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Abstract: This research presents a GIS-based framework used to detect urban heat islands and deter-
mine which urban settlement elements are most critical when heatwave risks exist. The proposed
method uses the Iterative Self-Organizing Data Analysis (ISODATA) clustering algorithm applied to
the satellite land surface temperature distribution recorded during heatwaves for the detection of ur-
ban heat islands. A pixel classification confidence level maximization approach, obtained by running
a maximum likelihood classification algorithm, is performed to determine the optimal number of
clusters. The areas labeled as hotspots constitute the detected urban heat islands (UHIs). This method
was tested on an urban settlement set up by the municipality of Naples (Italy). Comparison tests were
performed with other urban heat island detection methods such as standard deviation thresholding
and Getis-Ord Gi* hotspot detection; indices measuring the density of buildings, the percentage of
permeable open spaces, and vegetation cover are taken into consideration to evaluate the accuracy of
the urban heat islands detected. These tests highlight that the proposed method provides the most
accurate results. It could be an effective tool to support the decision maker in evaluating which urban
areas are the most critical during heatwave scenarios.

Keywords: UHI; UHI detection; heatwave; LST; GIS; ISODATA; maximum likelihood classification

1. Introduction

Urban heat islands (UHIs) are one of the most significant and well-documented
phenomena of human-induced climate change [1–3], initially described by Oke in [4].
UHIs refer to cities experiencing higher temperatures than their surrounding non-built
areas, primarily due to landscape modifications, high densities of impervious surfaces, and
a lower expanse of green vegetated areas [5].

Climate projections indicate that the intensity and frequency of heatwaves will increase
significantly in the coming decades, exacerbating the effects of UHIs in urban areas [6].
This scenario further accentuates the need to develop accurate tools for the detection and
mitigation of UHIs, as cities will face increasingly intense thermal challenges that could
compromise urban livability and public health [7].

In the context of increasing climate vulnerability, the role of urban planners becomes
fundamental. Accurately detecting and analyzing UHIs is essential for developing effective
mitigation strategies [8].

Historically, most UHI detection studies were limited to using few fixed weather sta-
tions, low-spatiotemporal-resolution satellite imagery, or small-scale mobile measurements
made with automobiles. These limitations prevented the detailed detection of thermal
variations within urban areas [9].
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At present, thanks to technological advances, and particularly the improved spa-
tiotemporal resolution of satellite images, it has become possible to analyze temperature
differences within a city with greater accuracy.

In this context, the land surface temperature (LST) index, detected using remote
sensing techniques, has emerged as a key tool for the accurate assessment of urban climate
and heat islands. Compared to traditional methods, the LST index offers broader and more
detailed spatial coverage, allowing for a more accurate and complete analysis of thermal
variations in urban areas [10,11].

While LST data from satellite imagery have greatly improved our ability to study
UHIs, existing UHI detection methods still have significant limitations [12]. Two commonly
used approaches are the Getis-Ord Gi* hotspot detection algorithm [13] and the standard
deviation-based [14] UHI detection method. However, these techniques often fall short in
providing reliable and consistent UHI identification.

The Getis-Ord Gi* statistic, while useful for identifying spatial clusters of high or low
values, is highly sensitive to the choice of spatial weights and the size of the study area.
This can lead to inconsistent results, where UHIs are identified differently depending on
the specific parameterization used [12].

Standard deviation methods, which classify areas as heat islands based on their devia-
tion from the mean temperature, also have drawbacks. They assume a normal distribution
of temperatures and can be overly influenced by extreme values, potentially misidentifying
UHIs in areas with high temperature variability [13,14].

Both these methods share a common limitation: they often produce unstable hotspots,
where areas are identified as critical only under specific parameter combinations. This in-
stability can lead to unreliable results and, consequently, to misguided urban planning
decisions. An urban planner relying on such information may incorrectly prioritize areas
for intervention, potentially misallocating a city’s limited resources.

Given the increasing importance of accurate UHI detection, there is a clear need for
more robust and reliable methods.

To address these challenges, this study presents an unsupervised UHI detection
method based on a clustering algorithm, called Iterative Self-Organizing Data Analysis
(ISODATA), for processing LST data during a heatwave in an urban settlement, with the
objective of identifying temperature clusters associated with urban heat islands. The pro-
posed approach allows us to automatically obtain temperature clusters representative of
an UHI, avoiding the need to predefine the number of clusters, as is required by tech-
niques commonly used in the literature, such as K-means and Fuzzy C-means. These
traditional techniques, widely employed in UHI analysis, require the user to specify the
number of clusters a priori, which can significantly influence the results and often requires
in-depth knowledge of the study area or a process of iterative optimization; furthermore,
these algorithms are not very robust to the presence of noise and outliers in the data.

In the proposed method, a fast iterative process is used to set the optimal number of
clusters; in addition, the use of the ISODATA algorithm has the advantage of discarding
incorrect clusters generated due to noise or outliers.

The performance of this proposed method is analyzed and compared with other well-
known methods widely used for UHI detection, such as Getis-Ord Gi* hotspot analysis and
standard deviation thresholding, to evaluate which approach provides a more accurate and
detailed representation of the thermal characteristics of urban soil. In particular, in order to
evaluate the accuracy of the three UHI detection methods, three typical characteristics of
an urban settlement are analyzed in each UHI—the volume of buildings, the permeability
of soils, and the extent of green areas—to analyze how they are different in the UHIs
compared to the entire urban study area. The tests carried out on the city of Naples, in Italy,
show that the proposed method is the most accurate as it manages to label as UHIs the
areas of the city with a higher building density and soil permeability and with the lowest
concentration of vegetated areas.
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The proposed method was implemented on a GIS platform; this is a powerful tool
for urban planners and policy makers, enabling more informed urban planning aimed at
mitigating heat island effects.

The State of the Art

The evolution of remote sensing techniques and geospatial tools has revolutionized
the study of urban heat islands, opening new frontiers in the analysis of this crucial phe-
nomenon. These technological advancements offer large dataset processing capabilities
and sophisticated spatial analysis, overcoming the limitations of traditional methods based
on in situ measurements. While air temperature data from observatories are often limited
by the number of stations available, restricting the analysis both temporally and spatially,
remote sensing allows larger areas to be captured with extended temporal coverage. Fur-
thermore, integrating remote sensing data with advanced geospatial tools enables more
detailed and complex spatial analyses, facilitating the understanding of large-scale urban
thermal patterns. This methodological transition has led to the development of a vari-
ety of analytical approaches, from the analysis of temperature differences between urban
and rural areas to advanced spatial clustering techniques, reflecting the complexity and
dynamicity of the UHI phenomenon.

Starting from simple comparative approaches, research has moved towards increas-
ingly sophisticated spatial analysis and clustering techniques. A widely used approach to
quantify urban heat island intensity is the urban–rural difference method. This method com-
pares the average LST of urban areas with that of surrounding rural areas [15]. However,
this approach has some limitations, particularly in the context of rapid and persistent urban-
ization. With the continuous expansion of urban areas and the progressive transformation
of peri-urban areas, it becomes increasingly difficult to clearly delineate the boundary
between urban and rural areas. This ambiguity in the definition of these limits can signifi-
cantly influence the results of the analysis, making the quantification of the intensity and
extent of UHIs based exclusively on the urban–rural comparison less reliable [16,17].

Another method consists of dividing the LST into multiple temperature groups
(e.g., high, medium–high, medium, medium–low, low) based on a threshold method,
and then identifying the spatial extent of the group with the highest temperature as the
UHI region [18,19]. This approach has some significant limitations. First, its methodology
may be overly simplified and prone to errors, as it does not adequately take into account the
different factors that influence LST and the specific characteristics of urban environments.
Furthermore, a critical aspect is that the results of UHI identification can vary significantly
depending on the thresholding algorithm used. The main threshold algorithms used are
Fixed Thresholds and the standard deviation method.

Hotspot analysis, particularly using the Getis-Ord Gi* statistic, represents a significant
advancement in the detection and analysis of urban heat islands (UHIa). This method is
notable for its ability to identify statistically significant clusters of elevated temperatures,
offering a more robust and objective basis for delineating UHIs than previous methods.
The Getis-Ord Gi* statistic examines each feature (each temperature pixel) in the context of
its neighboring features and calculates the sum of the value of a feature and its neighbors,
comparing it proportionally to the sum of all features. When the local sum is significantly
different from the expected one, and this difference is too large to be the result of chance,
a statistically significant z-score is obtained.

This method has the advantage of identifying high-temperature clusters that are
statistically significant, reducing the influence of random fluctuations; evaluating each
point in relation to its surroundings, better capturing the spatially continuous nature of
UHIs; and detecting hotspots at different spatial scales, adapting to the variability of
an urban structure. Several studies have successfully applied a Getis-Ord Gi* analysis to
study UHIs.

In [20], Cheval and Dumitrescu used this technique to identify significant thermal
hotspots, revealing a concentration of “very hotspots” in the city center of Bucharest and
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along its main traffic arteries. The Getis-Ord Gi* was applied to a study of the metropolitan
area of Florence in Tuscany (Italy) [21]. This technique was used to map and evaluate
daytime summer thermal hotspots and cold spots in relation to the characteristics of urban
greenery, urban surfaces, and city morphology. The analysis was based on land surface
temperature (LST) data obtained from the Landsat 8 satellite during summer daytime
periods from 2015 to 2019. By applying the Getis-Ord Gi* to average summer LST datasets,
the study allowed us to identify the location and boundaries of hotspots and cold spots.
However, this method may have limitations that depend on the quality and resolution of
the input data, which can strongly influence the accuracy of the analysis.

Some other studies have investigated the phenomenon of UHIs through the use
of spatial unsupervised clustering techniques, such as K-means, to group areas with
similar thermal characteristics. These clustering methods are particularly effective for
processing satellite images without prior knowledge, as they group pixels based on spectral
variance. In [22], K-means clustering was used on Landsat 8 thermal data to map urban heat
islands and correlate them with land use in the Turin metropolitan area. Luo et al., in [23],
proposed a K-means clustering approach to analyze UHI intensity using temperature data.
In another more recent study [24], the K-means clustering method was used to investigate
the relationship between LST, building density (BD), and building height (BH) in urban
environments. A fast variation of Fuzzy C-means is applied in [25] to segment remote-
sensed images; the authors show that this method produces more accurate results than
K-means and allows us to consider the spatial relationships between neighboring pixels.
However, it too is not very robust with respect to the presence of noise and outliers in
the image.

Furthermore, K-means and Fuzzy C-means clustering methods have the limitation
of needing to fix the number of clusters a priori. To overcome this limitation, in our study
we propose a UHI detection algorithm based on ISODATA, which has the advantages of
automatically obtaining the optimal number temperature clusters representative of the
UHI, avoiding the need to predefine the number of clusters, and is more robust to noise
than K-means. ISODATA extracts the training samples automatically, setting them by
dragging a window over the image. Numerous studies have successfully applied ISODATA
to map and categorize different land cover types, taking advantage of its ability to identify
natural clusters in multispectral data without the need for predefined training samples.
It was utilized in [26] for land cover classification using Landsat 5 TM data. It successfully
classified eight land cover classes with a 93% agreement with the reference map. ISODATA’s
classification accuracy is attributed to the behavior of means and standard deviations in the
decision space. In [27], the authors use K-means and ISODATA clustering algorithms to
map Local Climate Zones in the urban areas of Dhaka and Kolkata, finding that ISODATA
is better at distinguishing between open and compact mid-rise urban types.

Despite its success in land use classification, the application of the ISODATA algorithm
specifically for UHI detection remains a relatively unexplored field. Our study aims to fill
this research gap by proposing a UHI detection method based on ISODATA. We compare
its accuracy to that obtained using traditional UHI detection methods.

2. Methodology
2.1. The Proposed UHI Detection Method

Our UHI detection method executes an iterative process in which the ISODATA image
clustering algorithm is applied to LST raster data.

Recent studies have used both the LST and the 2 m air temperature to investigate the
behavior of urban atmospheric thermal environments during periods of extreme weather
events such as heatwaves [28] and rainstorms [29]. They have highlighted that both the LST
and the air temperatures are influenced by various climatic and urban soil characteristics;
they can be useful in analyzing the mutual interactions between UHI, weather, and climate.

In [30], LST is used to analyze the effects of UHIs on heavy rainfall events. The results
of tests performed on the coastal city of Nantong, near Shanghai, China, have shown
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how the spatial information of surface temperature extracted from satellite observations
allows us to analyze the complexity of the spatial variations of urban soil, which cannot be
captured by atmospheric temperature measurements recorded by meteorological stations.

The use of the LST raster as input information for UHIs’ detection is motivated by
the fact that, unlike the air temperature measured by weather stations, LST can describe
the variation in the type of soil and in its use, as well as the distribution of the type of
urban settlement, representing a more significant parameter than the air temperature for
the evaluation of the thermal response of urban soils.

ISODATA is a clustering algorithm applied to multivariate data given by one or more
image bands. In our method, the ISODATA algorithm is executed only on LST raster
data. The resulting signature file can be used as the input for a classification tool, such as
maximum likelihood classification, that produces an unsupervised classification raster.

ISODATA uses a sample of data points assigned by considering a square window on
the image of size nw × nw pixels and selecting the values of the central pixel of the window
imposed on the image. The parameter nw is called the sampling interval; it must be set to
create the sample data. This approach has the advantage of reducing the size of the image
dataset; however, an incorrect choice of sampling interval can generate insufficient sample
data and provide inaccurate results.

To avoid under-sampling, the sampling interval is determined so that the size of the
area covered by the window is approximately equal to 2% of the size of the area covered by
the image.

For example, let us consider a satellite image given by 256 × 256 pixels, where the size
of a pixel is 30 m × 30 m. The image covers an area of 1.97 km2. Setting nw = 7, we obtain
a window of size 0.0441 km2, equal to approximately 2% of the size of the area covered by
the image. The sample dataset will be made up of 1338 pixels, which is approximately 2%
of the number of pixels in the image.

Another parameter to be set is called the Minimum class size. This parameter represents
the minimum number of pixels in the sample that can be assigned to a cluster; clusters
consisting of fewer cells than the minimum class size will be eliminated at the end of
the iterations.

A value of this parameter that is too low would affect clustering, as even very noisy
pixels or outliers would be considered clusters. On the other hand, too high a value would
lead to the removal of clusters that could be significant. To avoid these critical issues, a value
of the minimum class size parameter equal to approximately 2% of the sample’s cardinality
is assigned. Considering the previous example, the value assigned to this parameter is
27 pixels, equal to approximately 2% of the number of pixels in the sample dataset.

Finally, as with K-means, in ISODATA it is necessary to assign the number C of clusters
a priori. To set the optimal number of clusters, we analyze the confidence raster obtained
by executing the maximum likelihood classification, for which every pixel is assigned the
confidence level of its classification, where the confidence level is given by an integer value
between 1 and 14, following the classification of the likelihood given in Table 1.

To determine the optimal number of clusters, the ISODATA algorithm is executed
iteratively while varying the number of clusters from 2 to 10 each time. The optimal
number of clusters C is given by the number of clusters for which the number of sample
pixels with a confidence level between 9 and 14 (a likelihood probability less than 0.1) is at
its minimum.

After obtaining the classification of the LST raster, those areas corresponding to
contiguous pixels belonging to the class referred to by the cluster whose centroid has the
highest average LST value are labeled as hotspots; vice versa, those areas corresponding to
contiguous pixels belonging to the class referred to by the cluster whose centroid has the
lowest average LST value are labeled as cold spots. The hotspots are extracted as polygons
on the map; they represent a UHI in the urban area of study.

The flow diagram in Figure 1 schematizes the proposed UHI detection method.
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Table 1. Confidence levels used in the maximum likelihood classification.

Likelihood Interval Confidence Level

[0.995–1.000] 1
[0.990–0.995] 2
[0.975–0.990] 3
[0.950–0.975] 4
[0.900–0.950] 5
[0.750–0.900] 6
[0.500–0.750] 7
[0.250–0.500] 8
[0.100–0.250] 9
[0.050–0.100] 10
[0.025–0.050] 11
[0.010–0.025] 12
[0.005–0.010] 13
[0.000–0.005] 14
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The Setting Parameters component fixes the value of the sampling interval nw and of
the minimum class size mcs, setting nw to 2% of the size of the area covered by the image
and mcs to 2% of the size of the sample. The minimum class size is given by 27 pixels.

The two components Execute ISODATA and Execute Maximum Likelihood are executed
in sequence iteratively, varying the number of clusters from 2 to 10 and setting the optimal
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number of clusters and the corresponding optimal classification as ones for which the
number of sample pixels with a likelihood probability less than 0.1 is at its minimum.

The component Determine Hot- and Cold Spots marks hot- and cold spots. If µT and
σT are the average and the standard deviation in the raster LST, all pixels belonging to
classes with a mean LST greater than µT + σT are marked as hotspots; conversely, all pixels
belonging to classes with a mean LST lower than µT − σT are marked as cold spots.

The component Detect UHI merges adjoint pixels labeled as hotspots, generating UHIs
as polygons on the map. The characteristics of the UHIs can be analyzed by measuring the
urban indices in the areas covered by them.

2.2. The Case Study: The City of Naples (Italy)

The urban area of study is the municipality of Naples, in Itay (Figure 2); it was selected
as a case study as it is an urban settlement with a high mean population density and
building density.
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Naples is characterized by its modest expanse, equal to 11,727 hectares, and a very
high population density, equal to 8566 inhabitants per square kilometer.

Despite the massive building expansion that occurred in the second half of the twenti-
eth century, agricultural activities and natural areas are not absent from Naples.

In several areas of the historic and newly built city center, the growth of overbuilding
and asphalted surfaces has intensified the risk of heat accumulations during the summer
months, which have become increasingly intense in recent years due to the presence of
heatwave scenarios that are lasting longer each time.

The historic city center is the area with the greatest population and built density;
it is characterized by a high percentage of impervious open spaces and few urban green
spaces. The western and northwestern outskirts of the city are characterized by a greater
extension of forest-type green spaces than the rest of the city. The eastern suburbs are pre-
dominantly industrial, with a high density of buildings along the coast and a predominance
of impervious open spaces.

In order to apply the proposed UHI detection method to this case study, the LST raster
dataset of the city of Naples was extracted from the Landsat remotely sensed data, with a
30 × 30 m resolution, on 15 July 2023, during a heatwave period Figure 2. The raster LST is
shown in Figure 3.
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LST varies in a range between 19.04 ◦C and 36.98 ◦C, where the average is µT = 28.10 ◦C
and the standard deviation is σT = 2.67 ◦C.

The urban green areas are extracted as polygons from a regional topographic database
at a 1:5000.

This method was implemented using the GIS platform ESRI ArcGIS Pro 3.3 and the
ESRI ArcGIS Python library.

In the next section, the results obtained are presented and discussed and can vary
significantly depending on the thresholding algorithm used. Each algorithm can establish
different thresholds for classifying temperatures, leading to different interpretations of
which areas are considered UHIs [23].

3. Results and Discussion

The proposed ISODATA UHI detection method was tested on the LST raster of the
city of Naples, with a sampling interval set to nw = 10 m, in order to obtain a corresponding
window size n approximately equal to 2% of the size of the area covered by the raster LST.
The sampling dataset is 1338 pixels. The minimum class size is set to 27 pixels, which is
about 2% of the size of the sampling dataset.

The optimal number of clusters is seven. For each class in Table 2, the mean LST of the
corresponding class and the labeling of the pixels belonging to that class are shown.

Table 2. Mean LST value of the seven classes and the labeling of the pixels.

Class ID Mean LST (◦C) Pixel Labeling

1 22.35 Cold spot
2 24.66 Cold spot
3 26.49 -
4 27.94 -
5 29.15 -
6 30.34 -
7 31.60 Hotspot

Since µT − σT = 25.43 ◦C, all pixels belonging to the first two classes are marked as
cold spots. Furthermore, since µT + σT = 30.77 ◦C, all pixels belonging to the last class are
marked as hotspots.
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In Figure 4 is shown a thematic map of the LST, classified by the seven classes. In the
legend, each class is labeled with a mean land surface temperature.
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Adjoined pixels belonging to the last class are merged to form hotspots; the hotspots
constitute the UHIs detected in the city.

A comparison was performed with the standard deviation method and Getis-Ord Gi*
UHI detection method.

The standard deviation method was executed by identifying the UHI patches as those
areas that enclose contiguous pixels with LST values greater than the average LST value
plus half the standard deviation.

The Getis-Ord G* method was executed by using the inverse distance method to assign
to neighboring data points a larger influence than data points that are far away. Euclidean
metrics was selected to calculate the distances between data points.

Figures 5–7 show, respectively, the UHI maps obtained using the standard deviation
method, the Getis-Ord Gi* algorithm, and the proposed UHI detection method based on
the ISODATA algorithm.

The map of the UHIs detected using the standard deviation method (Figure 5) shows a
higher concentration of hotspots in the eastern central area of the city of Naples. This method
also identifies large hotspots located in the western area, in the northern zone, and in the
south-eastern districts. There are also some very small hotspots, mainly distributed in the
central area of the study area.

Figure 6 shows the UHIs obtained by executing the Getis-Ord Gi* method; in it are
present a low number of UHIs but with wide surface extensions. In line with the results
of the standard deviation method, the south-eastern area is the most affected by the UHI
phenomenon. In fact, there is a large hotspot that extends from the eastern districts to
northern districts. Also, in this case, districts in the western area are affected by UHIs.
There are also some small hotspots, mainly concentrated in the central area of the study
area. With respect to the UHI map obtained by executing the standard deviation method,
in this map are located a lower number of UHIs which have a greater extension.

The map of the UHIs detected by executing our proposed method is shown in Figure 7.
It shows a larger number of UHIs with a smaller surface extension with respect to the UHIs
detected by executing the other two methods. Comparing this map with the two previous
ones, in line with the other distributions, a high concentration of UHIs in the south-eastern
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zone is highlighted, while other UHIs are present in the northern zone and in the western
zone; in contrast, the districts located in the center do not contain UHIs. The UHIs with
the greatest extension are located in the central south-eastern area and cover most of these
districts. Other large UHIs are found in the northern districts, in the western districts,
and in the eastern districts.
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In order to evaluate the effectiveness of the three UHI detection algorithms, we evalu-
ated three characteristics that highlight the typical features of an urban area: the volume of
buildings, the permeability of the soil, and the extent of green areas. The measures of these
characteristics consist of the following indices (key features):

• Building density, which measures the ratio between the volume of buildings present
in the UHI and the overall surface of the UHI;

• Waterproof ratio, which measures the ratio between non-permeable surfaces such as
roads, courtyards, car parks, etc., and the entire open space area of the UHI;

• Greenery percentage, which measures the ratio between urban green space surfaces
and the overall surface of the UHI.

The values obtained for these three key features in each UHI are compared with those
obtained when considering the entire urban settlement and are shown in Table 3.

Table 3. Mean values of the key features obtained for the entire city and for the UHIs detected using
the three UHI detection methods.

Key Features Measured Value in the Urban Settlement Standard Deviation Getis-Ord Gi* Proposed Method

Building density (m3/m2) 2.29 11.66 3.06 16.37
Waterproof ratio 0.39 1.09 0.67 1.43

Greenery percentage (%) 23.85% 8.78% 15.70% 3.12%

The results in Table 3 show that, in comparison to the average values of the three key
features calculated for the entire city, the method based on the ISODATA algorithm is the
best one, as it provides the highest average values of the building density and waterproof
ratio (respectively, 16.37 m3/m2 and 1.43), and the lowest average value of the greenery
percentage (3.12%).

The method that appears to perform the worst is the Getis-Ord GI* method; the values
of the key features building density and waterproof ratio (3.06 and 0.67, respectively),
although higher than the average values measured over the entire city, are lower than those
obtained when performing the other two UHI detection methods. Similarly, the greenery
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percentage (15.70%), although lower than the average value measured over the entire city,
is lower than the values obtained by performing the other two UHI detection methods.

A more detailed analysis we developed histograms to compare the distribution of
each index with the average of the study area.

The histograms in Figures 8–10 show, respectively, the trends in the building density,
waterproof ratio, and greenery percentage key features measured in each UHI detected by
the three UHI detection methods. The horizontal red line represents the value of the key
feature obtained when considering the entire city.
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Figure 8. Building density obtained with the standard deviation method (a); building density
obtained with the Getis-Ord Gi* method (b); building density obtained with the proposed method (c).
The red line represents the value of the building density obtained when considering the entire city.

From the analysis of the three building density trends in Figure 8, it appears that
the proposed method is the one in which the UHIs are characterized by a built density
much higher than the average built density calculated for the entire city. Over 83% of
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the UHIs detected have a built density higher than the city average and over 50% of the
UHIs have values higher than three times the city average. The trend observed using the
standard deviation method shows a similar behavior, with values of built density higher
than the average for about 66% of the UHIs. On the contrary, only in about 50% of the UHIs
detected using the Getis-Ord Gi* method is the built density higher than the average for
the entire city.
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Figure 9. Waterproof ratio obtained with the standard deviation method (a); waterproof ratio obtained
with the Getis-Ord Gi* method (b); waterproof ratio obtained with the proposed method (c). The red
line represents the value of the waterproof ratio obtained when considering the entire city.

From the trends in Figure 9, it appears that in about 93% of the UHIs detected using
our method, the waterproof ratio is higher than the average value calculated for the entire
city; furthermore, for over 60% of them, the waterproof ratio is higher than three times this
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average value. In over 88% of the UHIs detected using the standard deviation method, the
waterproof ratio is higher than the average value calculated for the entire city, while only
69% of the UHIs detected using Getis-Ord Gi* are characterized by waterproof ratio values
higher than the average calculated for the entire city.
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The greenery percentage trends in Figure 10 also highlight that the method based on
the ISODATA algorithm is the most accurate. In about 96% of the UHIs detected using the
proposed method, the greenery percentage is lower than the average calculated for the
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entire city, and in over 90% of them the greenery percentage is lower than one third of this
average. In almost 87% of the UHIs detected using the standard deviation method, and in
about 78% of the UHIs detected using Getis-Ord Gi*, the greenery percentage is lower than
the average value calculated for the entire city.

In conclusion, the results obtained relating to the measures of the building density,
waterproof ratio, and greenery percentage indices in the UHIs detected using the three
methods highlight that the method based on the ISODATA algorithm is the most accurate.
It is able to detect UHIs mostly characterized by high building densities and waterproof
surfaces, with the rare presence of green surfaces. The method that appears less accurate is
Getis-Ord Gi*, which detected a smaller number of UHIs with a greater extension in the
city; they are less characterized by high building densities and waterproof surfaces and by
a rare presence of green areas.

The results of the comparative tests showed that the proposed method, which opti-
mizes the choice of the parameters for the ISODATA algorithm, such as the number of
clusters, the sampling interval, and the minimum class size, provides better accuracy than
traditional methods based on standard deviation and Getis-Ord Gi*. It is more robust than
the other two UHI detection methods with respect to the presence of noise in the data and
determines the shape and size of UHIs with greater accuracy.

4. Conclusions

In this paper, a new unsupervised UHI detection method based on the ISODATA clus-
tering algorithm has been presented. The UHIs are made up of the urban areas belonging
to the cluster with the highest average LST.

The proposed UHI detection method has the advantage of determining the optimal
cluster number and of being robust to the presence of noise and outliers in the input LST
raster image. Furthermore, the method of selecting the data sample from the LST raster
dataset allows you to significantly reduce the size of the original raster dataset without
incurring data under-sampling.

The main limitation of the method is the low resolution of the LST raster provided
by satellite thermal images. A tool that may possibly be useful for increasing the spatial
resolution of the LST raster dataset could be thermal cameras mounted on drones; this
would require the use of specific resources and expensive data collection campaigns to
cover the entire city, and its duration could be longer than that of the heatwave.

The method was implemented on a GIS-based platform and was tested in the city
of Naples. The results of the comparative tests against the UHI detection methods Getis-
Ord Gi* and standard deviation showed that the proposed method is the most accurate,
detecting UHIs with the highest values of building density and waterproof ratio and with
the lowest percentage of greenery.

These results highlight that the proposed UHI detection method detects UHIs with
a higher accuracy than traditional methods and is, for this reason, more suitable for
performing analyses of the location and extent of urban heat islands at detailed urban
planning scales.

This framework represents an effective tool for decision makers in the evaluation of
the most critical urban areas during heatwaves, when climate-proof actions and strategies
to protect the population become a priority.

In the future, we intend to carry out further research to refine the accuracy of this
method and carry out experiments with different urban settlements and considering differ-
ent heatwave scenarios.
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