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Abstract
Fast detection of motor failures is crucial for multi-rotor unmanned aerial vehicle (UAV) safety. It is well established in
the literature that UAVs can adopt fault-tolerant control strategies to fly even when losing one or more rotors. We present a
motor fault detection and isolation (FDI) method for multi-rotor UAVs based on an external wrench estimator and a recurrent
neural network composed of long short-term memory nodes. The proposed approach considers the partial or total motor fault
as an external disturbance acting on the UAV. Hence, the devised external wrench estimator trains the network to promptly
understand whether the estimated wrench comes from amotor fault (also identifying the motor) or from unmodelled dynamics
or external effects (i.e., wind, contacts, etc.). Training and testing have been performed in a simulation environment endowed
with a physic engine, considering different UAVmodels operating under unknown external disturbances and unexpectedmotor
faults. To further assess this approach’s effectiveness, we compare our method’s performance with a classical model-based
technique. The collected results demonstrate the effectiveness of the proposed FDI approach.

Keywords Fault detection and isolation · Long short-term memory networks · External wrench estimation ·
Safe aerial robotics

1 Introduction

In the last decade, the use of aerial vehicles to perform service
tasks is widely increased. Among the different types, verti-
cal take-off and landing (VTOL) unmanned aerial vehicles
(UAVs) are suitable for performing several tasks like inspec-
tion, surveillance, search and rescues, thanks to their agility,
fast motion capabilities, and their ability to hover during the
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flight. In this context, e-shopping companies [1] are plan-
ning to use UAVs for home delivery of commercial goods,
while different applications require aerial vehicles in safety-
critical environments. The latter is the inspection of oil and
gas facilities, in which drones can perform visual and con-
tact inspection of pipelines transporting fluid [2, 3]. Safety
remains a significant concern in these domains to prevent
hurts to human operators or dangerous equipment damages.

The actuation system of a multi-copter is composed of
different brushless motors with fixed or actuated propellers.
Eventual damages to theUAV’s propellers cause a significant
decrease in its propulsion system, compromising stableflying
capabilities. Hence, fault detection is an essential feature to
implement multi-rotor safety [4], representing this work’s
primary motivation. Motor fault detection is a complex task
since UAV rotors usually do not provide any feedback. For
this reason, typical failure detection techniques use onboard
sensor measurements.

This work exploits a deep recurrent neural network fed by
estimated disturbances to detect and isolate possible motor
faults. During the flight, the UAV is subject to many unmod-
elled aerodynamic disturbances affecting its behavior and
stability [5]. These disturbances are often seen as the effect
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of a lumped external wrench at the UAV’s center of mass.
Suitable estimators are designed to improve the tracking per-
formance of the onboard controllers [5]. The idea behind
this work is that if a UAV’s motor is partially or entirely
broken, the effect can be seen as another disturbance prevent-
ing the satisfactory performance of the tracking controller.
The available estimators in the literature cannot distinguish
between the single external effects creating the lumped exter-
nal wrench at the UAV’s centre of mass. Therefore, an
assistant system must come with the estimator to understand
whether the estimated disturbance is caused or not by a par-
tial or entire failure of a motor of the UAV. Here, the assisting
system is a recurrent neural network (RNN) [6] composed
of long short-term memory (LSTM) [7] nodes analyzing the
estimated values. The network is trained to detect and isolate
the fault when the UAV flies random trajectories subject to
external disturbances (i.e., wind), including randomly gen-
erated motor faults. The proposed FDI approach has been
carried out in the Gazebo simulator, a widely used robot
simulator endowed with a physic engine. To simulate the
dynamics of the UAV and the behavior of its motors, the
RotorS ROS package [8] has been used. This package allows
simulating of the multi-copter dynamics and its propellers.
Three different UAV frames have been considered: two quad-
copters, one adopting the plus configuration and one flying
with the cross design, and a hexacopter. These configurations
are depicted in Fig. 1. In particular, Fig. 1(a) describes the
plus configuration in which a single rotor leads the platform,
while Figs. 1(b) and (c) report a cross configuration, in which
two rotors lead the aircraft motion.

The rest of the manuscript is organized as follows. Sec-
tion 2 presents an overview of multi-copter fault detection
methods and the proposed contributions against the current
state of the art. Section 3 presents the system implementation,
describing the UAV controller, the unmodeled disturbances
estimator, and the LSTM structure. The use of this network
is discussed in Section 4. Finally, the simulation case studies
are presented in Section 5, and the obtained results are dis-
cussed therein. The conclusion and future work are finally
illustrated.

2 RelatedWorks and Contributions

Autonomous UAVs are complex systems. They have many
essential sensors for safe and reliable stabilization and
navigation. The onboard avionic comprises an inertia mea-
surement unit (IMU), a flight control unit, and multiple
motors. If one of these elements is subjected to faults or dam-
ages, the capacity of the aerial platform to successfullyfly and
land without crashes is compromised. Two primary sources
of faults can happen in the system flight: sensor faults [9–
11] and actuator’s fault. For this reason, many UAVs include

redundancy in their actuation or electronics [12, 13], while
in [14] authors present a novel open-source design for hexa-
copters robust to the failure of any motor/propeller.

Different fault-tolerant controller methods have been pro-
posed to allow UAVs to fly when a motor is corrupted
or completely lost. Some of these methods rely on motor
redundancy [15], while other approaches, like in this paper,
consider custom controllers achieving autonomous and sta-
ble flight even in the case of not-redundant multi-copters
(i.e. quadcopters) [16, 17]. Therefore, these methods typi-
cally need to detect the presence of a rotor fault quickly and,
in some cases, to identify which motor is not working as
expected [18].

In this work, we consider the possibility of identifying
faults in the UAV rotors. The main complication in this task
is that, typically, there are no onboard sensors to retrieve a
rotor’s output (and the status). Hence, FDI techniques rely
on state estimators that can be used to assess the effective-
ness of a rotor. However, authors in [19] used current sensors
and the onboard accelerometer to detect motor faults. In con-
trast, in [20], external sensors (i.e., audio input sensors) have
been exploited to classify propeller corruptions bymeasuring
the noise emitted by the UAV during the flight. Unlike these
contributions, the presented method here does not require
additional sensors. Other state-of-the-art solutions following
the same principles (i.e., directly exploiting onboard sensor
measurements to characterize the fault,) rely on a classical
Luenberger linear estimator [21] or a Thau observer [22,
23]. A nonlinear adaptive estimator is instead implemented
in [24], using a bank of nonlinear adaptive fault isolation
estimators to identify which rotor has the fault. In [25, 26],
a two-stage Kalman filter is used, while in [27], an extended
Kalman filter is introduced to monitor the health of each
motor. The IMU sensor represents the principal information
source of these FDI methods. Similarly, a multiple integral
fault detection filter (PMI) is proposed in [28] to estimate sen-
sor noise and detect system faults. Other sensor and actuator
fault diagnosis methods are collected in [29].

The proposed approach estimates unmodelled distur-
bances acting on the UAV frame using a momentum-based
external wrench estimator [30]. This estimator has already
been used on quadrotors to enhance its position control loop,
compensating for detected disturbance effects [31, 32]. This
work only uses this generalized external forces estimator to
characterize rotor power loss. However, this estimator can
only provide the lumped effect wrench at the centre of mass
resulting from the many unmodelled effects acting on the
UAV without distinguishing between them. To this aim, a
data-driven approach is employed to understand whether the
estimated disturbance is caused or not by a partial or entire
failure of a motor of the UAV. Data-driven and machine-
learning approaches have also been used standalone to solve
actuator FDI problems on UAVs [33–35]. Similarly, we pro-
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Fig. 1 Different frame
configurations. (a) - quadcopter
plus configuration (b) -
quadctoper cross configuration,
(c) - hexacopter cross
configuration

posed a deep recurrent neural network to identify eventual
faults. Deep learning techniques have been widely used to
solve many problems in different scenarios. Authors in [36]
deployed an LSTM network to predict UAV malfunctions
by analyzing the vibration of the aerial platform. Authors
in [37] use a deep learning approach to identify causes of
failure after crashes or incidents. Again, authors in [38] used
a data-driven approach based on LSTM networks to detect
onboard sensor drift. Instead, we estimate the presence of
external forces like a loss of thrust from one of the motors to
identify a fault correctly.

To summarize, the provided contributions against state-
of-the-art approaches are (i) identifying the rotor fault as an
external disturbance on the UAV and estimating the lumped
wrench on its center ofmass; (i i) deploy a data-driven system
able to understandwhether the estimatedwrench is generated
by a (partial or entire) rotor fault and identify the fault source;
(i i i) conduct a simulation campaign comparing the obtained
results with a model-based approach available in the litera-
ture.

3 System Architecture

The proposed system architecture is depicted in Fig. 2. It
is composed of the following elements: (i) a Geometric
Controller for the UAV that generates the force and con-
trol moments for the aerial platform later translated into
propeller’s velocities; (i i) an External Wrench Estimator to
calculate the unmodelled disturbances acting on the platform;
(i i i) a Long Short-time Memory neural network module to
detect and isolate motor faults. Besides, a simple Trajectory
Planner streams the desired position and orientation of the
UAV. At the same time, we assume that the UAV can esti-
mate its position and attitude in a fixed inertial frame. Before
detailing the architecture modules, we briefly introduce the
model of standard multi-rotor UAVs.

3.1 Dynamic Model of Multi-rotors

Flat multi-rotors are under-actuated systems having six
degrees of freedom in the consideredmathematicalmodel but

only four control inputs. Let �w and �b be two frames rep-
resenting the world fixed and the body-fixed frame attached
to the UAV centre of mass, respectively (see Fig. 1). The
position of �b in the world fixed frame is denoted by
pb = [ x y z ]T ∈ R

3 whereas its attitude is described by
the rotation matrixRb ∈ SO(3). In this context, the dynamic
equations of the UAV are described as follows [32].

mp̈b = mge3 − uTRbe3 + fext (1a)

Ṙb = RbS(ωb
b) (1b)

Ibω̇b
b = −S(ωb

b)Ibω
b
b + τ b + τ b

ext, (1c)

where e3 = [ 0 0 1 ]T ∈ R
3, m > 0 is the UAV mass,

Ib ∈ R
3×3 is its symmetric and positive definite inertiamatrix

expressed in �b, ωb
b ∈ R

3 is the angular velocity vector
expressed in �b, S(·) ∈ R

3×3 is the skew-symmetric opera-
tor, uT ∈ R and τ b = [ τx τy τz ]T ∈ R

3 are the total thrust
force and the control torques, respectively, and fext ∈ R

3

and τ b
ext ∈ R

3 the lumped vectors denoting unknown forces
and torques (this last expressed in �b), respectively, acting
on the vehicle (e.g., aerodynamic and buoyancy effects, flap-
ping dynamics, parametric uncertainties, imbalances caused
by batteries and/or on-board sensors, wind gusts, interaction
with the environment, propellers faults, etc.).

The desired force and torque must be translated into rota-
tional velocities for the multi-rotor propellers to actuate the
aerial platform. This step depends on the adopted frame and,
more precisely, on the number ofmotors and their position on
the frame. As already stated, this work considers three differ-
ent UAV models and the general form of this transformation
is detailed in the following.

Considering a UAV with n propellers, let �i ∈ R, with
i = 1, ..., n, be the rotational velocities of the propellers, the
multicopter’s control inputu = [ uT τ bT ]T can be computed
as follows (See [39])

u =
⎡
⎢⎣

ct ct . . . ct
sin(α1) l1 ct sin(α2) l2 ct . . . sin(αn) ln ct
cos(α1) l1 ct cos(α2) l2 ct . . . cos(αn) ln ct

d ca ca . . . ca

⎤
⎥⎦

⎡
⎢⎣

�2
1

�2
2

. . .

�2
n

⎤
⎥⎦ , (2)
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Fig. 2 System architecture
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where αi ∈ R is the angle of the rotor on the UAV frame
with respect to �b, li > 0 is the distance between the i − th
propeller and the origin of �b, ct > 0, ca > 0 are the thrust
and torque coefficients of the propellers, respectively, and d
is the rotation direction of the motor: positive/negative for
clockwise/counterclockwise rotor rotations.

3.2 Geometric Controller

In this section, the Geometric Controller module of the sys-
tem architecture is detailed. This module aims to receive the
desired position, velocity, and orientation of the UAV from
the Trajectory Planner to generate the desired thrust and
torques (uT and τ b) to apply to the UAV system. In particu-
lar, this module receives the desired position and velocity of
the�b’s origin in�w pd , ṗd ∈ R

3 and the desired orientation
around the z-axis of the body frame (ψd , namely the desired
yaw angle) with respect to the fixed world frame. Consider-
ing the under-actuation of the system, a hierarchical approach
has been considered to control both the position, pb (outer
loop), and the attitude (inner loop), Rb, of the multi-rotor.
In this context, we adopt the geometric tracking controller
in SE(3) proposed in [40]. The outer position loop tracking
errors are

ep = pb − pd ,

ev = ṗb − ṗd ,
(3)

Let Rd ∈ SO(3) be the desired rotation matrix specifying
the desired orientation of the UAV and xd ∈ R

3 be the axis
from ψd . The necessary thrust uT and the desired body axis
zd ∈ R

3 can be computed as follow.

uT = (Kp ep + Kvev + mge3 − mp̈d)TRbe3 (4a)

zd = − −Kpep − Kvev − mge3 + mp̈b,d
‖ − Kpep − Kvev − mge3 + mp̈d‖ , (4b)

where Kp ∈ R
3×3 and Kv ∈ R

3×3 are positive definite gain
matrices, while ‖ ·‖ ∈ R

3 is the Cartesian norm.We can now
obtain the desired rotation matrix through

Rd =
[
S

(
S(zd)xd

‖S(zd)xd‖
)
zd

S(zd)xd
‖S(zd)xd‖ zd

]
. (5)

Now, we can define the tracking error of the inner loop of
the controller as follows

eR = 1

2
(RT

b,d Rb − RT
b Rb,d)

∨, (6a)

eω = ωb
b − RT

b Rd ωd
d , (6b)

in which ωd
d ∈ R

3 is the desired body rotation velocity
expressed in �b and ∨ : R3×3 → R

3 is a map function per-
forming the inverse of the skew-symmetric operator. Finally,
the control torque is computed as

τ b = −KR eR − Kω eω + S(ωb
b) Ib ωb

b+
− Ib [S(ωb

b)R
T
b Rd ωd

d − RT
b Rd ω̇d

d ], (7)

whereKR ∈ R
3×3 andKω ∈ R

3×3 are positive definite gain
matrices,

3.3 ExternalWrench Estimator

The goal of the External Wrench Estimator module is to
estimate the unmodeled disturbances acting on the UAV
frame. It implements themomentum-based estimator already
used in [31, 41] to improve the position controller of a
quadrotor. The input of this module is the desired con-
trol force and torque ( fu , τu), the estimated linear and
angular velocity, and orientation in the fixed body frame.
These disturbances are characterized as generalized external
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forces acting on the robot’s body. In this context, the forces

F̂ext(t) =
[
f̂Text(t) τ̂

bT
ext(t)

]T
are calculated as follows

F̂ext(t) = K1

(∫ t

0
−F̂ext(σ ) + K2

(
α(σ)

−
∫ t

0

([
uTRbe3 − mge3
τ b − S(ωb

b)Ibω
b
b

]
+ F̂ext(σ )

)
dσ

)
dσ

)
(8)

where the matrices K1 ∈ R
6×6 and K2 ∈ R

6×6 are positive-
definite gains, while α ∈ R6 is the system’s momentum

α =
[
mI3 O3

O3 Ib

] [
ṗb
ωb
b

]
. (9)

One of the novelties of thiswork lies in using the output of the
external wrench estimator to train an assistant system, which
is a neural network. This neural network leverages the esti-
mation of forces and torques, combined with the knowledge
ofwhether a fault was injected into a rotor. In subsequent test-
ing phases, the torques and forces from the estimator serve
as inputs to the trained network, enabling it to distinguish
whether the external forces acting on the UAV are due to an
external disturbance (e.g., wind) or a rotor fault.

4 Rotor Fault Detection and Isolation

In this section, the fault detection and isolation process is
detailed. We propose an RNN based on LSTM [42] to detect
motor faults. This structure has been introduced to address
the vanishing gradient problem of the RNNs [43]. In partic-
ular, the hidden unit of a traditional RNN is replaced by a
memory cell to handle the information received as input by
the network. This is made exploiting three gates: the input
gate, forget gate, and output gate that act as regulators for the
manipulation and the utilization of the memory discerning
between relevant and irrelevant information; in this context,
LSTMnetworks are particularly suited to analyze time-series
data.

The input layer is composed of six nodes, representing
the three-dimensional forces and torques estimated by the
External Wrench Estimator module (i.e., f̂ext, τ̂ext). In con-
trast, the output layer’s size depends on the UAV’s number
of motors. Each output node evaluates the operating status
of a motor of the aerial platform. The structure of the pro-
posed neural network is depicted in Fig. 3. It consists of an
input layer, a hidden layer of LSTM cells, and an output layer
associated with a softmax function. We deployed two differ-
ent networks, one with 4 output nodes to detect rotor faults
on the two quadcopter models and one with 6 output nodes
used with the hexacopter. Besides, a hidden layer composed
of 25 nodes has been considered for both models. To train

Fig. 3 LSTM Neural network structure

the network, we considered 100 epochs for each batch of
data, while the size of a batch has been experimentally set to
20 samples. Finally, the Adam optimizer and the categorical
cross-entropy loss function has been used.

System Training

In the proposed application, the estimated unmodeled dis-
turbances in the presence of a motor fault strictly depend on
the system dynamics and the configuration of the rotors, the
deployed LSTM network must be trained for each platform.
For this reason, three different datasets have been created
simulating several faulty trajectories considering a set of
static and randomparameters. The complete list of the param-
eters with their boundaries values are reported in Table 1. In
particular, a new trajectory is planned for a platform with r
motors, considering random target way-points ([x, y, z] and
ψ) and cruise velocity (cv). The target is generated using
random functions from standard C++ libraries based on a
uniform distribution.

Table 1 Different training parameters using to generate the datasets

Parameter Values

r 4,6

x, y [−10; 10] m
z [0.5; 12] m
ψ [0; 2π ] rad
cv [0.1; 2.0] m/s

m [1; r ]
gth [0; 500]
fk [0.01; 1.0]
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Fig. 4 Normal condition (before dashed line) and faulty condition (after dashed line). From left to right graphics represent the estimated unmodeled
forces, estimated unmodeled torques, position error and motor velocities

The planned waypoints are limited between 0.5 and 12 m.
The lower limit is set to avoid generating trajectories too
close to the ground, while the upper limit defines medium-
length flights. However, this upper limit can be adjusted to
perform trajectories at different altitudes as needed. At the
same time, during the flight, we randomly decide to inject
a fault into one of the motors of the aerial platform. When
a generated number (gth) is higher than a certain threshold
(e.g., 500 in the proposed training sessions), a new fault is
provoked. This number has been experimentally selected to
allow a balanced time of flight with and without motor fault.
Let ωi be the velocity of a UAV propeller, fk ωi simulates
the loss of power of motor m. Like target way-points, fk and
m are randomly selected during the navigation.

During each training session, we recorded the distur-
bances and the motor status vector consisting of n binary
values: f = [ f1, . . . , fn]. In this context, n is the number of
the aircraft’s motor, and fi equals one if a fault is injected on
the i− th motor, zero otherwise. The estimation process runs
at 100 Hz, and the same framerate stores data in the dataset.
It is worth noticing that we did not consider more than one
rotor fault for time.

An example of the estimated unmodeled disturbanceswith
and without a rotor fault is shown in Fig. 4, where the sys-
tem force, torque, position error, and motor velocities are
depicted. In this picture, the dashed line indicates that a fault
on one of the motors of the UAV has been injected. In this
case, that motor is commanded to lose 10% of its effici-
ency.

Finally, a training session ends when a certain amount of
time elapses after a motor fault has been injected or the fault
is too critical (e.g. the motor completely loses the spinning
force) to compromise any platform stabilisation. Such a latter

Table 2 Precision, Recall andAccuracy indexes for eachUAVplatform

Platform P R Acc

Quad (+) 0.98 0.92 0.97

Quad (×) 0.95 0.81 0.92

Hexa 0.98 0.73 0.88

condition is recognised considering the attitude error of the
onboard controller. When this error exceeds its control satu-
ration (e.g., 0.35 rad), the system is reset, and a new training
session starts.

The collected datasets have been sequentially split into
training and test sets, covering the samples’ 70% and 30%.
Test results on the test datasets are reported in Table 2 in
which the Precision (P), Recall (R) and the Accuracy (Acc)
indexes are reported. Considering the classical definition
of true/false positive as the correct/wrong identification of
a motor fault (TP/FP), and true/false negative as the cor-
rect/wrong classification of normal working conditions of
the UAV motors (TN/FN), these quantities are calculated as
follows

• Precision (P): represents the ratio between the correct
predictions and the total predictions:

P = T P

T P + FP

• Recall (R): represents the ratio of the correct predictions
and the total number of correct items in the set:

R = T P

T P + FN

• Accuracy (Acc): represents the correct predicted data
over all the elements of the dataset:

Acc = T P + T N

T P + T N + FP + FN

Table 3 Confusion matrix for the quadcopter flying with the plus con-
figuration

Quad (+) F1 F2 F3 F4

F1 0.93 0 0 0.0

F2 0 0.9 0 0.0

F3 0 0 0.92 0.0

F4 0 0 0 0.94
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Table 4 Confusion matrix for the quadcopter flying with the cross con-
figuration

Quad (×) F1 F2 F3 F4

F1 0.7 0 0 0.06

F2 0 0.77 0.01 0.0

F3 0 0.03 0.84 0.0

F4 0.06 0.006 0 0.85

The closer the Precision, Recall, and Accuracy values are
to one, the higher the performance of the FDI method is
good. Finally, in Tables 3, 4, and 5 the confusion matrices
are reported. These results demonstrate that the deployed
LSTM network can correctly isolate the fault and identify
the damaged rotor with good accuracy. These results show
that the system works better when the robot motion is not
coupled on multiple rotors (see Table 3).

Besides, these results are obtained considering the sam-
ples stored in the datasets. In a more realistic scenario,
false-negative phenomenons can bemitigated by considering
over-time testing sessions, as validated in the next section.

5 Case Studies

This section presents the system evaluation through several
simulated case studiesmeant to demonstrate the effectiveness
of the proposed FDI method. Nowadays, several tools exist
to simulate aerial robot dynamics (see [44, 45]). In this work,
we rely on RotorS [8], a ROS-based simulator that provides
a modular framework to design Micro Aerial Vehicles to test
control and state estimation algorithms.

Figure 5 describes the software architecture implemented
to perform the evaluation. As stated, we tested three UAV
models using theGazebo simulation environment. Testswere
performed on a standard computer running Ubuntu 20.04
GNU/Linux OS and ROS Noetic as robotic middleware. The
LSTM network has been implemented using TensorFlow

Table 5 Confusion matrix for the hexacopter

Hexa F1 F2 F3 F4 F5 F6

F1 0.89 0.02 0 0 0 0

F2 0 0.93 0 0 0 0

F3 0 0 0.93 0 0 0

F4 0 0 0 0.87 0 0.05

F5 0 0 0 0 0.9 0

F6 0.13 0 0 0 0 0.88

library1 through Keras2 high-level interface programmed in
Python language. As for the UAV models, they are inspired
by the Firefly and Hummingbird platforms from Ascending
Technologies and the Iris quadcopter from 3D Robotics (see
Fig. 6). The dynamic parameters of the simulated UAVs are
reported in Table 6. Similarly, the controller gains used to
test the system are reported in Table 7. These gains have to
be multiplied by an identity matrix of dimension three, i.e.,
kpI3.

Themulti-rotor is commanded to take off at a fixed altitude
in the simulation case studies. Then, similarly to the training
sessions, a set of waypoints is randomly generated to perform
different trajectories.During thismotion, rotor faults can take
place at any moment. A new test is started by the Session
Manager whose aim is to set up a new trajectory (i.e. x , y, z,
ψ , cv). The detector module loads the LSTM-trained model
based on the UAV under test and continuously evaluates the
state of the multi-copter rotors. When the detector module
reveals a new fault, it is compared with the output of the
Session Manager. In this way, we can characterize correct or
wrong classification results. After that, a new fault has been
injected the simulation scene is reset to start a new testing
session.

Two scenarios have been considered with and without
external disturbances to demonstrate the detection system’s
effectiveness. In the first scenario, random trajectories were
performed replicating the conditions of the LSTM network
training phase. In the second scenario, external forces are
generated to affect the flying platform with turbulence noise.
In this context, these disturbances emulate wind gusts that
represent one of the significant external disturbance sources
of outdoor operating UAVs [46, 47]. During each test, we
collected the following data.

• Length: the length of the total executed paths.
• Time: the total elapsed time during the tests.
• Accuracy: the true positive rate.
• Detection time: the elapsed time between the injection of
a new fault and its detection.

Actuator FaultsWithout External Disturbances

Without loss of generality, consider the case of the

quadrotor. Given F̂ext, i.e.
[
f̂Text τ̂

T
ext

]T
, which represents the

estimated external disturbance at a given running instant, the
LSTM neural network input is obtained by collecting them
into the sequence F̂ext1, . . . , F̂extn . Here, n is the input batch
size and in the proposed case study n = 40. Given the corre-
sponding classification sequence S=(( f1,1, f1,2, f1,3, f1,4),

1 https://www.tensorflow.org/
2 https://keras.io/
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Fig. 5 Software architecture implemented to test the rotor fault detection and isolation method

Fig. 6 UAV models simulated
using RotorS – (a): the
quadcopter with the plus
configuration; (b): the
quadcopter with the cross
configuration; (c): the
hexacopter

(a) (b) (c)

Table 6 Dynamic parameters of the simulated UAV models

Platform m Ix Iy Iz g

Quad (+) 1.8 0.007 0.007 0.012 9.81

Quad (×) 1.51 0.034 0.0458 0.097 9.81

Hexa 1.56 0.034 0.0458 0.097 9.81

Table 7 Controller gains

Platform kp kv kR kω

Quad (+) 6.0 5.2 2.0 0.4

Quad (×) 15 5.7 3.0 0.4

Hexa 6 4.7 3.0 0.52

Fig. 7 Wind gusts using Dryden
turbulence model at 2.0 m
altitude, 1.8 m/s wind speed
and 0.3 m/s wind gust
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. . . , ( fn,1, fn,2, fn,3, fn,4)), where each 4-tuple represents
the outputs related to the 4motors status. The class c assigned
to ftc is the first one for which there exists a sub-sequence
( ft0,c, . . . , ft0+
,c) such that for all t ∈ [t0, t0+
], we have
that ft,c > λ holds. That is, the sequence fti is assigned to the
class c, such that the classification result c remains coherent
for a fixed time windows 
, with confidence always greater
than a fixed threshold λ in that window. The use
 parameter
has been included to reduce the number of false positive data
leverage on the assumption that it is better to have a delayed
true positive instead of a false positive. In our case studies,

 was empirically set to 10 steps, while λ was set to 0.6,
which assures a certain amount of confidence in one class
with respect to the others. A total number of 550 testing ses-
sions are performed. Each trajectory consists of a maximum
number of 4 waypoints, and the path is reset when a new fault
is injected.

Despite the quality of the results obtained in the sys-
tem evaluation, performance can still be increased, espe-
cially when external disturbances cause incorrect detection
results. To further enhance the performance of the proposed
approach, additional input data, such as the tracking error
of the drone following the autonomous trajectory, could be
incorporated. However, in this work, we employed the min-
imal amount of information that is universally available in
all UAVs, whether they are operated automatically (with
planned trajectories) or remotely piloted

Actuator Faults with External Disturbances

In this scenario, the multi-copter is affected by external dis-
turbances during the detection process. This test aims to
demonstrate that the fault detectionmethod based on unmod-
eled dynamics data can also work in case additional external
disturbances are applied to the UAV frame.

External disturbances can be caused by several phenom-
ena: the presence of a slinging payload attached to the body
of the drone, an external acting force generated by contact
with the environment, or other reasons. In the following case

Table 8 Data collected during the two testing scenarios

Platform Length (m) Time (min)
Scenario 1

Quad (+) 944 116.7

Quad (×) 1317 118

Hexa 1446 127.5

Scenario 2

Quad (+) 1430 97

Quad (×) 1315 102

Hexa 1246 121

study, these disturbances are represented as wind gusts using
the Dryden wind model. This approach allows to compre-
hensively evaluate the fault detection and isolation system’s
robustness in varied and realistic operational conditions.

A common approach to represent atmospheric wind gusts
in simulated applications uses stochastic formulations [48].
In this context, the Dryden wind model is a popular turbu-
lencemodel to simulatewindgusts.Otherworks have already
proposed this model to test fault detection methods [49, 50].
An example of the generatedwind velocities is represented in
Fig. 7. The wind velocities must be converted into wind load
to apply the force on the UAV frame properly. We simplify
this conversion by choosing a gain value kw to consider the
air density and the drag coefficient of the airframe. Therefore,
the applied force is calculated through �Fd = kw �v 2, where
�v is the wind speed. In the end, the desired force is applied
to the centre of mass of the robotic frame using a Gazebo
plugin.

Fig. 8 Percentage of correct fault detection (top) and the mean reaction
time alongwith its standard deviation (bottom) in scenario 1 (no external
disturbances)
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Fig. 9 Percentage of correct fault detection (top) and the mean reaction
time along with its standard deviation (bottom) in scenario 2 (with
external disturbances)

Results and Discussion

In Table 8, we report the total distance covered by the robots
and the operative time during each scenario. The mean of
the percentage of correct faults detection and the reaction
time, along with its standard deviation for the two testing
scenarios, are reported in Figs. 8 and 9. Results from the first
scenario demonstrate that the detection system reaches a high
level of accuracy (≥ 90%), and it is fast enough to react to

Table 9 Comparison between the accuracy of the Data-Driven
approach and the Model-Based one without external disturbances

Platform LSTM TSKF

Accuracy %

Quad (+) 97.27 87.09

Quad (×) 92.86 76

Mean Reaction Time (s)

Quad (+) 0.45 3.094

Quad (×) 0.55 5.794

Table 10 Comparison between the accuracy of the Data-Driven
approach and the Model-Based one with external disturbances

Platform LSTM TSKF
Accuracy %

Quad (+) 82.3 80.72

Quad (×) 78.7 54

Mean Reaction Time (s)

Quad (+) 1.12 3.57

Quad (×) 1.19 7.74

this kind of unexpected event (i.e., invoking an emergency
landing operation). Similarly, the rest of the table reports
results obtained from Scenario 2. In this second test case, the
overall performance of the fault detection method is worse
with respect to test case one. In particular, the accuracy of the
classifier is weakened due to a high number of false-positive
and the time needed to recognize a fault is increased. The
performance degradation is motivated by wind turbulences
affecting the UAV are sometimes detected as rotor faults. At
the same time, the classifier cannot fix its detection results on
a unique value for more than 
 iterations. At the same time,
the correct value of 
 improves the detector’s robustness,
reducing the number of false positives.

Comparison

In order to demonstrate better performances of the approach
presented in this work that uses an LSTM with respect to a
model-based method, this section shows a comparison study
with a two-stageKalman filter (TSKF). The technique imple-
mented to compare the results is the one presented in [26].
This last consists of a cascade of two Kalman filters: the
former filter estimates the states of the UAV; the latter esti-
mates and detects the fault of an actuator. Coupling equations
pair these two filters. This algorithm takes as inputs the rotor
velocities, linear positions and angular velocities, and it will
retry a fault vector γ , which dimension is the same as the
vector of the rotor velocities. This system has been imple-
mented for the two quadrotors configurations used for this
work’s case studies, namely, the Hummingbird and Iris. The
experiments to test this detector have been conducted in the
same conditions as the previous experiments. Both methods
are compared according to their accuracy, i.e., the percent-
age of correct detections over the number of simulations,
andmean reaction time. The results of the experiments com-
pared with our approach are shown in Table 9 for the first
scenario without external disturbances. The method using
LSTM overcomes the one which implements TSKF in both
accuracy and mean reaction time. In particular, the best
improvement can be noticed in the reaction time, which is
about six times smaller. Table 10 reports the comparison
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results in the scenario with external disturbance. The LSTM
method presented in our paper also overcomes the model-
based approach in this scenario, even if the performance is
worse for both according to the experiments without wind
disturbance experiments.

6 Conclusion

This paper uses a novel rotor FDI method based on unmod-
eled disturbances for multi-copter UAVs. Our approach
considers the external force acting on the UAV frame esti-
mated through a momentum-based wrench estimator and
allows us to detect partial or complete motor power loss
promptly. The detection process deployed a deep neural net-
work. In particular, different fully connected recurrent neural
networks composed of LSTM cells have been designed to
carry out the detection process on different UAV models.
The system’s training and testing have been performed using
Gazebo dynamic simulator. The validity of the proposed
method has been compared with a classical approach that
uses a TSKF, which has been outperformed.

Future works regard the validation of this approach on
a real multi-rotor platform, extending this approach to also
unconventional multicopter configurations, like the actively
tilting propellers UAVs.
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