading term of the
normalization is finally recovered to be

I ∼
1

j3=2e3cj=2
Y
l

exp

�
−1 −

exp ð1 − cjlÞ
c

�
:

Using again the replica trick, we can calculate the entropy
of the reduced density matrix, the latter being

ρfjg ¼
1

I

Z
dh

Y
l

X
mlnl

Djl
mlnl

�
e−cLgl

−
expð1−cLgl Þ

c h
�
jjl;mlihjl;nlj:

As done in the previous section, the trace of N copies of
ρfjg is expressed as

trρNfjg ¼
1

IN

Z YN
s

dhs
Y
l

χjl
�YN

s

�
e−cL

s
gl
−
exp ð1−cLsgl Þ

c hs
��

≡ 1

IN
Y
l

dNjl

Z YN
s

dhs

Z
dnsl e

S;

where

S ¼
X
l

X
s

lnhjl; jljns†l e−cLgl
−
exp ð1−cLgl Þ

c hsnsþ1
l jjl; jli:

The saddle point solution of the “action” is read out of the
relations
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hs ¼ 1; nsl ¼ gl;
X
l

jln⃗sl ¼ 0:

The leading term of the action is

S ¼
X
l

− Ncjl − N
exp ð1 − cjlÞ

c
:

The components of Hessian H are

δ2nsl
S ¼ −4jlηsl η̄sl ;

δnsþ1
l
δnsl S ∼ 2jlη̄slη

sþ1
l ec−exp ð1−cjlÞ;

δθsaδnsl S ¼ iθsaη̄sl e
c−exp1−cjl2jlh↓jn†l La

snlj↑i;

δθs−1a
δnsl S ¼ iθs−1a ηsl2jlh↑jn†l La

s−1nlj↓i;

δ2θsaS ¼ −
X
l

θbθa
jl
2
ððδba þ iϵbacncl Þ − nbl n

a
l Þ:

As we have noticed for the normalization part, the Hessian
too has three components, which we denote as A, B and C.

A contains δ2nsl
S and δnsþ1

l
δnsl S, B contains δθsaδnsl S and

δθs−1a
δnsl S, while δ2θsaS enters C. The determinant of the

Hessian is then cast as

detH ∼ detA det ðC − BTA−1BÞ:

The determinant of A is found to be

detA ¼
Y
l

ðjl exp ð1 − cjlÞÞ2N:

To compute the determinant of C − BTA−1B is highly
nontrivial. However remind that the entanglement entropy
counts the number of microstates ΩðjlÞ on the boundary,
and that the gauge invariance introduces a reduction on
ΩðjlÞ by a factor ðPlj

2
l Þ−3=2 [48]. This entails a logarith-

mic correction to the entanglement entropy. So finally, for a
L-link state, the entanglement entropy is recovered to be

SEE ¼
XL
l

cjl −
3

2
ln

�X
l

j2l

�
:
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