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ABSTRACT 
Over recent decades, there was a substantial evolution in the productive management of dairy 
animals worldwide with a consequent boost in individual milk yield. This evolution positioned 
the milk production as the central metabolic priority around which all other physiological func-
tions are coordinated and partially minimised. This shift underscores the crucial role of effect-
ively managing stressful phases in intensive dairy farming systems, also highlighting the 
resilience exhibited by the animals. Indeed, monitoring the nutritional and health status 
becomes paramount, aiming for an early detection of (sub)clinical health impairments. Given 
the mammary gland’s centrality in high-yielding dairy breeds, it’s unsurprising that the milk 
matrix provides insights about udder itself but also systemic metabolic function. The emerging 
field of milk phenomics explores links between milk components and animal health, holding 
great promise for studying dairy cow resilience. The use of infrared spectroscopy on milk to pre-
dict indicators and complex traits at the herd level is a promising approach. In the dairy sector, 
the available infrared instruments mainly implement the Fourier transform infrared (FTIR) spec-
troscopy. This method is widely employed in milk recording schemes worldwide for animal 
monitoring and breeding purposes. In addition, visible and near-infrared (NIR) spectroscopy is 
increasingly integrated into milking systems for daily on-farm monitoring of milk quality and 
animals’ physiological status. This review examines the topic of milk phenomics together with 
potential and challenges of infrared spectroscopy to predict indicators and complex traits 
related to health and nutritional disorders exploiting the biological bonds that exist between 
milk and blood in dairy animals.

HIGHLIGHTS

� Milk is a valuable source of information for assessing nutritional and health proxies in dairy 
animals.
� Infrared spectroscopy is used within routine milk recording systems for the determination of 

major components, but other useful applications exist.
� This review summarises research on milk phenomics carried out by mean of infrared spec-

troscopy to predict complex traits related to animals’ health and nutritional disorders.
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Introduction

In the last decades, management and productive per-
formance of livestock have transformed and devel-
oped dramatically, especially in the dairy cattle sector. 
In the past 40 years the milk yield per cow has more 
than doubled in specialised breeds like Holstein, now 
being approximately six times greater than 100 years 

ago (Gross 2023). High-producing cows nowadays can 
easily deliver 12,000 kg of milk per year (Gross 2023). 
With this in mind, it is evident that in modern lactat-
ing animals milk production represents the metabolic 
priority around which all other physiological activities 
are coordinated and, in some respects, minimised (e.g. 
fertility). This phenomenon, known as homeorhesis, is 
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particularly evident in animals belonging to cosmopol-
itan and highly selected breeds, which suffer from 
negative energy balance on a regular basis in early 
lactation and often present major metabolic disorders 
like ketosis and hypocalcaemia (Bauman and Currie 
1980). This is particularly the case of breeds or popula-
tions under strong selective pressure like Holstein and 
Brown Swiss cows, East Friesian ewes and Saanen 
goats (Brito et al. 2021; Li et al. 2022; Teissier et al. 
2024) where the most crucial activity is the supply of 
the mammary gland with energetic nutrients taken 
from the bloodstream: circulating glucose, volatile 
fatty acids from the rumen (and to a lesser extent 
from the large intestine), medium-long chain fatty 
acids, sugars, minerals and vitamins from the digestion 
and absorption process in the small intestine, non- 
esterified fatty acids (NEFA) from adipose tissue, cal-
cium from bones, and amino acids from muscle tissue.

In intensive farming systems, an efficient transition 
from a non-productive period (dry off) to lactation is 
crucial to limit the risk of diseases and increase the 
productive lifespan of dairy animals (Proudfoot 2023). 
Although most of farmers pay close attention to the 
diet/supplements administered to the parturient ani-
mals, unsuccessful and inadequate homeorhetic and 
homeostatic adaptations continue to occur at eco-
nomically important rates in the field, negatively 
affecting animals’ health and farmer’s income. This 
issue is progressively emerging in certain dual-purpose 
breeds too.

The current high productivity level in dairy animals, 
particularly cattle, has been paralleled by a significant 
increase in nutritional, metabolic and fertility issues 
(Miglior et al. 2017), which have been overlooked for 
years by the main stakeholders, breeders included. As 
a matter of fact, pleiotropic and/or latent undesired 
effects have resulted in about one third of cows hav-
ing at least one clinical disease (metabolic and/or 
infectious) during the career and more than half of 
dairy cows having at least one subclinical event within 
the first 90 days of lactation (Caixeta and Omontese 
2021). In other dairy species, the situation is quite 
similar. According to Bertoni and Trevisi (2013), 
enhancing the animals’ resilience and adaptation to 
metabolic stress is an effective strategy to boost prof-
its by reducing indirect costs, such as those associated 
to poor animal health and scarce fertility.

Monitoring the nutritional and the health status of 
lactating animals is of particular interest in this con-
text, with the main goal being prevention and early 
detection of metabolic issues and health events. 
Turned into practice, the availability of automated, 

non-invasive and cost-effective diagnostic tools at the 
herd scale is pivotal in the contemporary dairy sector. 
Coupled with that, different stakeholders of the milk 
supply chain can benefit from novel and easily inter-
pretable proxies to identify health impairments that 
could span throughout the lactation period, monitor-
ing side effects of metabolic changes (Giannuzzi et al. 
2023).

During lactation, the mammary gland of mammals 
produce milk, which is a matrix available on a daily 
basis in dairy animals, easy to sample and manipulate, 
and in part a potential mirror of the animal’s condi-
tion. Gross and detailed milk components, in fact, are 
recognised as a readily accessible source of informa-
tion. For instance, changes in the milk concentration 
of some minerals or metabolites can reflect fluctua-
tions in health, nutritional status (Overton et al. 2017), 
overall wellbeing and behaviour (Gengler et al. 2016). 
This occurs because the blood-milk barrier regulates 
the passage of molecules from the bloodstream to the 
alveolar lumen (milk) and vice versa (Bramley et al. 
1992; Costa et al. 2019). Considering that the concen-
tration of some specific molecules increases in blood 
in presence of a disease/disorder, it becomes evident 
how milk can be a highly informative medium avail-
able at a low cost with no need of invasive sampling 
procedures. Milk collection and sampling, in fact, are 
already integrated into standard milking routines in 
commercial farms and analyses are carried out regu-
larly for milk quality monitoring. For the majority of 
traditional milk composition traits, the punctual deter-
mination is performed via infrared spectroscopy, a 
fast, non-polluting, and cost-effective technique that 
utilises infrared light to scan the matter and detect 
the vibration of specific chemical bonds, which produ-
ces an absorption profile with absorbance values for 
individual infrared light wavenumbers. Within the 
spectrum, there are known regions associated to spe-
cific milk components, e.g. for milk proteins, carbohy-
drates (sugars), or lipids (Soyeurt et al. 2011).

Even though review articles on infrared spectros-
copy applications for predicting various traits in milk 
are numerous (McParland and Berry 2016; Bresolin and 
D�orea 2020, Evangelista et al. 2021), there is currently 
no comprehensive report on the infrared spectroscopy 
predictive ability for the animals’ health and metabolic 
status. Therefore, the present review aims to i) explore 
the literature on the role of milk matrix as mirror of 
animal nutritional and health status in dairy animals, 
and ii) summarise the current state of the use of milk 
spectra for precise monitoring of dairy animals, while 
highlighting the challenges and perspectives in terms 
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of precision farming, tailored feeding, and selective 
breeding.

Popular types of spectroscopy in dairy

Fourier transform infrared spectroscopy

Traditionally, the Fourier Transform Infrared (FTIR) 
spectroscopy, which cover a wavelength range from 
2,500 to 25,000 nm (Bittante and Cecchinato 2013), is 
worldwide used within the Dairy Herd Improvement 
(DHI) framework for routine milk analysis. Existing FTIR 
devices and models are able to provide information 
on major components of cow, buffalo, ewe, and goat 
milk (Barbano and Clark 1989) and there are universal 
standards available to keep the reproducibility similar 
among laboratories. Anyhow, it has been demon-
strated by several authors how FTIR possesses a fur-
ther significant potential beyond its basic application. 
It has been demonstrated, in fact, that FTIR can be 
successfully exploited for predicting fine milk compo-
nents, milk properties, and animal- or farm-related 
complex traits (Barbano et al. 2016; Aernouts et al. 
2020), e.g. milk coagulation properties (Cecchinato 
et al. 2009; Cellesi et al. 2019), fatty acids (Soyeurt 
et al. 2011), protein fractions (Mota et al. 2023a), trace 
minerals (Zaalberg et al. 2021), presence of adulterants 
(Ceniti et al. 2023), metabolites, and ketone bodies 
(Grelet et al. 2016). Moreover, by mean of the milk 
spectrum, blood biomarkers not detectable in milk 
can be indirectly predicted with a certain accuracy 
(Luke et al. 2019; van den Berg et al. 2021; Giannuzzi 
et al. 2023). The same applies to third characteristics 
like dry matter intake (DMI; Seymour et al. 2019; 
Ouweltjes et al. 2022; Shadpour et al. 2022b), daily 
milk productivity, milk somatic cell count (SCC), 
methane emission (Dehareng et al. 2012; Shadpour 
et al. 2022a; van Staaveren et al. 2024), acute and 
chronic clinical mastitis (Rienesl et al. 2022), body con-
dition score (BCS; Frizzarin et al. 2023a,2023b), energy 
intake (McParland et al. 2014) or balance (Rovere et al. 
2024), fertility (Ho et al. 2019), body weight (Zhang 
et al. 2021), lameness (Mineur et al. 2020), and hyper-
ketonemia/ketosis (Benedet et al. 2019; Aernouts et al. 
2020; Walleser et al. 2023).

While on one hand, most of these FTIR models 
exhibit moderate to low prediction accuracy, numer-
ous studies nonetheless support the large-scale 
screening potential of FTIR-predicted metabolites 
(Pryce et al. 2016) and the important role of FTIR for 
genomic selection of dairy animals (Tiplady et al. 
2020). So far, most of the work done and published in 
the literature has been focused on dairy cows, due to 

the greater economic interest, numerosity, and inter-
national collaborations and projects. This means that, 
compared to other dairy species, there is a larger 
availability of accurate reference phenotypes for cows’ 
models development. However, with FTIR analysis 
becoming easily available and somehow cheaper 
worldwide, there are concrete attempts to produce 
prediction models for complex traits in other dairy 
species.

Considering the impact of metabolic diseases for 
farmers and the importance of health events early 
detection, being able to identify animal at risk through 
the predicted concentration of blood biomarkers is an 
outstanding opportunity. The milk spectrum becomes 
therefore informative for both farmers and breeders 
for decision-making and selection purpose, respect-
ively. Noteworthy, assuming that individual milk spec-
tra are archived, it’s possible to predict new milk traits 
retroactively by applying updated calibration equa-
tions to the spectra stored. A systematic collection of 
milk spectra, along with registration of the animal- 
related information and, even more important, the 
availability of high-quality (reference) phenotypes, 
offer an opportunity to explore and predict traits that 
are typically not measurable on a large scale.

Thanks to specific interferometers automatically 
performing the Fourier transformation of signals, milk 
analyses rely entirely on FTIR – usually adopted to 
explore chemical composition of matter and disclose 
molecular structures. While bulk milk analysis repre-
sents the basis for the milk payment within the supply 
chain, individual characteristics of milk are interesting 
for the other purposes described above, i.e. animals 
monitoring and breeding within the DHI framework 
(Barbano and Clark 1989). Laboratories in charge of 
the official milk analyses adopt the FTIR machineries 
and are subjected to inspections and ring tests of the 
International Committee for Animal Recording (ICAR). 
Specific guidelines must be followed to produce high- 
quality standardised phenotypes and most of the offi-
cial laboratories are under control of public bodies. In 
Italy, for example, official milk laboratories are in the 
hand of the Italian Breeders Association (AIA, Rome, 
Italy), which, in turn, is an ICAR member. Ring tests 
are regularly performed on a national and inter-
national dimension to ensure comparability, reproduci-
bility, and repeatability of FTIR predictions. What is 
more, spectra obtained from machineries of different 
brands working in the mid-infrared region can be 
harmonised through standardisation procedures 
(Bonfatti et al. 2017). A limited number of manufac-
turers detain the market of FTIR devices globally (e.g. 
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Table 1), namely Foss Electric A/S (Hillerød, Denmark), 
Bentley Instruments (Chaska, MN, US), and Perten – 
formerly Delta - Instruments (Drachten, the 
Netherlands).

According to the manufacturers’ application notes 
and ICAR periodic reports, the FTIR-based machineries 
are powerful and the installed models for fat and pro-
tein content outperforming. As a matter of fact, pre-
diction accuracies up to 1 are declared for cow, goat, 
ewe, and buffalo milk major components (Foss 
Application Note 5373 Rev. 3 MilkoScanTM 7 RM/FTþ; 
International Committee for Animal Recording (ICAR), 
2020; Zaalberg et al. 2021). The models developed for 
third traits like health status are instead characterised 
by lower – but still exploitable - prediction accuracy 
and precision. A list of pioneering studies attempting 
to use FTIR for predicting indicators of clinical and 
subclinical diseases are given in Table 1 and Table 2. 
Some models for disease detection work in regression 
(indicator traits prediction), some others in classifica-
tion mode (at risk vs healthy). In general, despite 
promising, the FTIR equations reported in literature for 
health indicators are far from being considered as effi-
cient as for fat and protein content prediction and 
most of them result in too high amount of false posi-
tives and/or false negatives. When dealing with health 
data, model robustness is affected by the information 
available, i.e. the reference data used for model devel-
opment. As a general rule, in fact, machine learning 
approaches require a substantial and representative 
number of pathological animals to be present in the 
training dataset to boost variability, avoid overfitting, 
and improve classification accuracy.

On the flip side, FTIR spectroscopy is currently avail-
able for benchtop instruments exclusively. This means 
that none of the portable systems commercially avail-
able operate in the working range of the mid-infrared 
region, limiting the use of already developed FTIR 
models for early prediction and detection on farm. At 
the moment, in fact, only the near-infrared spectros-
copy (NIR) provides targeted alerts to farmers on a 
daily basis, because the DHI FTIR-based milk tests are 
carried out on individuals every 4-5 weeks, with no 
possibility to monitor specific animals such as transi-
tion cows more frequently, e.g. every day. Although 
rather less sensitive compared to FTIR, NIR is popular 
in both agricultural and dairy sector and mostly 
intended to in field and real-time analyses.

In summary, limitations of FTIR include the high ini-
tial price of the device, mainly due to the price of 
optical components (e.g. photodetectors) and the 
non-negligible maintenance costs, i.e. for renewal of 

optics such as cuvettes and/or salts (Hindle 2008). 
Finally, FTIR-based devices of milk laboratories are 
designed for the analysis of liquid samples. In other 
words, cannulas and pumps of these machineries are 
not capable to deal with semi-solids and solid matrix 
such as colostrum (Goi et al. 2023).

Near infrared spectroscopy

Apart from FTIR, the dairy sector is also familiar with 
the visible spectroscopy (400 to 800 nm; VIS) and the 
NIR (800 to 2,500 nm) spectroscopy. Melfsen et al. 
(2012) explained how these regions are used for pre-
diction of milk components and suggested that NIR is 
a promising technique for real-time monitoring of 
major milk solids (Diaz-Olivares et al. 2020). As for 
FTIR, NIR-based devices offer fast results at a reason-
able cost. In addition, these devices are designed to 
be resistant and are equipped with robust and long- 
lasting detectors.

Even though the milk analysis requires some sam-
ple pre-treatments, NIR devices can be integrated 
either in-line or, if portable, used at-line, i.e. on a rep-
resentative sample separately from the milking 
machinery itself (Guerra et al. 2024).

With NIR implemented, a continuous on-farm moni-
toring is feasible and could be exceptionally advanta-
geous and straightforward compared to analyses 
obtained once per month with FTIR benchtop instru-
ments (Evangelista et al. 2021). Another advantage of 
NIR technology is the potential to produce accurate 
phenotypes every day in each single animal with milk 
spectra available. Also, the integration of NIR spectrum 
wavelengths with additional animal-specific informa-
tion (e.g. season, breed, daily milk yield, days in milk, 
and parity) has been shown to enhance the accuracy 
and robustness of milk prediction models (Giannuzzi 
et al. 2022).

VIS and NIR devices available in the market are sev-
eral, but the smallest and the portable ones are the 
most interesting for producers for the quality/price 
ratio, resistance and ease of use. They primarily work 
in the VIS and short-wave NIR wavelength range (400 
to 1,000 nm), but few operate in the long-wave NIR 
(1,000 to 1,700 nm) (Bittante and Cecchinato 2013). 
Although the long-wave NIR region usually demon-
strates greater performance in predicting milk-related 
traits compared to the others, it presents greater chal-
lenges for the in-line implementation (Tsenkova et al. 
2000; Kawasaki et al. 2006). As it does for FTIR, NIR 
spectra have been exploited in recent years to predict 
phenotypes different from major milk solids such as 
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SCC, milk urea nitrogen (MUN; Kawasaki et al. 2006), 
and milk fatty acids (FA; Nguyen et al. 2011). Attempts 
have also been made in predicting cheesemaking 
traits (Mota et al. 2022) and blood metabolites 
(Giannuzzi et al. 2022), providing promising results.

Thanks to VIS and NIR, farmers can maintain control 
over the quality of bulk milk (Huang et al. 2008), not 
only to monitor the quality of the milk supplied to the 
dairy industry but also to inspect well-being of the 
herd. Some bulk milk traits like urea are in fact impor-
tant for evaluating diet appropriateness and excess/ 
lack of protein in the ration. Having milk analysis daily 
available at farm level provides information regarding 
animals’ efficiency and ration administered. It is also 
worth mentioning that NIR could allow for milk ana-
lysis even at quarter level which is extremely impor-
tant in contexts where selective dry therapy protocols 
are in use and blanket therapies prohibited (e.g. in all 
European countries).

In recent times, significant advancements have 
occurred in the swiftness of acquiring spectra, signal 
processing, and transmission, along with enhanced 
possibilities for superior connections and NIR spectral 
management. Additionally, instruments have evolved 
with a marked reduction in size and weight, contribu-
ting to the growing utilisation of NIR spectroscopy 
outside the laboratory and directly on the dairy farm 

(Evangelista et al. 2021). For several years, researchers 
have been actively involved in developing NIR spec-
troscopy applications suitable for a real-time analysis 
at milking. This includes efforts in adapting NIR spec-
troscopy for its use in farms equipped with milking 
parlour (Kawasaki et al. 2006, Kawamura et al. 2007; 
Melfsen et al. 2012; Iweka et al. 2016, 2020) and auto-
matic milking systems (AMS; Iweka et al. 2018). Real- 
time analysis of milk can be either online or in-line 
with NIR. In the case of online instruments, the meas-
urement is performed continuously but not directly 
within the process/pipe itself. A dedicated branch, in 
fact, takes a representative amount of milk to be auto-
matically analysed. Differently, if NIR is implemented 
in-line, measurements occur directly in the process. 
At-line analyses, instead, are performed mostly with 
handled and portable NIR devices (e.g. SCiO, 
Consumer Physics Inc., Israel) on bulk milk as they 
require the sample to be taken out from the pool 
manually and analysed separately.

Overall, accuracy and precision of prediction mod-
els for the main cow milk chemical constituents are 
high or moderate (Table 3). Among the investigated 
parameters, milk fat content results to be the best pre-
dicted trait in all studies, with high coefficients of 
determination (>0.90) and low standard error of pre-
dictions, both in reflectance and transmittance mode. 

Table 3. Fitting statistics of near-infrared models developed for the real-time analysis of raw milk.

NIR system N. samples VS
Fat  
(%)

Protein  
(%)

Lactose  
(%)

Solid not  
fat (%)

Urea  
(mg/dL) SCS Milking References

Transmittance spectra 
(600-1050 nm)

428-787 R2 0.91 0.64 0.74 – 0.60 0.57 MP Kawasaki et al. 2005
SEP 0.53 0.22 0.14 – 2.58 0.31
Bias −0.03 −0.01 −0.01 – −0.15 −0.01
RPD – – – – – –

Transmittance spectra 
(600–1050 nm)

134-151 R2 0.95 0.91 0.94 – 0.90 0.82 MP Kawamura et al. 2007
SEP 0.42 0.09 0.05 – 1.33 0.27
Bias 0.01 0.00 0.00 – −0.03 −0.03
RPD – – – – – –

Transmittance spectra 
(600–1050 nm)

49-72 R2 0.95 0.72 0.83 – 0.53 0.68 AMS Kawasaki et al. 2006
SEP 0.25 0.15 0.26 1.50 0.28
Bias −0.06 0.00 0.00 – −0.09 −0.03
RPD – – – – – –

Reflectance spectra 
(851-1649 nm)

262 R2 0.998 0.98 0.92 – 0.82 0.85 MP Melfsen et al. 2012
SEP 0.09 0.05 0.06 – 19.32 0.18
Bias −0.0004 0.0003 −0.0076 – −1.6959 −0.0119
RPD 21.72 6.44 3.51 – 2.36 2.57

Absorbance spectra 
(700-1050 nm)

218 R2 0.99 0.95 0.91 – 0.94 0.91 MP Iweka et al. 2016
SEP 0.17 0.06 0.06 – 0.88 0.09
Bias 0.00 −0.00 0.00 – −0.00 −0.00
RPD 9.53 4.31 3.36 – 3.92 3.41

Absorbance spectra 
(700-1050 nm)

377 R2 0.98 0.72 0.54 – – 0.63 AMS Iweka et al. 2018
SEP 0.23 0.25 0.15 – – 0.48
Bias 0.00 0.00 0.00 – – 0.00
RPD – – – – – –

Absorbance spectra 
(700-1050 nm)

92 R2 0.99 0.92 0.79 0.89 0.51 0.59 MP Iweka et a., 2020
SEP 0.11 0.09 0.22 0.22 1.13 0.20
Bias −0.01 −0.01 −0.02 −0.02 0.06 0.00
RPD 8.89 3.58 2.16 3.04 1.42 1.55

VS¼ Validation statistics; R2 ¼ coefficient of determination of validation; SEP¼ standard error of prediction; RPD¼ ratio of standard deviation of the val-
idation set to SEP. SCS¼ somatic cell score calculated as SCS ¼ 3þ log2(somatic cell count/100,000); MP¼milking parlour; AMS¼ automatic milking 
system.

ITALIAN JOURNAL OF ANIMAL SCIENCE 787



For other parameters there are variations in the pre-
diction ability among studies and among different NIR 
systems. The NIR technology is becoming popular for 
prediction of complex traits also in species different 
than cattle, and the models performance models is 
constantly improving, laying the groundwork for the 
development of increasingly precise and reliable tools 
to be installed in the milking systems. In this way, 
concrete assistance to farmers, nutritionists, and veteri-
narians is provided. While it’s clear that NIR analysis of 
milk constituents may not reach the precision required 
by laboratory standards, it is obvious that at-line and 
in-line instruments can be used more frequently for 
milk analysis at different levels, offering precious 
knowledge for herd and/or animals management 
(Melfsen et al. 2012).

As reported in Table 4, three are the sensors com-
mercially available to date for the real-time analysis of 
milk. These can be installed in the milking parlour or 
AMS to analyse fat, protein, and lactose content at 
cow individual level. In addition, the AfiLab system is 
also able to detect some anomalies, e.g. the presence 
of blood traces in milk. AfiLab as well as Sabre Milk 
and Dairy Sensor (Table 4) provides additional useful 
information, namely milk SCC and conductivity. 
Recently, the innovative Afimilk MCS (milk classifica-
tion service) System has been introduced, aiming at 
enhancing the value of milk. In fact, this equipment 
can dynamically separate milk into two fractions based 
on predefined criteria - such as milk coagulation abil-
ity and aptitude. This smart segregation improves the 
quality of the milk delivered to industries for cheese 
manufacturing by indirectly maximising casein content 
and reducing the risk of high SCC and acidity (Leitner 
et al. 2011, 2013, Todde et al. 2017).

Milk as a source of information for the 
nutritional and animal health status

Milk composition

Lactose as a mammary gland health indicator trait
In addition to the standard composition of milk 
related to fat and protein percentage, other compo-
nents of milk, potentially predictable through infrared 
spectroscopy (whether FTIR or NIR), prove to be inter-
esting milk biomarkers of nutritional and animal 

health status. Indeed, lactose is considered an impor-
tant marker of mammary gland health. Lactose is the 
most abundant solid of milk. Due to the physiological 
role of this osmole, lactose content variation is 
expected to be very low under healthy conditions 
(Costa et al. 2020a). Within lactation the variability of 
this milk component is rather low, with no increase in 
its concentration at the end of lactation – i.e. lactose 
is not subjected to dilution and concentration effect 
as protein and fat. Although overlooked for years, lac-
tose can be informative of the udder health of cows, 
especially if it is possible to trace perturbations.

In dairy cows, lactose naturally decreases with par-
ity due to tissue ageing; however, it also decreases in 
presence of mammary gland inflammation (Costa 
et al. 2019, 2020a). In most of dairy species, the corre-
lations between lactose and the majority of the trad-
itional traits (e.g. milk yield and content of fat, protein, 
casein) are generally weak or around zero, except with 
SCC, the most popular mastitis marker. Mastitis and 
SCC are negatively correlated with lactose content at 
both phenotypic and genetic level due to a damage 
of the alveolar epithelium during and after inflamma-
tion (Bobbo et al. 2016; Costa et al. 2019, 2020a). The 
tight junctions of the epithelium are impaired by fac-
tors/agents related to local inflammation response, 
indicating that even a single mastitis event can per-
manently affect milk lactose content of a cow due to 
lactosemia (Herve et al. 2018; Costa et al. 2019). This 
interesting aspect has also been confirmed in other 
species, with a moderate to strong (-0.27 up to −0.48) 
negative correlation reported in buffalo (Costa et al. 
2020b), goat (Bagnicka et al. 2011; Magro et al. 2022), 
and sheep (Carta et al. 2023).

Apparently, lactose content seems to be therefore a 
potential robust marker of mastitis, however often the 
inflammation -with consequent increase in SCC and 
lactose reduction - is confined to one quarter, making 
the variation (drop) in the pooled milk lactose content 
quite difficult to detect. In this context, NIR installed in 
AMS could open the room for the use of quarter-level 
lactose content for early mastitis detection which 
could be used in combination with quarter-level vari-
ation in electrical conductivity, milk yield, and SCC 
(Ebrahimie et al. 2018). In pooled milk, lactose vari-
ation is generally low, therefore its within-animal vari-
ability should be considered, and it should be 

Table 4. Near-infrared-based instruments for real-time milk analysis commercially available.
Name Company Analysed parameters

AfiLabTM Afikim (Israel) Fat, protein, and lactose content, conductivity, blood presence, somatic cell count
Dairy sensor Polanes ltd (Poland) Fat, protein, and lactose content, electrical conductivity
SabreTM Milk LIC Automation (New Zeland) Fat, protein, and lactose content, electrical conductivity
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combined with other proxies of subclinical or clinical 
mastitis easily available, e.g. electrical conductivity, 
SCC, and Na.

Costa et al. (2020a) demonstrated that there is a 
cumulative effect of mastitis on both lactose content 
and milk yield, indicating that repeated inflammation 
events deteriorate progressively across cow’s lifetime 
not only the concentration of this milk solid (osmole) 
but also the synthesis capability of the udder. After 
proper validation, lactose content might be used as 
indicator of the mammary gland memory of mastitis 
(Costa et al. 2020a).

Milk urea as indicator of nitrogen utilisation 
efficiency
In the rumen, dietary amino acids are converted to 
ammonia by microbiota to produce microbial protein. 
This process requires energy; thus, a proper level of 
different fraction of dietary structural and non-struc-
tural carbohydrates is fundamental to ensure this con-
version. When the dietary energy and protein 
availability in the rumen is not synchronised, ammonia 
starts to accumulate in the rumen and to permeate 
rumen wall, passing in the bloodstream. Subsequently, 
in the liver, ammonia is converted to urea, which is 
less toxic and can be eliminated easily from the organ-
ism (urine, saliva, milk). Therefore, blood urea nitrogen 
(BUN) reflects the effects of dietary intake of crude 
protein and its digestive utilisation; in addition, BUN is 
related to milk protein secretion, body protein turn-
over and nitrogen (N) urinary excretion (Kessler et al. 
2020). For high-yielding dairy cows, BUN levels below 
5 mg/dL (1.7 mmol/L) suggest a potential deficiency of 
dietary protein, whereas BUN exceeding 19 mg/dL 
(6.78 mmol/L) may be due to unbalanced diet, 
Additionally, impairment of the N balance is associ-
ated with laminitis and metabolic dysfunction (Nocek 
1997), that, in turn, are associated to diminished con-
ception, and pregnancy rates (Hammond 1997). Since 
BUN cannot be measured routinely at herd level, the 
MUN is often used as a proxy due to the high pheno-
typic correlation with cows’ (r¼ 0.86; Hof et al. 1997) 
and small ruminants’ BUN (r¼ 0.90; Jel�ınek et al. 1996). 
Therefore, MUN can be view as a by-product of the N 
metabolism; in addition, at herd level the bulk milk 
MUN can be a useful indicator of protein and energy 
status of ruminants and dietary balance.

The MUN concentration is affected by many factors. 
These encompass environmental conditions like sea-
son and feed as well as individual factors such as 
breed, parity, body weight, rumen microbiota, physio-
logical state, and milk yield (Hojman et al. 2004). 

Therefore, establishing monitoring protocols and 
thresholds can be rather difficult. Considering that 
measurement of MUN via gold standard is costly and 
time-consuming, FTIR has been tested for predicting 
milk urea since the 1990s and is now widely used 
with high accuracy at population level (Bittante 2022). 
Optimal milk urea values range from 17 and 26 mg/dL 
in dairy cows bulk milk, with levels below 17 mg/dL 
(MUN < 7.82 mg/dL) being related to energy excess/ 
protein deficiency and levels greater than 26 mg/dL 
(MUN > 11.96 mg/dL) being associated to concentra-
tion of dietary protein greater than required and/or 
energy deficiency (Powell et al. 2011). A sharp vari-
ation in MUN (± 4 mg/dL) must be considered there-
fore as an alert for the farmer whose cause(s) should 
be explored. Predicted milk urea has been mainly 
employed in bulk milk for evaluating the dietary bal-
ance and excess of N, due to concerns related to 
environmental impact (Bastin et al. 2009, Aguilar et al. 
2012). However, its potential extends to exploring 
novel applications when coupled with other parame-
ters for negative energy balance detection (Andjeli�c 
et al. 2022).

Somatic cell count and differential somatic cell 
count
Milk SCC (n. cells/mL) is the most popular marker of 
udder health in dairy species, due to phenotypes avail-
ability and its quantitative nature which makes SCC 
easier to monitor/analyse/evaluate compared to binary 
diagnosis. Genetically and phenotypically, the correl-
ation between SCC and mastitis in dairy cows is mod-
erate to strong (0.60-0.90), likely due to cow’s intrinsic 
factors (immune response activation, health status, 
etc), form (clinical, subclinical, acute, chronic, etc), 
severity, and pathogen(s) involved (de Haas, 2003),

When mastitis occurs, in most of the cases the 
observed increase in SCC has to be attributed to a sin-
gle sick quarter, suggesting that at quarter level the 
increase is exponential. SCC are for the 85-90% white 
blood cells, the remaining part (10-15%) are exfoliated 
epithelial cells. The magnitude of the increase can 
therefore differ, suggesting that looking at the SCC 
pattern is fundamental for an accurate early prediction 
of mastitis (Bobbo et al. 2016; Rienesl et al. 2022). In 
addition, detection/prediction accuracy could be 
boosted if other traits are considered with SCC (see 
chapter 3.1.4). Machine learning algorithms nowadays 
can be exploited for this purpose, as they can com-
bine several predictors and consider their longitudinal 
evolution, i.e. across days in milk (Ebrahimi et al. 
2019). The milk spectrum can contain relevant 
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information that can be potentially useful in prediction 
(Rienesl et al. 2022). Of course, availability of monthly 
data per cow is not sufficient for managerial purpose 
and does not provide support to the farmers because 
the diagnosis would occur before the milk analysis 
report reception. In the case of NIR, however, there is 
potential to use prediction algorithms that integrate 
spectral data points and cow-related information on a 
daily basis, possibly accounting for day-to-day 
variations.

Conventionally, SCC above 200,000 cells/mL in 
pooled milk is indicative of suboptimal milking practi-
ces and udder health issues in the herd (Ruegg and 
Pantoja 2013). However, sensitivity and specificity of 
this threshold depend on a multitude of factors, 
including the cow-specific physiological baseline SCC 
level. It is not uncommon, in fact, to observe healthy 
cows with constantly high milk SCC or, vice versa, sick 
cows – even with a severe inflammation - with milk 
SCC below 200,000 cells/mL. On the other hand, it is 
important to remind that rarely data of cows with 
mastitis are present in the official databases; in pres-
ence of severe acute episodes, for example, cows 
could be not milked at all, or the milk is discarded for 
presence of antimicrobial residues. Big data generated 
from bodies like AIA are therefore lacking part of the 
information (milk yield and composition) necessary to 
carry out robust and accurate prediction models for 
mastitis detection. Milk SCC is determined by the offi-
cial laboratories as part of the official DHI analyses 
through flow cytometry. Commercial names of most 
popular machineries are Bentley SomaCount FCM 
(Bentley Instruments, Chaska, MN, US), Fossomatic 
(Foss Electric A/S, Hillerød, Denmark), and Somascope 
(Delta Instruments, Drachten, the Netherlands).

In recent years, the Foss Electric A/S (Hillerød, 
Denmark), proposed a novel trait for mammary gland 
inflammation detection and udder health monitoring, 
particularly useful for subclinical mastitis. The differen-
tial somatic cell count (DSCC, cells/mL) is expressed in 
percentage, as it represents the proportion (%) of 
polymorphonuclear leukocytes and lymphocytes out 
of the total SCC. Nowadays, some Italian laboratories 
under AIA control routinely determine DSCC in indi-
vidual bovine milk. According to some studies carried 
out on both sick and healthy cows, the risk of mastitis 
seems to be high when the pooled milk DSCC is 
above 65% along with SCC greater than 200,000 cells/ 
mL (Zecconi et al. 2019). In general, several assump-
tions are made whenever a threshold is defined; 
hence, in the case of DSCC, it is reasonable to assume 
that the threshold differs based on the number of sick 

quarters, baseline SCC, pathogen(s) involved, lactation 
stage, parity, season and other individual and environ-
mental sources of variation.

Fine composition

Fatty acid profile as fingerprint of the cow’s nutri-
tional and metabolic status
Within the fine components of milk, the fatty acid pro-
file serves as a distinctive marker of the cow’s nutri-
tional and metabolic condition, making it a valuable 
indicator of metabolic imbalance at the individual cow 
level. Bovine milk fat is composed of approximately 
400 different fatty acids (FAs), with nearly equal contri-
butions from mammary gland synthesis and transfer 
from circulating plasma. Short- and medium-chain FAs 
(C4 to C14), along with about half of the C16 FAs orig-
inating from acetate and b-hydroxybutyrate (BHB), 
result from de novo synthesis in the mammary gland. 
The remaining C16 and all longer chain FAs are 
sourced from either dietary lipids or mobilisation of 
fat depots (Conte et al. 2017). Additionally, as summar-
ised by Buccioni et al. (2012), various studies demon-
strated that bacteria during ruminal activity generate 
odd- and branched-chain FAs. Of great interest for 
farm animal diagnostics is the determination of the 
ratios between various milk FAs. Some examples 
include the determination of the ratio between trans- 
10 and trans-11 isomers of C18:1 for diagnosing ’the 
low-fat milk syndrome’ (Conte et al. 2018). The meas-
urement of the concentration of de novo FAs synthes-
ised by the mammary gland provides a fairly accurate 
indication of the efficiency of ruminal fermentations in 
providing acetate and butyrate to mammary gland. 
The proportion of FAs de novo synthesised is also a 
good indicator of the health mammary status, as dem-
onstrated in single udder quarter with different levels 
of somatic cells count (Turini et al. 2020). Similarly, 
determining the proportion of long-chain fatty acids 
(especially the ratio between C16 and the sum of 
C18:0 and C18:1 cis9) gives insight into the energy bal-
ance of the cow, especially after calving (Gross et al. 
2011). Milk FA profile is also an excellent source of 
information of the feeding regimen and diet adminis-
tered. In fact, through specific milk FA it is possible to 
reveal if the feeding system is pasture-based or not 
and if the ration includes certain forages (Mele 2009).

Given the labour-intensive nature of the analytical 
methods for milk FAs determination, infrared spectros-
copy can be a viable alternative, as it is not non- 
destructive, rapid, cheap and multiparametric. 
Recently, to estimate some specific FAs (C12:0, C14:0, 
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C16:0, C16:1 cis9, C18:1 cis and trans isomers and SFA 
and MUFA) in cows’ milk (Soyeurt et al. 2006). 
Although the accuracy of FTIR to separate specific 
geometric and positional isomers of UFA is not com-
parable to the gold standard analysis (gas-chromatog-
raphy), the possibility to perform a huge number of 
samples in a very repeatable and quick way allowed 
to obtain interesting results by using FTIR for the rou-
tine analysis of milk FA profile. In fact, the possibility 
to routinely predict the main classes and some specific 
FAs seems effective in the monitoring of nutritional 
and health status of lactating cows, including ketosis 
and calcium dynamics in early lactation (Bach et al. 
2019; Seely et al. 2022; Seminara et al. 2023).

Detailed milk protein profile as indicator of inflam-
matory and metabolic disorders
Bovine milk has an average protein content of 35 g/L, 
mainly composed by casein (CN), which account for 
almost 80% of the total proteins present in different 
fractions: a-S1-, a-S2-, b- and r-CN. Whey proteins rep-
resent the remaining 20% of proteins of milk, are 
found in solution and are mainly composed by 
b-lactoglobulin (b-LG) and a-lactalbumin (a-LA), fol-
lowed by lactoferrin (LF), and a traces of serum albu-
min and immunoglobulins. Besides their impact on 
milk coagulation and cheese-making properties (Bisutti 
et al. 2022), changes in CN proportion have been 
observed in animals having clinical and subclinical 
mastitis. This implies that monitoring fluctuations in 
CN fractions could be a useful proxy for udder inflam-
mation (Pegolo et al. 2020). In particular, the decrease 
of the two most abundant fractions (i.e. a-S1 and 
b-CN) of caseins was linked to the enhanced activity 
of proteolytic enzymes released by somatic cells in 
response to the udder inflammation (Ramos et al. 
2015). Other protein fractions could provide useful 
information pertaining to the health condition of the 
animal. For instance, LF is an iron binding protein with 
antimicrobial properties which can also exert a wide 
range of actions towards the immune system, from 
the inhibition of the inflammatory process to the 
modulation of both innate and adaptive immune 
response (Drago-Serrano et al. 2017; Shimazaki and 
Kawai 2017). Interestingly, some whey proteins could 
provide significant insight also in relation to other 
conditions like ketosis or acidosis. In fact, increase in 
milk b-LG was recently proposed as a marker for the 
diagnosis of ketosis, while high concentration of a-LA 
could be informative for identifying the occurrence of 
acidosis (Puppel et al. 2021). The identification and 
quantification of milk protein fractions is typically 

conducted through analytical methods such as 
Sodium Dodecyl Sulphate Polyacrylamide Gel 
Electrophoresis (SDS-PAGE) or High-Performance 
Liquid Chromatography (HPLC). These methods, while 
highly efficient, are expensive and time consuming 
and require expert personnel, and therefore challeng-
ing for routine screening at the farm level. In this con-
text, the utilisation of FTIR for milk prediction opens 
an intriguing avenue. Studies in the past decade have 
shown challenging results with poor to moderate pre-
diction ability through both NIR and FTIR spectroscopy 
(D�ıaz-Carrillo et al. 1993, Bonfatti et al. 2011). 
Improved accuracy was reported with the implementa-
tion of wavelength selection (Niero et al. 2016). 
Recently, with the advent of new machine learning 
algorithms for elaborating predictions, a recent study 
demonstrated that protein fractions can be predicted 
with high accuracy from milk FTIR spectra, with a few 
highly significant wavelengths (Mota et al. 2023a). The 
potential of using this technique in the context of 
health monitoring need to be further explored.

Mineral profile as marker of mastitis
Minerals constitute a minor fraction of milk compo-
nents, accounting for approximately 0.7% (Kaufmann 
and Hagemeister 1987). Mineral content in milk is pri-
marily influenced by dietary mineral intake and envir-
onmental factors, but is also partly heritable 
(Buitenhuis et al. 2015). What’s even more significant 
is that the mineral content is influenced by the cow’s 
physiological and health status. Specifically, decreased 
levels of Ca, Mg and K in milk, coupled with increased 
Na concentration, has been regarded as markers of 
mastitis (Gaucheron, 2005; Nogalska et al. 2020). 
Moreover, specific trace minerals such as Zn, Cu, and 
Mn are closely connected to immune system function-
ing and the overall health of the udder (O’Rourke 
2009, Nogalska et al. 2020). A recent study highlighted 
the positive association between S and macrophages 
and SCC, highlighting its relationship with whey pro-
teins (Giannuzzi et al. 2024). In the same study, Fe and 
DSCC were positively associated, remarking the role of 
Fe in immune regulation during inflammation (Cronin 
et al. 2019). Regarding cow’s metabolic status, given 
the strong dependence of milk minerals on milk pro-
tein, various associations have been observed between 
macrominerals, such as Ca, and S, and traits related to 
metabolic changes like BCS, liver ultrasound measures, 
and blood BHB (Toscano et al. 2023). Gold standards 
for milk mineral content quantification, such as the 
inductively coupled plasma atomic emission spectrom-
etry and the X-ray fluorescence, require trained 
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personnel and investment for the benchtop instru-
ment(s) purchase. Moreover, they are time consuming 
and expensive, hindering their feasibility for routine 
analysis. Initial efforts to predict milk mineral content, 
particularly macrominerals, yielded promising results 
with good to very good prediction accuracy, except 
for Na, which posed a particular challenge when it 
came to accurate prediction (Soyeurt et al. 2009, 
Visentin et al. 2016, Christophe et al. 2021). 
Nevertheless, there has been relatively little focus on 
predicting trace minerals (i.e. Fe, Cu, Zn, Mn, and Se), 
which, as mentioned earlier, seems to have a vital role 
in the regulation of the immune system, and could 
serve as valuable indicators for complementing infor-
mation in the early detection of health-related issues. 
Indeed, few researchers have invested some effort into 
predicting trace minerals, resulting in reduced accur-
acy (Zaalberg et al. 2021).

Blood biomarkers

Metabolic profile
In dairy cattle, blood biochemistry serves as a support 
in diagnostic investigations for health management, 
offering corroborative evidence for suspected diagno-
ses, functioning as a prognostic marker, and allowing 
the monitoring of disease progression in animals 
undergoing treatment (Premi et al. 2021). In addition, 
evaluating the levels of specific biochemical com-
pounds in a comprehensive list known as the blood 
metabolic profile enables the assessment of disease 
risk in clinically healthy dairy cows (Payne et al. 1970). 
The significance of serum metabolic profiling is par-
ticularly pronounced in identifying subclinical disor-
ders, which can affect the welfare and production 
levels of the cows. Within the blood metabolic profile, 
non-esterified fatty acids (NEFA) and BHB are exten-
sively investigated as markers of negative energy bal-
ance during early lactation. In recent years, a 
heightened focus has been given to immune meta-
bolic changes starting during late lactation or dry-off 
period and leading to long-term carryover effects on 
the subsequent calving and lactation stages (Caixeta 
and Omontese 2021). Hence, a more comprehensive 
investigation into blood biomarkers that spans the 
entire lactation period monitoring metabolic changes 
related to hepatic overload, systemic inflammation, 
and oxidative imbalance is essential. Within this frame-
work, hepatic damage enzymes (e.g. ALP, AST, GGT, 
PON), negative and positive acute-phase proteins, oxi-
dants (e.g. reactive oxygen metabolites), and antioxi-
dant compounds have been demonstrated to provide 

additional information regarding metabolic adaptabil-
ity of cows throughout the lactation period (Premi 
et al. 2021). While metabolic profiling offers clear ben-
efits, the routinary collection of blood samples 
involves an invasive and labour-intensive process for 
large-scale monitoring. Conversely, milk is a ready-to- 
use matrix, and its collection is non-invasive and easy 
to implement into traditional milking procedures. As 
already stated, the composition of milk reflects the 
health and nutritional status of dairy cows, and disrup-
tions in metabolic homeostasis are evident through 
changes in its components. In recent years diverse 
studies have investigated the predictive ability of infra-
red spectroscopy in the indirect prediction from milk 
of various blood metabolites (Table 1). Luke et al. 
(2019) and Ho et al. (2021) using partial least square 
regression obtained good predictions on BHB, fatty 
acids and BUN, whereas serum minerals, albumin and 
globulins achieved poor predictions using milk FTIR in 
a wide Australian Holstein population. Applying similar 
statistical approaches to milk FTIR of Holstein Friesian, 
Brown Swiss, or Simmental cows in Northern Italy 
yielded similar results, demonstrating good predict-
ability of BHB, BUN and NEFA, but scarce predictive 
ability for glucose, triglycerides, cholesterol, and AST 
(Benedet et al. 2019). Grelet et al. (2019) integrated 
FTIR with on-farm information (i.e. days in milk and 
parity) and obtained good performance in predicting 
glucose, BHB, NEFA, and IGF-I within a European dairy 
cows’ population. Recently, using various machine 
learning algorithms on milk FTIR spectra, and integrat-
ing on-farm and genomic information, significant 
improvement of predictive ability has been achieved 
on the prediction of a comprehensive metabolic pro-
file, especially for acute phase proteins (globulins, cer-
uloplasmin, haptoglobin), hepatic enzymes (AST, GGT, 
and ALP) and oxidative stress markers (Giannuzzi et al. 
2023, Mota et al. 2023b). One intriguing point to note 
is that, while good predictability is achieved when a 
metabolite is present both in blood and in milk, FTIR 
spectra can also capture indirect information about 
blood compounds that are only detectable at trace 
concentrations in milk, such as minerals and total bili-
rubin (Giannuzzi et al. 2023). This emphasises the rele-
vance of milk in recording fluctuations in the 
metabolic status of the cow, irrespective of the direct 
presence of specific metabolites.

Within this context, the potential to predict blood 
biomarkers from individual milk using an in-line sys-
tem could represent a significant advancement in 
assessing the health and metabolic status of cows and 
identifying individual susceptibility to metabolic 
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disorders in a timely manner (Evangelista et al. 2021). 
Moreover, compared to the FTIR spectra predictions, 
the additional benefit of real-time NIR predictions lies 
in their capability to detect alterations irrespective of 
individual variability. This is achieved by calculating 
the variance between daily registrations for each ani-
mal. To date, only one study has explored the feasibil-
ity of indirectly predicting blood biomarkers using 
milk NIR spectra, obtained from the Afilab equipment, 
in combination with on-farm information (Giannuzzi 
et al. 2022). Even if accuracy must be improved for 
practical daily applications in health status monitoring, 
the prediction equations for haptoglobin and hepatic 
enzymes, and for oxidative stress markers have shown 
promising results.

Milk infrared spectra for nutritional status 
evaluation

The knowledge of milk composition, as available real- 
time, with infrared spectra technique, can provide 
valuable insights for effectively monitoring and man-
aging nutrition (Evangelista et al. 2021). The compos-
ition of milk exhibits considerable variability, 
influenced by the intricate interplay of complex meta-
bolic activities, nutritional factors, and environmental 
variables. Nutritional composition of the diet directly 
influences the milk’s constituents, including fat and 
protein levels. A low level of milk protein could indi-
cate a low energy concentration in ration, as a positive 
linear relationship has been demonstrated between 
these two factors (Coulon and R�emond 1991). Instead, 
the urea content, as previously mentioned, may indi-
cate an excessive/deficiency dietary protein, an imbal-
ance between energy/protein ratio or energy deficit. 
Monitoring the fat-to-protein ratio in milk allows us to 
identify animals with metabolic disorders. The thresh-
old for this indicator is 1.4, with the optimal range 
between 1.2 and 1.4 (Brand et al. 2010), with greater 
levels linked to negative energy balance or ketosis 
(Toni et al. 2011) and lactose content can serve as an 
indicator of the health and reproductive status of dairy 
cow. Monitoring milk fat content during each milking 
session enables detection of errors in feed preparation 
and distribution that may contribute to subacute/ 
acute metabolic disorders in dairy cows, such as sub-
acute ruminal acidosis (SARA). SARA is a well-recog-
nised digestive disorder prevalent in high-yielding 
dairy cows, significantly impacting both animal health 
and herd profitability (Plaizier et al. 2014). It stands as 
one of the most significant digestive disorders in 
intensive farming, with an estimated incidence ranging 

from 19 to 26% during the early to mid-lactation 
period (Plaizier et al. 2008).

The milk spectral data obtained by each individual 
animal offer the possibility of evaluating various phe-
notypes, including dry matter intake (DMI), energy bal-
ance (EB), efficient energy intake (EEI) and nutritional 
status of the animals (Table 2). Research has been car-
ried out (Table 2) on the predictive capacity of FTIR 
for the individual parameters relating to EB, EEI, 
residual feed intake (RFI) and DMI based on milk spec-
tral data information. Of these animal phenotypes, 
FTIR prediction accuracy is fair and has been shown to 
be significantly improved when information regarding 
milk production or animal body weight and BCS is 
added to the model (McParland et al. 2011; Shetty 
et al. 2017). Having access to daily data relating to the 
aforementioned parameters can allow to keep the 
health, fertility and well-being of individual animals 
under control and also allow to efficiently and effect-
ively improve the overall management of the farm.

Infrared technologies as a high-throughput 
phenotyping tool in selective breeding

The Mike Coffey’s well-known statement, ’In the age 
of the genotype [genomics], phenotype is king’ 
(Coffey 2020) found consensus among animal breeders 
and underscores the essential role of phenomics in 
the current era. In other words, accurate measurement 
and recording of novel phenotypes is pivotal for an 
effective, sustainable, and meaningful genomic selec-
tion of dairy breeds. Among the emerging pheno-
types, those related to nutritional and animal health 
status appear to be of primary importance for the sus-
tainability of dairy sector. In this context, all devices 
currently employed for milk screening, regardless if 
based on FTIR or NIR, are proving to be promising for 
generating novel (predicted) phenotypes for selective 
breeding (Miglior et al. 2017; Cole et al. 2020; 
Giannuzzi et al. 2023). This is attributed to advance-
ments in both analytical techniques for establishing 
gold standard phenotypes (i.e. wet-lab reference data) 
and the statistical approaches, based on machine 
learning methods, that have increased the predictive 
capacity of the chemometric models (Zitnik et al. 
2019).

Significant differences exist between FTIR benchtop 
machineries and NIR instruments. Although FTIR dem-
onstrates in general greater predictive power com-
pared to NIR, its effectiveness for the health-related 
traits monitoring is constrained by two factors: (i) the 
infrequent storage of spectra, and (ii) fragmented 
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information available (i.e. approximately one milk test 
per animal per month in the Italian DHI system). 
These limitations are particularly important, as animals 
at risk (e.g. in the transition period) or more suscep-
tible to disease than the others may need more fre-
quent checks. For example, during the postpartum 
phase (first 30 days in milk), where the incidence of 
metabolic disorders is maximum, predictions available 
on a daily basis would boost detection of sick individ-
uals in the herd. Indeed, the possibility of day-by-day 
monitoring of animals becomes paramount for eluci-
dating novel phenotypes based on longitudinal data, 
such as the pattern of certain long-chain FAs associ-
ated with negative energy balance, body reserve loss 
process or metabolic adaptations. In addition, there 
are interesting parameters linked to energy metabol-
ism or inflammation that could be monitored in dairy 
cows such as BHB, NEFA, urea, ceruloplasmin, and 
haptoglobin. Despite of the moderate prediction 
accuracy, infrared-predicted phenotypes still hold 
potential for exploitation in national breeding pro-
grams as indicators of postpartum stress resilience 
(Giannuzzi et al. 2022), opening the discussion on the 
possibility to combine these proxies to develop a 
resilience index. However, although predictable, envi-
sioning the practical use of such biomarkers in select-
ive breeding remains challenging due to the absence 
of a clear physiological and genetic direction, 
unknown genetic correlation with traits of major inter-
est (e.g. protein and fat yield), and potential undesired 
response.

Another crucial aspect to consider when evaluating 
the utility of infrared technology as a phenotyping 
tool for breeding purposes is the assessment of the 
reliability of calibration equations. It is evident that 
relying solely on the mere fitting statistics such as R2 

and RMSE is insufficient. Researchers have demon-
strated that the effectiveness of FTIR calibrations in 
generating novel phenotypes for indirect selective 
breeding depends on factors such as the genetic vari-
ation of FTIR predictions and the genetic (co)variance 
between the prediction and the reference (measured) 
trait, i.e. the true breeding goal (Cecchinato et al. 
2009; Costa et al. 2021). In fact, simulations have 
shown that, while the predictive ability of FTIR data 
could remain moderate for some traits and insufficient 
for punctual determination, the genetic response 
achievable by selecting animals based on FTIR predic-
tions is often comparable to or slightly lower than the 
response achieved when direct measurements (refer-
ence traits) are utilised (Cecchinato et al. 2009; Rutten 
et al. 2010; Cecchinato et al. 2020). In this scenario, it 

becomes evident how large can be the potential of in- 
line NIR devices. Indeed, for each monitored animal, 
there is possibility to move from the current 12 yearly 
FTIR spectra, one per month, up to hundreds of daily 
NIR spectra. Under twice-a-day milking, in fact, roughly 
720 milk scans could be obtained per each animal 
every year. Currently, no studies have conducted com-
prehensive comparisons between the two scenarios in 
terms of genetic gain achievable.

In the era of big data, the substantial volume of 
data stored by infrared devices, along with individual 
animal information (i.e. milk yield, days in milk, parity), 
as well as genotype information, opens the possibility 
to integrate such information within a unified statis-
tical framework (e.g. multiple kernel learning and 
multilayer BayesB). These sources have the potential 
to remove random noise from data and capture the 
variety of signals affecting phenotypes, enabling their 
combination to enhance prediction performance (Baba 
et al. 2021). This approach was recently exploited by 
Mota et al. (2023b), who used FTIR spectra and on- 
farm and genomic information for predicting cows’ 
blood markers of metabolic disorders. In addition, a 
similar study was conducted using NIR spectra 
recorded by Afilab devices (Mota et al. 2024). While 
intriguing in terms of predictive capacity, this 
approach may face limitations due to challenges in 
routinely, automatically and timely access to all sour-
ces of information, including lactating females’ gen-
omic data although with the rapid drop in the price 
of genotyping, there has been a considerable increase 
in the number of young genotyped females in Italy, as 
well as in the rest of the world, in the last years. 
Within DHI recording schemes (i.e. FTIR technology), 
the potential to generate a substantial number of phe-
notypes through this approach could prove to be an 
exceptionally promising solution for selective breed-
ing. Cecchinato et al. (2020) emphasised the impor-
tance of phenotypic information collected from 
daughters of proven bulls at the population level. This 
collection enhances predictive capacity at a low cost, 
as, in practice, the cost is constrained to the solely 
development of the calibration equation. However, 
the effectiveness of this successful approach relies on 
the availability of FTIR spectra and in several countries 
– including Italy – the storage of DHI tests spectrum 
started to be carried out systematically by milk labora-
tories only in recent times. In addition, a further 
bottleneck that may limit the development of this 
integrated data approach, both for FTIR and NIR tech-
nology, is the ownership of data and developed cali-
bration equations.
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To address this issue, international and national ini-
tiatives have been proposed. In Italy, for instance, the 
‘Livestock Environment Opendata’ (LEO) project, initi-
ated in 2014 and led by the Italian Breeder 
Association (AIA, Rome, https://opendata.leo-italy.eu/ 
portale/home), was born. This project aimed to estab-
lish an open platform where to upload both FTIR infra-
red spectra (stored by milk laboratories dedicated to 
official DHI analyses) and measured phenotypes. An 
international network is also currently working on milk 
spectra to promote discussion about the prediction of 
complex traits in dairy species, with the support of the 
ICAR and the International Dairy Federation (FIL/IDF). 
In fact, the ExtraMIR (‘Extra value from- smart use of- 
MIR spectra’) intitiative was born for a deeper under-
standing and monitoring of the activities carried out 
worldwide on FTIR milk spectra(https://www.icar.org/ 
index.php/technical-bodies/sub-committees/milk-ana-
lysis-sub-committee-landing-page/extramir-extra-value- 
from-smart-use-of-mir-spectra-2/).

Other challenges that need to be overcome before 
infrared technologies can be widely adopted globally 
include: i) harmonisation of the raw spectral data 
recorded by FTIR or NIR automated systems (across 
manufacturers, countries, and years of sampling), ii) 
encouraging farmers, nutritionists, and veterinarians to 
consistently record high-quality phenotypes related to 
nutritional and animal health status (e.g. by introduc-
tion of standardised guidelines and free and user- 
friendly online tools), and iii) addressing the genomic 
gap for such novel traits.

Lastly, a point to consider is the potential con-
straints due to patenting. It cannot be excluded, in 
fact, that the use of FTIR prediction models or of the 
predicted phenotypes themselves may be restricted. 
Some models, in fact, have been patented in recent 
years for commercial reasons and limitations can be 
therefore applied if used out of the academia for non- 
research purpose.

Conclusions

The complexity of milk matrix holds immense poten-
tial as source of important biomarkers for dairy ani-
mals, acting as a mirror for various nutritional and 
health disorders. However, despite their utility, current 
analytical methods are costly, time-consuming and 
impractical to be performed and adopted on a large 
scale. These challenges have spurred exploration 
towards alternative (low cost, hi-tech, and rapid) tech-
nologies, with FTIR and NIR on the front line. 
However, hurdles persist, including the need to define 

adequate targets for traits related to metabolic dis-
eases and deep understanding the role of specific 
blood biomarkers. Despite these challenges, the 
potential of infrared predictions in large-scale applica-
tions remains significant.

Finally, in a context of selective breeding, a collab-
orative and collective effort will be indispensable to 
achieve extensive and uniform international databases 
without the constraints of patent protections. Such a 
collective endeavour would facilitate the comprehen-
sive definition of novel resilience marker in cosmopol-
itan dairy breeds, laying solid foundations for the 
genetic improvement of animal health and welfare.
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