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A B S T R A C T

Over the last few years, the availability of an increasing data generated from non-Euclidean domains, which
are usually represented as graphs with complex relationships, and Graph Neural Networks (GNN) have gained
a high interest because of their potential in processing graph-structured data. In particular, there is a strong
interest in performing convolution on graphs using an extension of the GNN architecture, generally referred
to as Graph Convolutional Neural Networks (ConvGNN). Convolution on graphs has been achieved mainly
in two forms: spectral and spatial convolutions. Due to the higher flexibility in exploring and exploiting the
graph structure of data, there is recently an increasing interest in investigating the possibilities that the spatial
approach can offer. The idea of finding a way to adapt the network behaviour to the inputs they process
to maximize the total performances has aroused much interest in the neural networks literature over the
years. This paper presents a novel method to adapt the behaviour of a ConvGNN to the input performing
spatial convolution on graphs using input-specific filters, which are dynamically generated from nodes feature
vectors. The experimental assessment confirms the capabilities of the proposed approach, achieving satisfying
results using a low number of filters.
1. Introduction

In the last few decades, Convolutional Neural Networks (CNNs)
have gained much interest due to their potential and versatility in
addressing a large scale of machine learning and pattern recognition
problems [1], while achieving great success. The potential of CNNs lies
in extracting and processing local information performing convolution
on input data using sets of trainable filters with a fixed size. However,
the design of the convolution operation in the CNNs allows to process
only regular data while, in the real world, there is a considerable
amount of data that naturally lie on non-Euclidean domains, needing
different techniques to be processed. These data are often represented
by graph-based structures. Graph structures imply several difficulties in
using standard data processing techniques, such as the impossibility
of using classic CNNs due to the variable number of neighbours for
each node (differently from regular data where the filter properties
fix the number of neighbours for each node). This aspect has led to
new processing techniques such as Graph Neural Networks (GNNs),
which gained high interest during the last years. First attempts [2]
of neural networks based on input graphs, generally referred to as
Recurrent Graph Neural Networks (RecGNNs), were based on message
passing architectures, where an iterative process allows to learn, for
each node, a representation of the relative neighbourhood information.

∗ Corresponding author at: Department of Electrical Engineering and Information Technology, University of Naples Federico II, Italy.
E-mail address: andrea.apicella@unina.it (A. Apicella).

Therefore, the learned node representations are used for classification
or regression tasks.

Due to the great success of CNNs, GNNs inherits convolution opera-
tion producing the Graph Convolutional Neural Networks (ConvGNNs),
which have found their expression in two different approaches. The
former are spectral methods (see, for example, [3]), that perform con-
volution based on graphs signal processing techniques. The latter are
spatial methods (see, for example, [4]), that instead perform convolu-
tion using spatial information of data, similarly to what classical CNNs
do. ConvGNNs share the same idea of message passing with RecGNNs
but in a non-iterative manner. However, ConvGNNs are usually based
on learned filters having constant values for each input fed to the
network as well as classical convolutional networks. In other words,
the filter values are independent of the input values. However, we
note that adapting the Artificial Neural Network (ANN) inner behaviour
in function of the input is an open research area in the scientific
community. In a nutshell, in standard approaches, the ANN input–
output relationship, i.e., the ANN behaviour, after the training phase, is
completely defined by a set of fixed network parameters (weights and
biases). By contrast, the core idea of this research area is that the ANN
behaviour also depends on the input itself or additional inputs. A way
to achieve this goal is setting the network parameters by another neural
vailable online 5 August 2023
031-3203/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.patcog.2023.109867
Received 21 March 2022; Received in revised form 6 July 2023; Accepted 31 July
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2023

https://www.elsevier.com/locate/pr
http://www.elsevier.com/locate/pr
mailto:andrea.apicella@unina.it
https://doi.org/10.1016/j.patcog.2023.109867
https://doi.org/10.1016/j.patcog.2023.109867
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109867&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Pattern Recognition 144 (2023) 109867A. Apicella et al.

d
f
I
i
a
T
u
i

i
a
i
o
f
f
t
f
a
g

2

e
a
f
i
e
e
i
t
i
a
f
n
g
t

l
N
R

network which receives the same input of the former neural network or
external/additional inputs (see, for example, [5]). Thus, ANN is able to
dynamically change its behaviour according with the received inputs.
In this paper, we refer to this type of approaches as Dynamic Behaviour
Neural Networks (DBNN).

In the last years, several works were proposed following DBNN
approach [6]. However, in the GNN field, to the best of our knowledge,
the DBNN approach has not received too much attention. In [7] the
authors proposed the Edge-Conditioned Convolution (ECC) network,
which performs spatial convolutions over graph neighbourhoods ex-
ploiting edge labels and generating input-specific filters from them.
In [8], the authors proposed a method to make the GNN message
passing architecture adaptive to input nodes using an external hyper-
network. Zhang et al. in [9] proposed the Graph HyperNetwork (GHN),
a model having weights generated by an hypernetwork exploiting a
computation graph representation. In [10], an hypernetwork architec-
ture is proposed to generate relation-specific convolutional filters for
convolution on graphs.

In this paper, we exploit the possibility of dynamically changing the
convolutional filter behaviour as a function of the input and propose
a novel method to perform spatial convolution on graph-structured
data. We will name our approach Dynamic Graph Convolutional Filters
(DGCF). Following [7,11], convolutional filters will be generated using
an external module, the filter-generating network, that, during the train-
ing stage, learns to produce input-specific filters in order to perform
an ad-hoc filtering operation for each input sample. The proposed
approach allows a network to change its behaviour according to the
input. Indeed, the convolutional filters are dynamically generated using
an external module based on the input graphs. This brings two main
benefits. The former is that we obtain a low number of convolutional
filters since the model can build the most suitable filter according to the
network input instead of relying on a battery of fixed filters learned
during the learning phase. In this work, we show this empirically by
reporting a visual analysis of the training stages, inspecting differences
in filter generation according to the input. We show that specific
filters are obtained according to the input class, enhancing the main
architecture by intrinsic patterns hidden in the input itself. The latter
benefit of this type of approach is that the training phase involves a
smaller network to generate the weights of another one, resulting in a
more efficient training phase. In fact, in our experiments, we noticed
that the final training convergence is reached in fewer epochs than in
classical approaches.
Differently from [7], in our approach filters are generated exploiting
nodes feature vectors instead of edge labels. Our approach is validated
in three series of experiments, making a comparison with the standard
convolution over 10 repetitions, with randomly initialized weights for
each repetition. Hypothesis tests are reported for each series of exper-
iment to verify the significance of the results. The advantages of the
proposed approach can be summarized as follows: (i) it inherits the
standard convolution operation from classical CNNs. The convolution
is performed on each node with its nearest neighbours applying sets of
fixed-sized filters; (ii) the network inner behaviour changes according
to the input. Filters used for the convolution are dynamically generated
using an external module based on the input graphs; (iii) dynamic
behaviour of the convolutional filters can lead to design simpler ar-
chitectures than non-dynamic approaches with respect the number of
convolutional filters, while leaving unaltered performances. Promising
results can be achieved using a fewer number of convolutional filters
than a non-dynamic approach; (iv) training convergence can be reached
in a fewer number of epochs. Using a dynamic approach, we empirically
show that the learning stage needs a fewer number of epochs than using
the non-dynamic approach.

This paper is organized as follows. Section 2 briefly reviews the
related literature; Section 3 describes the proposed method; the ex-
perimental assessment is described in Section 4 while in Section 5
the obtained results are presented and discussed. In Section 6 a visual
analysis of the training stage of our proposal is shown. In Section 7
results and outcomes of a study are discussed. The concluding Section 8
2

is left to final remarks. e
2. Related works

In this section, we first report the related works in the context of
DBNN approach and, then, we give a general description of the Graph
Neural Networks, focusing on ConvGNNs.

2.1. DBNN approaches

The idea of controlling the behaviours of an ANN through the input
itself or an additional/external input has a long history in the literature
For example, in [12], the authors describe a way to represent general
conditional probability densities by considering a parametric model for
the distribution expressed as a neural network whose parameters are
determined by the outputs of another neural network having the same
input. In [6] the filters of CNNs and LSTMs networks are generated
by an auxiliary network. In [11] the authors defined the dynamic
changes in ANNs’ behaviours in the context of traditional CNNs using
a proposed dynamic filter module to execute the convolution operation.
Dynamic filter module consists of two parts: a filter-generating network,
that generates filters’ parameters from a given input, and a dynamic
filtering layer, that applies those generated filters to another input. In
particular, the dynamic filtering layer can be instantiated as a dynamic
convolutional layer, wherever the filtering operation is translation in-
variant. In [11], considering two input images 𝐼𝐴 and 𝐼𝐵 , not necessary
ifferent, the filter-generating network takes as input 𝐼𝐴 and outputs
ilters 𝜃 to apply on 𝐼𝐵 . Filters 𝜃 are parameterized by parameters 𝜃.
n this way, an output 𝐺 = 𝜃(𝐼𝐵) is generated. However, this method
s developed in the context of classic CNNs; by contrast, in [7], the
uthors attempt to perform a dynamic spatial convolution on graphs.
he authors proposed the Edge-Conditioned Convolution (ECC), which
ses a filter-generating network to output edge-specific filters for each
nput sample dynamically.

The DGCF approach proposed in this paper is inspired by the work
n [7,11]. We perform a convolution on input graphs using filters that
re dynamically generated by a filter-generating network, thus obtain-
ng a dynamical change in the behaviour of the ConvGNN. We point
ut that, differently from the ECC proposed in [7] where convolutional
ilters are edge-based, our strategy (see Section 3) considers node-based
ilters, tweaking in this way the filtering operation on nodes by nodes
hemselves. Thus, summarizing, the proposed approach is different
rom ECC with respect to the input fed to the filter-generating network,
nd it differs from the other DBNN approaches since it is applied on
raphs.

.2. Graph Neural Networks

GNNs are showing positive effects in several applications, as for
xample in time-series forecasting tasks [13], document analysis [14],
nd image analysis [15–18]. A first proposal of a neural network model
or graph-structured data was made in [2]. This model builds on the
dea that graph nodes represent ‘‘concepts’’ related to each other via
dges. Each node 𝑛 is represented by a feature vector 𝑥𝑛 and each
dge (𝑖, 𝑗) is described by a feature vector 𝐱𝑒(𝑖,𝑗). This model leverages
nformation exchange among nodes and their neighbours to update
heir features iteratively (message passing mechanism). In the literature,
terative graph processing techniques based on neural networks with
message passing architecture are generally referred as RecGNNs. To

ace the computational costs of these methods, several kinds of neural
etwork models were proposed in the literature, often with the aim of
eneralizing classical and established neural networks data processing
o graph data. In [19] a comprehensive survey on the topic is proposed.

A particular focus was given in the literature to perform the convo-
ution operation on graph-structured data. Graph Convolutional Neural
etworks (ConvGNNs) share the idea of message passing adopted by
ecGNNs but implement it in a non-iterative manner: information is

xchanged between neighbours using different convolutional layers,
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each with different filters [19]. However, the non-Euclidean character-
istics of graphs (e.g., their irregular structure) makes the convolution
and filtering operations not easy to define as for those on images.
For this reason, in the past decades, researchers have been working
on how to conduct convolution operations on graphs using several
approaches, that can be categorized in (i) spectral approaches, that
rely on the graph spectral theory, involving graph signal processing,
such as graph filtering and graph wavelets (see, for example, [20]),
and (ii) spatial approaches, that leverage on structural information to
perform convolution, such as aggregations of graph signals within
the node neighbourhood (see, for example, [4,21]). Although spectral
architectures have been explored successfully in several works (see, for
example, [20]), one of the main problems of ConvGNNs in the spectral
domain is that the graph structure has to be set for all the inputs due to
the use of the graph Laplacian in the training stage. However, spectral
analysis is computationally expensive, limiting the concrete usage of
this methods on huge graphs [22]. Indeed, according to [19], the first
proposals on spectral GNN [23,24] require eigenvalue decomposition
of the graph matrix. Therefore they have a computational complexity
of 𝑂(𝑛3), where 𝑛 is the number of graph nodes. Instead, first spatial
approaches [21,25] result in a computational complexity of 𝑂(𝑚) and
𝑂(𝑛2) respectively, where 𝑚 is the total number of edges in the graph.
However, a spectral approach based on the Chebyshev polynomials to
reduce the computational complexity is proposed in [26] and further
simplified in [27]. In this case, the computational complexity is 𝑂(𝑚),
ut the algorithms make several approximations and simplifications.
lthough strategies to use ConvGNNs with different inputs graph struc-

ures were proposed [20], this problem is generally not present in
he spatial domain. For these reasons, several spatial domain methods
ave been proposed in the literature. For example, in [28] the authors
resent PATCHY-SAN, a ConvGNN model inspired by the classical
mage-based CNN. In [21] and [4] two different methods to generalize
he convolutional operator using random walks for neighbourhood
ocating were reported. In [29] spectral-based GNNs are generalized
o work on data structured as hypergraphs [30] instead of classical
raphs. In [31] the complexity of a GNN was reduced, collapsing the
etwork layers into a single linear transformation. In [32] the authors
roposed a method to learn or refine the graph structure together with
he network parameters.

The aim of the work presented in this paper is to perform an adap-
ive spatial-convolution, using fixed-sized filters, on graph structured
ata. According to the dynamic convolutional layer proposed in [11],
n our approach, for each sample, a translation invariant set of filters
s generated by a filter-generating network and shared among all the
eighbourhoods.

. Method description

In this work, we propose a ConvGNN-based architecture whose
onvolutional filters change in function of the input features. Differ-
ntly from similar works such as [7], where filters depend on the
raph edges, we propose a DBNN approach based on the graph nodes’
eatures. In this section, after a brief introduction of graphs’ notation,
detailed description of our proposal is given.

.1. Notations

Let 𝐺 = (𝑉 ,𝐸) be an undirected or directed graph where 𝑉 is a finite
et of 𝑁 nodes, and 𝐸 is a finite set of edges. We define in boldface
𝑖 ∈ R1×𝐽 the input feature vector related to the node 𝑖 ∈ 𝑉 , where
is the number of input channels, and 𝐲𝐢 ∈ R1×𝑀 its output feature

ector, where 𝑀 is the number of output channels. Let 𝑋 ∈ R𝑁×𝐽

enote the matrix representation of an input graph as an embedding
f the feature vectors of its nodes. In order to obtain neighbourhoods
ith a sufficient number of nodes to which apply a filter of dimension
, we select the k-nearest neighbours of each node using the classical

hortest path distance. Neighbourhoods are uniquely defined for each
3

ode. r
Fig. 1. A graphical description of the DGCF in processing a node – marked in red and
labelled as 0 – using filters of dimension 𝐾 = 5. A unique set of filters dependent on
all the nodes’ feature vectors of the input graph is dynamically generated by the Filter
Generating Network (FGN) and shared among all of its neighbourhoods. Finally, input
feature vectors of the neighbourhoods are weighted summed to compute the nodes’
outputs. In this example, input-specific filters are applied on the neighbourhood of the
node 0, referred as 𝑁(0). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

3.2. Dynamic Graph Convolutional Filters

This work aims to perform convolution on graphs using dynamically
generated filters conditioned on a given input. As we have described
above, otherwise from ECC in [7], where convolution is performed us-
ing dynamical edge-based filters, our intent consists in using node-based
filters dynamically generated from nodes’ feature vectors.

Considering the matrix representation 𝑋 of an input graph, using
a neural network ℎ𝜃(⋅), that we will refer as filter-generating network,
with parameters 𝜃, we can generate a set of node-specific filters  =
ℎ𝜃(𝑋) used to compute a dynamic convolution on input graphs.  can
e represented as a matrix  ∈ R𝐽×𝐾×𝑀 , where 𝐽 is the number of input

channels, 𝐾 is the filter size and 𝑀 is the number of output channels.
upposing to compute the 𝑚th output channel of the node 𝑛, what we

propose can be formalized as follows:

𝐲𝑛𝑚 = 𝑓
(

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝑗𝑘𝑚𝐱

𝑠(𝑛,𝑘)
𝑗

)

(1)

where 𝑠(𝑛, 𝑘) returns the index of the 𝑘th neighbour of 𝑛, 𝐽𝑗𝑘𝑚 are the
filters generated by the filter-generating network ℎ𝜃(⋅). In other words,
the 𝑗𝑘𝑚 is the value in position (𝑗, 𝑘) of the 𝑚th filter generated by
he filter-generating network ℎ𝜃(⋅). Thus, during the training stage, the
arameters 𝜃 have to be learned, together with the other network’s
arameters. According to what is described in [11], our approach
ollows the dynamic convolutional layer : the filter-generating network,
efined as ℎ𝜃 ∶ R𝑁×𝐽 → R𝐽×𝐾×𝑀 , where 𝑁 is the number vertices, 𝐽 is
he number of input channels, 𝐾 is the filter size and 𝑀 is the number
f the output channels, takes as input the input graph and generates a
nique set of filters shared among all the neighbourhoods.

A graphical representation of the proposed DGCF model is shown
n Fig. 1: supposing to have a node, labelled as 0, as a central node
uring the convolution operation on a given input graph, an input-
pecific set of filters is firstly generated by the filter-generating network
sing the nodes’ feature vectors of the input graph, then it is applied
o the neighbourhood of the node 0, referred to as 𝑁(0), computing a
ew representation of it. This procedure is then iterated over all the
odes of the input graph. From the experimental results, as reported
n Section 5, emerged that the use of few dynamic convolutional filters
eads to results comparable with traditional convolutional architectures
omposed of an higher number of filters.

.3. Computational complexity

Considering (1), the time required by 𝐲𝑛𝑚 depends on the time 𝑇𝐹𝐺𝑁
equired by a forward pass on the Filter-Generating Network ℎ (⋅) to
𝜃
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Fig. 2. The time required by the proposed DGCF as the number of graph nodes
increases, considering several numbers of edges for each node. As a comparison, the
time needed by GCN [27] on the same data is also reported. The simulation was
made using 28 artificially generated datasets, composed of 1000 graphs with nodes
𝑛 ∈ {10000, 5000, 1000, 500, 200, 100, 50}, edges 𝑒 ∈ {20, 10, 5, 3}, and 32 channels. The
Architectures are composed of 2 convolutional layers with 16 and 8 output channels
respectively. Times were computed averaging on batches of size 32.

compute 𝑗𝑘𝑚. This time depends on the ℎ𝜃(⋅) architecture. Considering
FGN composed of fully-connected layers, the time is linear on the
number of its weights 𝑊 , i.e. 𝑂(𝑊 ). Therefore, the computation of
𝐲𝑛 for a single node 𝑛 over all the 1 ≤ 𝑚 ≤ 𝑀 channels, has a time
complexity of 𝑂(𝑊 +𝑀 ⋅𝐽 ⋅𝐾). The time complexity for computing the
output of the full layer. An empirical analysis on the time required by
the proposed DGCF as the number of graph nodes increases is shown
in Fig. 2.

4. Experimental assessment

The DGCF approach was experimentally evaluated in three series
of experiments. We point out that our interest in these experiments
is investigating the advantages of using our method to non-dynamic
approaches in terms of results, learning time, and model simplicity. At
first, we conducted preliminary experiments on the well-known bench-
mark dataset MNIST, representing images in terms of graphs [4][33].
Then, we conducted a series of experiments on the 20NEWS,1 a com-
monly used dataset in the GNN literature [32,34,35]. Finally, we
conducted a series of experiments on an widely used electroencephalo-
graphic (EEG) signals dataset, SEED [36], in order to test our method on
harder tasks, such as emotion recognition from EEG signals. On this last
task, a model analysis was made in order to investigate the functioning
of DGCF approach. In particular, a comparison between the learning
processes (in terms of weights updates for each epoch) between the
static filters and the filters generated by the filter-generating network
was carried out. Table 1 reports a summary of the datasets used in our
experiments. Note that, in each series of experiments, we selected as
comparison the non-dynamic ConvGNN [4] reported in the literature,
trained on the same dataset we used.

4.1. MNIST

We used the widely known MNIST handwritten digits dataset for
running the first series of experiments. The MNIST dataset consists
in 70,000 grayscale images of handwritten digits. This dataset was
reported already split in training (60,000 samples) and test (10,000
samples) sets. So, recognizing each digit can be viewed as a 10-classes
classification problem. We adopted the same experimental setup on the
MNIST dataset used in [4] that can be resumed as follows: after the

1 http://qwone.com/~jason/20Newsgroups/
4

Table 1
Datasets selected for the experiments.
Dataset #𝑔𝑟𝑎𝑝ℎ𝑠 #𝑛𝑜𝑑𝑒𝑠 #𝑐𝑙𝑎𝑠𝑠𝑒𝑠

MNIST 70000 717 10
20NEWS 17236 10000 20
SEED 50910 62 3

exclusion of constant pixels, the correlation matrix 𝐶 between pixels is
computed to estimate their relationships. Therefore, two pixels (nodes)
𝑖, 𝑗 are considered connected if |𝐶𝑖𝑗 | > 𝑇 where 𝑇 is a fixed threshold.
In this work, the experiments were made with a threshold value of
𝑇 = 0.5.

4.2. 20NEWS dataset

The 20NEWS dataset consists of about 20,000 text documents,
labelled using 20 classes. The original split in training set (10,167
samples after the preprocessing) and test set (7069 samples after the
preprocessing) was adopted in this work. This task can be defined
as a 20-classes classification problem. Following the preprocessing
described in [32], we considered only the 10,000 most frequently
used words, considering the bag-of-words model to represent each
document. We used word2vec [37] to represent each word as a vector.
Finally, the cosine similarity metric between words vectors was adopted
to compute the connections between words.

4.3. SEED

The SEED dataset [36] consists of EEG signals recorded from 15
subjects while they were watching video clips of about 4 min. Each
video clip was carefully chosen to induce three types of emotions,
i.e. negative, neutral and positive. For each subject, three sessions of
15 trials/video clips were collected. EEG signals were recorded in 62
channels using the ESI Neuroscan System.2 As in [38], we consider
the pre-computed differential entropy (DE) features smoothed by linear
dynamic systems (LDS). DE features are pre-computed, for each second,
in each channel, over the following five bands: delta (1–3 Hz); theta (4–
7 Hz); alpha (8–13 Hz); beta (14–30 Hz); gamma (31–50 Hz). Samples
were modelled as graphs considering each EEG channel as a node, and
the DE features related to the 5 bands as feature vector of each node.
The adjacency matrix 𝐴 ∈ R𝑛×𝑛 was modelled considering the EEG
channels disposition on the scalp, where 𝑛 represents the number of
channels in EEG signals. In particular, each entry 𝐴𝑖𝑗 represents the
physical distance between the sensor 𝑖 and the sensor 𝑗.

4.4. Experimental setup

The proposal was validated by analysing its impact on architectures
composed of two layers followed by a linear classifier, as already
proposed in literature [4,32,38]. For each architecture, we evaluated
the models as the number of convolutional filters changes, as it is
shown in the relative configuration (Table 2). For the experiments
on the MNIST and 20NEWS datasets, model performance estimation
was performed using an holdout method since both of the datasets
report a predefined train/test split. Moreover, model performances
were evaluated based on the performances averaged over 10 repeti-
tions, where, for each repetition, models’ parameters were reinitialized
following the same initialization criterion. For the experiments on the
SEED dataset, model performance estimation was estimated focusing
on the Subject-Independent Classification: still following the experimental
protocol of [38], we adopted the leave-one-subject-out cross-validation,
in which 14 subjects are considered as training set, and the remaining

2 https://compumedicsneuroscan.com/

http://qwone.com/~jason/20Newsgroups/
https://compumedicsneuroscan.com/
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Table 2
Configurations used for the experiments on MNIST, 20NEWS, and SEED datasets. We denote with 𝐾 the adopted filter sizes, with 𝐶𝑡 a ConvGNN
layer with 𝑡 filters, with 𝐷𝐶𝑡 a DGCF with 𝑡 filters, and with 𝐹𝐶𝑛 a fully connected layer with 𝑛 hidden units.

Conv. Layer architecture FGN Architecture 𝐾 Optimizer Learning Rate

MNIST

DGCF (ours) 𝐷𝐶𝑡 − 𝐶20, 𝑡 ∈ {2, 4, 8, 16} 𝐹𝐶200 25 Adam 10−3

ConvGNN [4] 𝐶𝑡 − 𝐶20, 𝑡 ∈ {2, 4, 8, 16} – 25 Adam Adam

20NEWS

DGCF (ours) 𝐷𝐶𝑡 − 𝐹𝐶100, 𝑡 ∈ {2, 4, 8, 16} 𝐹𝐶100 − 𝐹𝐶100 25 Adam 10−3

ConvGNN [4] 𝐶𝑡 − 𝐹𝐶100, 𝑡 ∈ {2, 4, 8, 16} – 25 Adam 10−3

SEED

DGCF (ours) 𝐷𝐶𝑡 − 𝐴𝑣𝑔𝑃𝑜𝑜𝑙, 𝑡 ∈ {2, 4, 8, 16, 32} 𝐹𝐶100 − 𝐹𝐶100 − 𝐹𝐶100 9 Adam 10−3

ConvGNN [4] 𝐶𝑡 − 𝐴𝑣𝑔𝑃𝑜𝑜𝑙, 𝑡 ∈ {2, 4, 8, 16, 32} – 9 Adam 10−3
b
w
I
f
a
t
r

i
i
m
o
t
c
o
t
f
i

5

m
v
v
a
r

i
h

Fig. 3. Architecture adopted for experiments with MNIST dataset. See text and Table 2
for further details.

subject as test set. This was repeated for each possible configuration.
The performance is evaluated averaging the test accuracies using one
session of data. Moreover, for each experiment, during the training
stage, 30% of the training set was extracted following a stratified sam-
pling procedure. Each experiment was run considering early stopping as
convergence criterion. Significance differences about the comparisons
between the models were tested using hypothesis testing. For each re-
sult – expressed by the average and the standard deviation – a normality
test was firstly made using the Shapiro–Wilk test. Then, according to
the results of the normality tests, hypothesis tests were made using
the Student’s t-test, in the case of normally distributed data, or Mann–
Whitney U-test, otherwise. For each test, a significance level of 𝛼 = 0.05
was considered. Hypothesis tests were formulated as follows:

𝐻0 ∶ 𝜇𝐶𝑜𝑛𝑣𝐺𝑁𝑁 ≥ 𝜇𝐷𝐺𝐶𝐹

𝐻1 ∶ 𝜇𝐶𝑜𝑛𝑣𝐺𝑁𝑁 < 𝜇𝐷𝐺𝐶𝐹

Full-connected neural networks as filter-generating network (FGN) archi-
tectures were adopted, whose number of nodes and layers was tuned
using a Bayesian optimization [39] in each experiment.

We ran the experimental assessment on a workstation with an
NVIDIA 3080 GPU. The software was implemented in Python 3.7
adopting PyTorch 1.13 library. The code is freely available on GitHub.3

5. Results

In each experiment, the adopted models were two layers architec-
tures [4,32,38] 𝐿1 − 𝐿2, 𝐿𝑖 ∈ {𝐶𝑡,𝐷𝐶𝑡, 𝐹𝐶𝑛, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙} equipped with
ReLU activation functions followed by a final linear classifier, where
𝐶𝑡, 𝐷𝐶𝑡 referred to a 𝑡 filters static ConvGNN layer and a 𝑡 filters
DGCF respectively, 𝐹𝐶𝑛 referred to a fully connected layer having 𝑛
hidden units, and 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 referred to a global pooling layer. As FGNs,
we adopted one, two, and three layers architectures equipped with
ReLU for MNIST, 20 NEWS, and SEED experiments respectively. All the
details about the architectures are reported in Table 2.

3 https://github.com/andrea-pollastro/DGCF
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Table 3
Hypothesis tests results for the MNIST dataset.

Hypothesis tests

Configuration 𝐶2 − 𝐶20 𝐶4 − 𝐶20 𝐶8 − 𝐶20 𝐶16 − 𝐶20 𝐶20 − 𝐶20

𝑝-value 0.0152 0.0146 0.0066 0.0322 0.0420

Table 4
Hypothesis tests results for the 20NEWS dataset.

Hypothesis tests

Configuration 𝐶2 − 𝐶20 𝐶4 − 𝐶20 𝐶8 − 𝐶20 𝐶16 − 𝐶20

𝑝-value 0.0015 0.0010 0.0010 < 0.0001

5.1. MNIST

Using the MNIST dataset, the configuration 𝐶20 − 𝐶20 proposed
y [4] is used. In the experimental setup of this work, a comparison
as made substituting the first convolutional layer with a dynamic one.

n our analysis, we varied the number of convolutional filters of the
irst layer in order to evaluate the effectiveness in using a dynamical
pproach, in both the static and dynamic models. The adopted architec-
ure and parameters configurations are reported in Fig. 5 and in Table 2
espectively.

As it is shown in Fig. 4(a), the introduction of the dynamical layer
ncreases the average performance of the architecture. Moreover, its
nteresting to notice that our dynamic approach leads to good perfor-
ances also with simpler architectures: results comparable with the

nes reported in [4] are achieved using a fewer number of convolu-
ional filters. It is also important to point out that using our approach,
onvergence during the training stage was reached in a fewer number
f epochs, as it is shown in Fig. 4(b). In Table 3 the results related
o the hypothesis tests are reported: the null hypothesis was rejected
or each configuration (𝑝 < 0.05), confirming the significance of the
mprovement given by our approach.

.2. 20NEWS

On these data, we referred to the architectures presented in [32],
ade by 𝐶16 − 𝐹𝐶100. Also in this case, the comparisons were made

arying the number of convolutional filters, and considering the con-
olutional layer both as static and dynamic. The adopted architecture
nd parameters configurations are reported in Fig. 3 and in Table 2
espectively.

As it is shown in Fig. 6(a), the introduction of the dynamical layer
ncreases the average performances. In Fig. 6(b) we can observe again
ow our method has a faster convergence than the static one. In Table 4

https://github.com/andrea-pollastro/DGCF
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Fig. 4. Results of the experiment on MNIST dataset: (a) mean and standard deviation band of accuracy per configuration; (b) average of the training epochs to convergence per
configuration.
Fig. 5. Architecture adopted for experiments with 20NEWS dataset. See text and
Table 2 for further details.

the results related to the hypothesis tests are reported: in each case,
the null hypothesis was rejected confirming the significance of the
improvement given by our method.

5.3. SEED

The base architecture considered for this experiment was similar
to the RGNN model proposed by [38], i.e. 𝐶𝑡 − 𝑃𝑜𝑜𝑙𝑖𝑛𝑔. Differently
from [38], in this series of experiment domain adaptation [40] tech-
niques were not adopted. Moreover, we chose the global mean pooling
6

Table 5
Hypothesis tests results for the SEED dataset.

Hypothesis tests

Configuration 𝐶2 𝐶4 𝐶8 𝐶16 𝐶32

𝑝-value 0.3118 0.0138 < 0.0001 0.0088 0.0007

across all the nodes on the graph instead of sum pooling, since it gave
better results in firsts exploratory experiments. Also in this case, com-
parisons were made considering the convolutional layer both as static
and dynamic, and varying the number of convolutional filters. Finally,
the weight decay parameter was introduced to decrease the models’
complexity. The adopted architecture and parameters configurations
are reported in Fig. 7 and in Table 2.

As it is shown in Fig. 8(a), the introduction of the dynamical
layer strongly increases the average performance of the architecture.
In Fig. 8(b) it is enhanced the quicker convergence of our method than
the static one. In Table 5 the results related to the hypothesis tests
are reported: except for the case 𝐶2, the null hypothesis was rejected
for each configuration, confirming that the improvement given by our
method is significant.

It is interesting to notice what is shown in Table 6: referring to what
is presented in [38], our method overcomes some domain adaptation

techniques, such as TCA.
Fig. 6. Results of the experiment on 20NEWS dataset: (a) mean and standard deviation band of accuracy per configuration; (b) average of the training epochs to convergence per
configuration.
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Table 6
Subject-independent best average classification accuracy (mean ± std) on SEED dataset using different methods, as reported in [38]. In the
last row, the best average accuracy of the proposed model was reported. Methods highlighted with * involve the use of Domain Adaptation
techniques.
SEED

Model SVM TCA* SA* T-SVM DGCNN DAN* BiDANN-S* BiHDM* (SOTA) RGNN* DGCF (ours)

Mean Accuracy
±
std.

56.73
±
16.29

63.64
±
14.88

69.00
±
10.89

72.53
±
14.00

79.95
±
09.02

83.81
±
08.56

84.14
±
06.87

85.40
±
07.53

85.30
±
06.72

81.76
±
05.38
Fig. 7. Architecture adopted for experiments with SEED dataset. See text and Table 2
for further details.

6. Model Analysis on SEED dataset

In this section we propose a visual analysis of the training stages of
both the dynamic and static approach on the SEED dataset experiment.
The main aim of this analysis consists in inspecting differences in filter
generation according to the input. In particular, assuming that common
patterns are shared among equally-labelled samples, we expect that
filters generated for samples of the same class are similar to each other,
while they are different for samples belonging to different classes. We
chose the SEED dataset for this analysis since it has the lowest number
of classes among the datasets used for the experimental assessment.
This analysis was made considering a random subject as test set, and
the remaining as training set. Configurations 𝐶2−𝐴𝑣𝑔𝑃𝑜𝑜𝑙, for the static
model, and 𝐷𝐶2 − 𝐴𝑣𝑔𝑃𝑜𝑜𝑙, for the dynamic model, were considered.
The remaining details about the experimental setup follow the Table 2.
7

The learning processes are graphically described by weights distri-
bution after each training epoch. In Fig. 9, the training of both the
static filters are shown. In Fig. 10, the training stage of both of the
dynamic filters, produced by the filter-generating network, are shown
for each label (negative, neutral and positive, from left to right). Since
the filters are generated uniquely for each sample, in order to have
a fair evaluation of how they are distributed for each epoch, filters
related to correctly classified samples in each epoch are collected and
averaged.

From Fig. 10, we can observe how the filter generation process
is different for each class: assuming that equally-labelled data should
share common patterns, Fig. 10 shows how different ranges of values
are covered on the final parameters’ configuration for input belonging
to different classes, involving that specific filters are obtained according
to its features. The direct consequence of this aspect is that feature
extraction of the main architecture is enhanced by intrinsic patterns
hidden in the sample itself. In facts, we can see that, almost in all cases,
satisfying results are achieved using a low number of filters. Moreover,
comparing Figs. 9 and 10, we can notice a difference in the ranges
of values covered by the last configurations of both the models: static
filters have weights included in the range [−1, 1.5], while the dynamic
ones have weights overall included in the range [−0.6, 0.5]. This aspect
involves that the use of the dynamic layer could lead to less complex
models, thus avoiding over-fitting/under-fitting [12].

A graphical representation of the filters related to the final configu-
ration of each model was made using heatmaps in Fig. 11, for the static
model, and Fig. 12, for the dynamic one. Considered a generic filter
𝑊 ∈ R𝐾×𝐽 , the entry 𝑊𝑖𝑗 represents the numerical value related to the
transform of the 𝑗th feature of the 𝑖th neighbour. For the dynamic case,
standard deviations of the weights are represented into the heatmap
cells since, as we described above, for this analysis filters were averaged

over a selected group of samples.
Fig. 8. Results of the experiment on SEED dataset: (a) mean and standard deviation band of accuracy per configuration; (b) average of the training epochs to convergence per
configuration.
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Fig. 9. Ridgeplot weights representation of a static convolutional layer with two
filters during the learning process on the SEED dataset. Histograms related to the
weights assumed by the first (a) and the second (b) filter are reported for each epoch.
Histograms are overlapped from the first (background) to the last epoch (foreground).

In Fig. 12 we can clearly confirm what we observed in Fig. 10:
the filter-generating network generates different filters according to
the sample label. It is interesting to notice how different features are
enhanced in the label related filters: for example, for the positive label,
both of the first and the second filter enhance, with high values in
absolute value, features 3 and 4 (corresponding to beta and gamma
bands), for each neighbour; differently, instead, filters related to the
negative label enhances feature 1, corresponding to the theta band.
8

7. Discussion

The results presented in this study highlight the advantages of
using the proposed dynamic approach for GNN. Specifically, introduc-
ing DGCF to the architecture increases the average performance with
respect to standard convGNN. This improvement is achieved even with
simpler architectures requiring fewer convolutional filters. Comparing
the results of this study to those reported in [4], the proposed dynamic
approach with node-specific filters performs comparably with fewer
convolutional filters. This suggests that the dynamic layer can learn
informative representations from the graph structure and build suitable
convolutional filters. One significant advantage of the proposed dy-
namic approach is that convergence during the training stage is reached
in fewer epochs. This saves computational resources and suggests that
the proposed method is better suited for more complex tasks requiring
longer training times. Our proposed method performs better on the
SEED dataset than many of the compared methods. In particular, our
approach outperforms two domain adaptation strategies, that are TCA
and SA (see Table 6 and [38]), but performs slightly worse than meth-
ods based on adversarial methods. However, note that these approaches
attempt to alleviate the data shift problem using data coming from
the test set. By contrast, our method reaches interesting performances
tuning its behaviour with respect to the specific domain and without
needing further data.

Finally, the study’s results confirm the significance of the improve-
ment given by the proposed approach, as evidenced by the rejection
of the null hypothesis for almost all the tested configurations. Addi-
tionally, the visual inspection of the learned models reveals that, in
nearly all cases, class-specific filters are learned by the model, allowing
satisfactory results with fewer filters.
Fig. 10. Ridgeplot weights representation of a DGCF with two filters during the learning process on the SEED dataset. Histograms related to the weights assumed by the first
(a) and the second (b) filter are reported for each epoch. Histograms are overlapped from the first (background) to the last epoch (foreground). For each filter, training process
related to the negative (left), neutral (centre) and positive (right) labels are represented. The histogram in foreground is related to the final filter configuration.
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Fig. 11. Heatmap weights representations of the first (a) and the second (b) filter of
a static convolutional layer at the end of the learning process on the SEED dataset.
Filters are represented by matrices 𝑊 ∈ R9×5, where 9 is the kernel size and 5 is the
number of input features, corresponding to the five EEG bands (see text for further
details).

These results suggest that the proposed dynamic approach has
important implications for improving the performance of convGNNs,
9

particularly for more complex tasks.
8. Conclusion

In this work, a dynamic method to perform spatial convolution on
graph-structured data is proposed. More in detail, combining the idea of
having dynamically changeable behaviours in ANNs and convolutional
graph neural networks, this work aimed to present a graph convo-
lutional layer capable of performing convolution using node-specific
filters to achieve an input-specific filtering operation. We altered the
behaviour of a convolutional layer in a dynamic fashion using a filter-
generating network. In this way, the proposed graph convolutional
layer learns and applies input-specific filters, customizing the filtering
operation according to its input graph. We ran a series of experiments
to assess the improvements in using a dynamic approach to generate
convolutional filters. It empirically emerged that our proposed strat-
egy leads to better performances than those achieved using the static
convolution on graphs. As we observed from Figs. 10 and 12, FGNs
learn to produce class-specific filters, making the convolution operation
input-specific actually. Furthermore, convergence is reached in fewer
epochs, reducing training time in a significant matter. Finally, using
regularization techniques, the use of an external module leads to filters
having smaller weights than the static filters, resulting in an overall
lower complexity of the main architecture. In conclusion, this study
showed that the proposed approach has numerous advantages over
standard convGNNs. By introducing the proposed dynamical layer to
the architecture, the average performance of the model can increase,
even with simpler architectures requiring fewer convolutional filters.
The proposed dynamic layer can learn informative representations from
the graph structure and build suitable convolutional filters, leading
Fig. 12. Heatmap weights representations of the first (a) and the second (b) filter of DGCF at the end of the learning process on the SEED dataset, averaged over the correctly
classified samples. For each filter, averages related to the negative (left), neutral (centre), and positive (right) labels are shown. Filters are represented by matrices 𝑊 ∈ R9×5,
where 9 is the kernel size and 5 is the number of input features, corresponding to the five EEG bands (see text for further details).
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to comparable or even better results with fewer parameters to learn
compared to other methods. One significant advantage is that the
proposed approach reaches convergence during the training stage in
fewer epochs, making it better suited for more complex tasks. More-
over, the proposed approach outperforms standard strategies, including
some Domain Adaptation strategies, without requiring data from the
target domain during the learning stage. The improvement given by the
proposed approach is highlighted by the rejection of the null hypothesis
for almost all the tested configurations.These aspects were evident in
the emotion recognition from EEG signals, which is a complex task to
achieve. In future work, we would like to introduce and analyse the use
of a dynamic local filtering layer having local filters generated for each
neighbourhood, as proposed by [11] in the image domain. Currently,
since the filter-generating network takes as input the entire graph, our
strategy is constrained to data having a fixed graph topology. Using a
local dynamic convolution, we could overcome this limit by extending
this layer’s functionality to data with non-fixed graphs topologies.
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Artificial Intelligence methods, and eXplainable Artificial Intelligence (XAI) approaches
for explaining the AI system’s decisions.
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