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A B S T R A C T

Background: In computational neuroscience, performance measures are essential for quantitatively assessing
the predictive power of neuron models, while similarity measures are used to estimate the level of synchrony
between two or more spike trains. Most of the measures proposed in the literature require setting an
appropriate time-scale and often neglect silent periods.
New method: Four time-scale adaptive performance and similarity measures are proposed and implemented
in the STSimM (Spike Trains Similarity Measures) Python tool. These measures are designed to accurately
capture both the precise timing of individual spikes and shared periods of inactivity among spike trains.
Results: The proposed ST-measures demonstrate enhanced sensitivity over Spike-contrast and SPIKE-distance in
detecting spike train similarity, aligning closely with SPIKE-synchronization. Correlations among all similarity
measures were observed in Poisson datasets, whereas in vivo-like synaptic stimulations showed correlations
only between ST-measures and SPIKE-synchronization.
Comparison of existing method: The STSimM measures are compared with SPIKE-distance, SPIKE-
synchronization and Spike-contrast using four spike train datasets with varying similarity levels.
Conclusion: ST-measures appear more suitable for detecting both the precise timing of single spikes and shared
periods of inactivity among spike trains compared to those considered in this work. Their flexibility originates
from two primary factors: firstly, the inclusion of four key measures — ST-Accuracy, ST-Precision, ST-Recall,
ST-Fscore — capable of discerning similarity levels across neuronal activity, whether interleaved with silent
periods or solely focusing on spike timing accuracy; secondly, the integration of three model parameters that
govern both precise spike detection and the weighting of silent periods.
1. Introduction

Computational models of brain regions provide a fundamental tool
for investigating the dynamics of neuronal networks and the emer-
gence of cognitive functions. However, due to technical limitations
of current supercomputer systems, research has focused on efficient,
simplified spiking neuron models with quantitative predictive power
(see Marasco et al., 2023, 2024b,a and references therein). In these
models, neuronal responses to a stimulus are represented by spike trains,
discrete sequences of times indicating the occurrence of neuronal action
potentials (spikes). Within this framework, it is crucial to assess the
quality of a model’s predictions by introducing performance measures
to compare the model’s spike trains with those generated by the original
cell. Furthermore, similarity measures have also been used both to
estimate the degree of synchrony between two or more spike trains
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and to quantify the reliability of neuronal responses upon repeated
presentations of a stimulus. Several different approaches are reported
in literature to quantify the similarity between two or more spike trains
(see Victor and Purpura, 1996; van Rossum, 2001; Kreuz et al., 2011,
2013, 2015; Satuvuori et al., 2017; Cutts and Eglen, 2014). However, in
most cases, similarity measures overlook the significance of detecting
both the precise timing of single spikes and shared periods of inactivity
among spike trains (Lyttle and Fellous, 2011). The likely reason for
this limitation is that a single (parameter-free) similarity measure may
not be capable of accounting for all the features of any spike train.
To tackle this issue, we propose three different time-scale adaptive
performance and similarity measures based on the results of the con-
fusion matrix: ST-Accuracy, ST-Precision, ST-Recall, and additionally
ST-Fscore. While these measures are conventional, their novelty lies
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 data mining, AI training, and similar technologies. 
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Fig. 1. Logo of the STSimM tool.

in the mathematical approach used to determine the elements of the
confusion matrix, i.e., TP (true positive), FP (false positive), TN (true
negative), and FN (false negative). The ST-Accuracy measure evaluates
the performance of a model or the similarity between two or more spike
trains, considering both spiking and silent periods. In contrast, all other
ST-measures do not account for silent periods except for mismatched
spike events within these periods (FP). The proposed measures are
designed to be bounded and time-scale adaptive; however, three free
parameters allow for controlling both sensitivity to precise spike timing
and the occurrence of silent periods. These measures are implemented
in the STSimM tool (logo shown in Fig. 1), written in Python, and
are compared to established synchrony measures Spike-contrast (Ciba
et al., 2018), SPIKE-distance, SPIKE-synchronization, and their adaptive
counterparts (Kreuz et al., 2011, 2013, 2015; Satuvuori et al., 2017).

The paper is structured as follows. A brief description of SPIKE-
distance, SPIKE-synchronization, and Spike-contrast measures is reported
in Section 2.1. Section 2.2 presents the mathematical description of the
performance measures of a model and the similarity measures of two
spike trains, along with simulations exploring the features of these mea-
sures. Implementation details and an overview of the four spike train
datasets used for numerical comparison with these similarity measures
are provided in Sections 2.3–2.4. In Section 3, we numerically compare
our performance and similarity measures with the synchrony measures
SPIKE-distance, SPIKE-synchronization, and Spike-contrast on four train
datasets. Finally, Section 4 contains the discussion and concluding
remarks.

2. Material and methods

2.1. SPIKE-distance, SPIKE-synchronization, and Spike-contrast measures

In this section, we provide a brief overview of the similarity mea-
sures SPIKE-distance, SPIKE-synchronization, and Spike-contrast. For a
detailed derivation of these measures, as well as their mathematical
properties, the reader is referred to Kreuz et al. (2011, 2013, 2015),
Satuvuori et al. (2017), Ciba et al. (2018) and Mulansky et al. (2015).

To quantify the degree of (dis)similarity and synchronization of
two (or more) spike trains two parameter-free measures have been
introduced in Kreuz et al. (2011, 2013, 2015), namely SPIKE-distance
and SPIKE-synchronization. In particular, SPIKE-distance is a measure
of dissimilarity that yield the value zero for identical spike trains,
while SPIKE-synchronization is a measure of similarity with high values
denoting similar spike trains. In SPIKE-distance, the dissimilarity profile
𝑆(𝑡) in a fixed interval [0, 𝑇 ] is calculated in two steps: first for each
spike a spike time difference is calculated and then for each time
instant the relevant spike time differences are selected, weighted, and
normalized. Then, the overall distance value 𝐷𝑆 is defined as temporal
average of the dissimilarity profile as follows

𝐷𝑆 = 1
𝑇 ∫

𝑇

0
𝑆(𝑡) 𝑑 𝑡. (1)

SPIKE-synchronization is complementary to SPIKE-distance, since it is a
measure of spike matching based on a binary coincidence criterion.
The coincidence detection uses a coincidence window, which denotes
the time lag below which two spikes from two different spike trains
are considered to be coincident. The coincidence windows are adapted
to the local spike rates, and the coincidence criterion is quantified by
means of a coincidence indicator for each individual spike of the two
spike trains, assigning either a one or a zero to each spike depending on
whether it is part of a coincidence or not. Then, to obtain one combined
2 
similarity profile, the authors pool the spikes of the two spike trains as
well as their coincidence indicators by introducing one overall spike
index 𝑘. This yields one unified set of coincidence indicators 𝐶(𝑡𝑘), in
which each coincidence leads to a pair of consecutive ones. Finally,
SPIKE-synchronization is defined as average value of this profile

𝑆𝐶 = 1
𝑀

𝑀
∑

𝑘=1
𝐶(𝑡𝑘), (2)

where 𝑀 denotes the total number of spikes in the pooled spike train.
In summary, SPIKE-synchronization quantifies similarity instead of

difference as SPIKE-distance does. However, SPIKE-distance can be con-
verted from a measure of distance into a measure of similarity by
considering 1 −𝐷𝑆 . In Satuvuori et al. (2017), these measures have been
adapted for data containing multiple timescales by adding a notion
of the relative importance of local differences compared to the global
timescales. These generalizations, called A-SPIKE-distance and A-SPIKE-
synchronization, are built on a minimum relevant time scale (MRTS)
which is implemented via the threshold parameter  . These generalized
measures fall back on the original definitions when  = 0.

In the following, we will compare the proposed measures imple-
mented in STSimM Python tool with the similarity measures 1 − 𝐷𝑆
and 𝑆𝐶 defined by Eqs. (1)–(2) and corresponding to SPIKE-distance
and SPIKE-synchronization, respectively, as well as with their adaptive
counterparts.

In Ciba et al. (2018) a time-scale independent spike train synchrony
measure called Spike-contrast is proposed. The synchrony measure 𝑆
over a signal length 𝑇 is defined as the maximum of synchrony function
𝑠(𝛥) over different bin sizes 𝛥

𝑆 = max
𝛥

𝑠(𝛥), 𝛥 ∈ [𝛥𝑚𝑖𝑛, 𝛥𝑚𝑎𝑥], (3)

where 𝛥𝑚𝑖𝑛 = max(ISImin, 𝐿), 𝛥𝑚𝑎𝑥 = 𝑇 ∕2, with ISImin being the minimum
value of the ISIs in the two spike trains and 𝐿 a suitable constant value.
If 𝐿 is set to zero, the measure 𝑆 is adaptive to the data.

There are alternative approaches that address the challenge of ana-
lyzing data across multiple timescales. For instance, Lyttle and Fellous
(2011) introduced a measure specifically designed to evaluate the
similarity of spike trains, with a particular focus on detecting bursts and
common silent periods. This approach requires the adjustment of two
timescale parameters and three additional factors: the minimum dura-
tion of silent periods, the duration of burst ISIs, the minimum number
of spikes in a burst, a scaling factor to weigh the importance of bursts
relative to single spikes, and another factor to balance the detection
of bursts and silent periods. Although this extensive parametrization
provides the experimenter with a powerful and flexible analytical tool
and greater control over the analysis, it can pose challenges, especially
when dealing with high-dimensional data. In this work, we will not
compare our measures with those reported in Lyttle and Fellous (2011)
solely because the numerical code associated with this approach is not
available.

2.2. Mathematical framework

In our context, neuronal responses to a stimulus are represented by
a spike train, a discrete sequence of times indicating the occurrence of
neuronal action potentials (spikes). In the following, we introduce a set
of measures that quantify the degree of similarity between two or more
spike trains. These performance measures were previously used to as-
sess the quality of predictions of the A-GLIF (Adaptive generalized leaky
integrate-and-fire) model in reproducing spike trains in response to a
large set of synaptic stimulations within a given time interval (Marasco
et al., 2024b). However, as will be shown below, they can be extended
to quantify both the similarity and synchronization of two or more
spike trains through a symmetrization procedure.

2.2.1. Performance measures of predictive capability of a neuronal model
We will begin by describing the performance measures employed to

accurately identify the correspondence of spike times and silent periods
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between the experimental and model spike trains. Let

Xexp =
{

𝑡1,… , 𝑡𝑁
}

, Xmod =
{

𝑡1,… , 𝑡𝐿
}

, (4)

be the spike trains generated by the cell and predicted by a (spiking
neuron) model, respectively.

To verify whether a model correctly identifies the presence (or
absence) of a spike within a given time interval [𝑡0, 𝑇 ], we resort to
the following performance measures between the spike trains Xexp and
Xmod

𝑚𝐴(Xexp,Xmod) = TP + TN
TP + FP + TN + FN , (ST − Accur acy )

𝑚𝑃 (Xexp,Xmod) = TP
TP + FP , (ST − Pr ecision)

𝑚R(Xexp,Xmod) = TP
TP + FN , (ST − Recall)

𝑚F(Xexp,Xmod) = 2TP
2TP + FP + FN , (ST − Fscor e)

(5)

where TP (True Positives) is the number of spikes from the experi-
mental trace that are also found in the model; TN (True Negatives) is
the number of intervals in which the neuron does not fire a spike in
both the experimental trace and the model; FP (False Positives) is the
number of mismatched spikes in the model; FN (False Negatives) is the
number of spikes in the experimental trace that are not matched in the
model. All the quantities in (5) represent probability measures within
a given time interval; therefore they are bounded and their values
may depend on the number of events occurring during simulations of
different lengths. The ST-Accuracy defines how accurately the model
reproduces both spiking and silent periods in an experimental trace. A
value of 1 indicates an ideal scenario of a perfect correspondence of
spike times and pause between the cell and the model. Furthermore,
all the other performance measures (5) do not consider silent periods,
except for mismatched spike events within these periods (FP). The ST-
Precision represents the percentage of relevant spike times (TP) among
all the retrieved spike times (TP+FP), whereas ST-Recall is the fraction
of correct detections (TP) over all those generated by the cell (TP+FN).
Finally, the ST-Fscore is the harmonic mean of the ST-Precision and
ST-Recall measures. Similarly to other measures, the F-score also takes
value between 0 and 1, where 1 indicates the optimal scenario in which
neither false positives nor false negatives are detected.

Let 𝑁 be the number of spike in the recorded experimental trace
in the time window [𝑡0, 𝑇 ]. For any spike in the experimental trace at
time 𝑡𝑖, TP, FP, and FN are calculated by exploring the behavior of the
model in the following interval (see gray regions in Figs. 2–4)

𝐼(𝑡𝑖) =
[

𝑡𝑖 − 𝜔(𝑡𝑖 − 𝑡𝑖−1), 𝑡𝑖 + 𝜔(𝑡𝑖+1 − 𝑡𝑖)
]

, 𝑖 = 1,… , 𝑁 (6)

where 𝑡𝑁+1 = 𝑇 and 0 < 𝜔 ≤ 0.5 to avoid overlaps between consecutive
intervals (6), in such a way that

TP =
{

1 if there is at least 1 spike in the model,
0 otherwise,

(7)

FP =
{

𝑛 − 1 if there are 𝑛 > 1 spikes in the model,
0 otherwise,

(8)

FN =
{

1 if there are no spikes in the model,
0 otherwise.

(9)

We remark that, in contrast with the conventional way to calculate
these quantities, here we are using a variable interval (6), which is
adapted to follow the instantaneous firing behavior of the cell that can
be characterized by periods of intense or moderate activity, eventu-
ally interleaved with silent periods. Consequently, intervals between
consecutive spikes, i.e., inter-spike intervals (ISIs), can vary greatly in
duration, being very short, moderate, or long. To accommodate long
ISIs, the maximum amplitude 𝐴𝑖 = 𝜔(𝑡𝑖+1 − 𝑡𝑖−1) of any interval (6) was
set to 2𝛬. In detail, when 𝜔(𝑡𝑖 − 𝑡𝑖−1) and/or 𝜔(𝑡𝑖+1 − 𝑡𝑖) are greater than
𝛬, we modify the intervals (6) as follows (see Fig. 2)

[ ]
𝐼(𝑡𝑖) = 𝑡𝑖 − 𝜑𝑖, 𝑡𝑖 + 𝜑𝑖+1 , 𝑖 = 1,… , 𝑁 (10)

3 
Fig. 2. Determination of the intervals 𝐼(𝑡𝑖) and 𝐼(𝑡𝑖). (top) If 𝜔(𝑡𝑖 − 𝑡𝑖−1) > 𝛬, the
interval 𝐼(𝑡𝑖) is set according to (10) where 𝜑𝑖 = 𝛬. (bottom) For 𝜔(𝑡𝑖 − 𝑡𝑖−1) < 𝛬, the
interval 𝐼(𝑡𝑖) follows (6). Blue vertical bars represent spike times; gray and light-blue
regions represent the intervals 𝐼(𝑡𝑖) and 𝐼(𝑡𝑖), respectively.

where

𝜑𝑖 =

{

𝜔(𝑡𝑖 − 𝑡𝑖−1), if 𝜔(𝑡𝑖 − 𝑡𝑖−1) ≤ 𝛬,
𝛬, otherwise,

(11)

and, according to the neuroscience literature, 𝛬 could range from 10 ms
to 1 s (see Cutts and Eglen, 2014).

To calculate TN and any other FP, we consider the following in-
tervals where there is no activity in the cell (see light blue regions in
Figs. 2–4)
𝐼(𝑡0) =

[

𝑡0, 𝑡1 − 𝜔(𝑡1 − 𝑡0)
]

,

𝐼(𝑡𝑖) =
[

𝑡𝑖 + 𝜔(𝑡𝑖+1 − 𝑡𝑖), 𝑡𝑖+1 − 𝜔(𝑡𝑖+1 − 𝑡𝑖)
]

, 𝑖 = 1,… , 𝑁 − 1,
𝐼(𝑡𝑁 ) = [

𝑡𝑁 + 𝜔(𝑡𝑁+1 − 𝑡𝑁 ), 𝑡𝑁+1
]

.

(12)

Owing to Eq. (11), the intervals 𝐼(𝑡𝑖) become (see light blue regions
in Fig. 2)
𝐼(𝑡0) =

[

𝑡0, 𝑡1 − 𝜑1
]

,

𝐼(𝑡𝑖) =
[

𝑡𝑖 + 𝜑𝑖+1, 𝑡𝑖+1 − 𝜑𝑖+1
]

, 𝑖 = 1,… , 𝑁 − 1,
𝐼(𝑡𝑁 ) = [

𝑡𝑁 + 𝜑𝑁+1, 𝑡𝑁+1
]

.

(13)

Finally, to evaluate the FP relative to the intervals (13) we use the
following rule

FP =
{

𝑛 if there are 𝑛 spikes in the model,
0 otherwise,

(14)

whereas TN is equal to the number 𝑆𝑖 of subintervals of 𝐼(𝑡𝑖), of
maximum amplitude 𝛬𝑖, without any spike in the model. In order not
to overestimate the number of TNs in long silent intervals, the number
𝑆𝑖 and the parameter 𝛬𝑖 are determined as follows

𝑆𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if �̃�𝑖 ≤ 2𝛬,
⌈

�̃�𝑖
2𝛬

⌉

, if 2𝛬 < �̃�𝑖 < 2𝑐 𝛬,

⌈𝑐⌉, otherwise,

𝛬𝑖 =
�̃�𝑖
𝑆𝑖

, (15)

where �̃�𝑖 is the amplitude of each interval (13), ⌈⋅⌉ denote the ceiling
function, and 𝑐 ≥ 1 is a suitable positive constant such that it results
1 ≤ 𝑆𝑖 ≤ ⌈𝑐⌉ for all 𝑖 = 0,… , 𝑁 (see light blue regions in Figs. 2 and 3).

As depicted in Fig. 3, the performance measures (5) are not sym-
metric, i.e. 𝑚𝑖(Xexp,Xmod) ≠ 𝑚𝑖(Xmod,Xexp) for 𝑖 = 𝐴, 𝑃 , 𝑅, 𝐹 . In this
context, the objective is to evaluate how accurately the model replicates
experimental data. Consequently, the experimental spike train 𝑋exp
(red bars in Fig. 3) serves as the reference, and our focus lies in
assessing the extent to which the modeled spike train 𝑋 (blue bars
mod
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Fig. 3. Illustration of the calculation procedures of the performance metrics (5). (Panels A and B, top) Raster plots representing spike times from experiments (red bars) and
the model (blue bars). Light blue and gray regions refer to intervals (6) and (12), respectively, for 𝛬 = 10 ms, 𝜔 = 0.35, and 𝑐 = 3. (Panels A and B, bottom) The spike trains were
scanned to test for mismatch of spikes or silent periods occurring within a variable time window.
in Fig. 3) faithfully reproduces both spike timings and silent intervals.
For instance, in panel A of Fig. 3 the experimental spike train exhibits
6 spikes, while the spike train generated by the model contains 8
spikes. With parameter choices 𝛬 = 10 ms, 𝜔 = 0.35, and 𝑐 = 3, it
is observed that the train 𝑋mod accurately reproduces only 5 spikes
(those within the gray intervals), while the remaining 3 (one in the
fourth gray interval and the other two within the light blue intervals)
are false positives. Regarding the silent periods, both spike trains share
all but those in which the model generates 2 false positive spikes.
Conversely, in panel B of Fig. 3, the roles of the two spike trains
are reversed, with the experimental one now containing 8 spike times
while the model generated one has only 6. With the same parameter
choices, the train 𝑋mod accurately reproduces 5 spikes (those within
the gray intervals), while the sixth one is a false positive. However, in
this case the two spike trains share all silent intervals except for the
one where the false positive occurs. The two experimental spike trains
depicted in Fig. 3 exhibit dynamics different from what is reproduced
by the model. This disparity is underscored by the varying values of
performance metrics in the two cases. For instance, in the second case,
the ST-Accuracy is higher because the model shares a greater number
of silent intervals with the experimental data (11 TN in the first case
and 15 in the second). Conversely, ST-Precision and ST-Recall assume
exchanged values in the second case compared to the first, resulting in
an unchanged value of ST-Fscore.

We note that the ST-Accuracy 𝑚A depends on all parameters 𝜔, 𝛬,
and 𝑐, whereas the other performance measures in (5) depend solely
on 𝜔 and 𝛬 (see Fig. 4). In detail, as shown in Fig. 4, we examined the
effects of varying each of the parameters 𝜔, 𝛬, and 𝑐 on performance
measures (5). The parameter 𝜔 affects the amplitude of the intervals
𝐼(𝑡𝑖) of Eq. (10) where, for each experimental spike time 𝑡𝑖, we search
for the corresponding spike time in the train generated by the model. In
particular, the amplitude of each interval 𝐼(𝑡𝑖) monotonically increases
with respect to 𝜔 (light gray intervals in panels A and B of Fig. 4). Simi-
larly, the parameter 𝛬 controls the maximum amplitude of all intervals
𝐼(𝑡𝑖) (light gray intervals in panels A and C of Fig. 4). Furthermore, the
parameter 𝑐 represents the maximum number of sub-intervals in each
silent period 𝐼(𝑡𝑖) in Eq. (13) (light blue intervals in panels A and D of
Fig. 4).

In neuroscience, timescales typically range from milliseconds to
seconds, with shorter timescales generally deemed irrelevant (Cutts and
Eglen, 2014; Marasco et al., 2024b). Appropriate timescales clearly de-
pend on the specific system being studied. In fields such as economics,
engineering, geology, and other research areas, the relevant timescales
can range from hours and days to even months and years. In these cases,
setting the appropriate values of the parameters 𝜔, 𝛬, and 𝑐 for a given
4 
dataset might not be a simple task, especially when different timescales
are relevant. To address this issue, we propose an automatic selection
of the values for these parameters (see panel E of Fig. 4). In particular,
we set 𝜔 and 𝑐 to their maximum and minimum values, respectively,
while for 𝛬 we adopt a formula analogous to that reported in Satuvuori
et al. (2017) to account for the different timescales present in the data,
i.e.

𝜔 = 0.5, 𝛬 = 1
4

√

∑𝑁
ℎ=1 |ISIℎ|

2

𝑁
, 𝑐 = 1, (16)

where 𝑁 is the total number of ISIs in the experimental spike train 𝑋exp.
The user of the STSimM tool can choose the automatic setting for

each parameter. Moreover, unlike 𝜔 and 𝑐, the parameter 𝛬 represents
a time and has the same unit of measurement as the time series
under consideration. To provide greater control over the results, when
launched with automatic parameters, the STSImM tool will also output
the value of 𝛬 determined by using Eq. (16). This allows the user
to rerun the Python tool with a more appropriate value for 𝛬 if the
method identifies a value that is not significant for the time series under
analysis.

For the spike trains shown in Fig. 4, the value of 𝛬 determined
by Eq. (16) is 9.6 ms, which is entirely acceptable for the data under
analysis. However, it is easy to show cases where the value of 𝛬
automatically determined by the STSimM tool falls completely out of
range, making it necessary to rerun the Python tool with a manually
selected, more appropriate value of 𝛬.

For instance, let

𝑋exp = {100, 3900}, 𝑋mod1 = {2200, 4500}, 𝑋mod2 = {1500, 4500}
(17)

be the spike trains generated by a cell (𝑋exp) and predicted by two
different point-neuron models (𝑋mod1, and 𝑋mod2), respectively, in the
time interval [0, 8000] ms. When we analyze the spike train pairs
(𝑋exp, 𝑋mod1) and (𝑋exp, 𝑋mod2) shown in panels A and B of Fig. 5,
respectively, the results obtained using the STSimM tool with 𝜔 = 0.35,
𝛬 = 10 ms, and 𝑐 = 3 differ significantly from those obtained with
the automatic selection of the same parameters. In these cases, the
automatic values of 𝛬, determined by using Eq. (16), are 785.2 ms
and 855.8 ms, respectively. Although for (𝑋exp, 𝑋mod1), the ST-Fscore
value for the automatic selection of the parameters is identical to that
obtained with SPIKE-synchronization and A-SPIKE-synchronization, the
two spike trains cannot be considered either similar or synchronized.
Furthermore, despite a slight improvement in the distance between the
first spike times in the two trains (𝑋 , 𝑋 ) (see Fig. 5B), unlike
exp mod2
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Fig. 4. Parameter influence on performance measure estimation. (top) Raster plots representing spike times from experiments (red bars) and the model (blue bars). (A, B)
Effects of changes in parameter 𝜔 affecting the amplitude of the intervals 𝐼(𝑡𝑖); (A, C) Effects of changes in parameter 𝛬 controlling the maximum amplitude of the intervals 𝐼(𝑡𝑖);
(A, D) Effects of changes in parameter 𝑐 determining the number of sub-intervals of 𝐼(𝑡𝑖). (A, E) Effect of automatic selection of parameters 𝜔, 𝛬, and 𝑐. All performance measures
(5) are monotonically increasing w.r.t. to each parameter 𝜔, 𝛬 and 𝑐.
the ST and Spike-contrast measures, all the other metrics show higher
values compared to the case reported in panel A, and even for SPIKE-
synchronization and A-SPIKE-synchronization, the maximum value is
reached.

These simple examples show how the automatic selection of the
parameter 𝛬, which represents the maximum half-width of each in-
terval in which two spike times are considered synchronous, can lead
to completely incorrect results. However, knowing the automatically
calculated value of 𝛬 can easily allow users to make a more appropriate
choice for the phenomenon under examination. In fact, by using 𝛬 =
10ms, the value of the ST-Fscore is always zero, clearly showing that
neither model is able to accurately reproduce the experimental spike
timings (see the middle and bottom figures in Panels A and B of Fig. 5).
5 
2.2.2. Similarity measures of two or more spike trains
As previously stated, the performance measures (5) are not sym-

metric. Furthermore, these measures are not suitable for quantifying
the reliability of neuronal responses upon repeated presentations of a
stimulus in a cell or for estimating the degree of similarity between two
or more spike trains across different cells. In fact, in this case, we need
to determine a set of measures that are invariant with respect to the or-
der in which each pair of spike trains is analyzed. Then, to quantify the
overall similarity of two (or more) spike trains, it is necessary to modify
the measures in (5) to make them symmetric. To this end, we introduce
a set of similarity measures by imposing that each of these quantities is
equal to the mean of the directed measures as reported in (5).

In detail, let X𝑖,X𝑗 be two spike trains, then we define
1
MH(X𝑖,X𝑗 ) = 2
(𝑚𝐻 (X𝑖,X𝑗 ) + 𝑚𝐻 (X𝑗 ,X𝑖)), 𝐻 = 𝐴, 𝑃 , 𝑅, 𝐹 (18)
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Fig. 5. Influence of automatic parameters selection on the similarity of spike trains. Comparison of spike trains (𝑋exp , 𝑋mod1) and (𝑋exp , 𝑋mod2) using automatic and manual
selection of the parameters 𝜔, 𝛬, and 𝑐 = 3. Panels A and B show the results for different parameter configurations, along with their respective similarity and synchronization
measures for the spike train pairs (𝑋exp , 𝑋mod1) and (𝑋exp , 𝑋mod2), respectively.
where 𝑚𝐻 is any of the measures described in (5), and 𝑀𝐻 the
corresponding symmetric counterpart.

Furthermore, to quantify the overall similarity of 𝑛 spike trains
X1,… ,X𝑛 we resort to the following straightforward extension

𝑀𝐻 (X1,… ,X𝑛) = 2
𝑛(𝑛 − 1)

𝑛−1
∑

𝑖=1

𝑛
∑

𝑗=𝑖+1
𝑀𝐻 (X𝑖,X𝑗 ), 𝐻 = 𝐴, 𝑃 , 𝑅, 𝐹 . (19)

In panels A and B of Fig. 3, the performance measures of the spike
trains (𝑋exp, 𝑋mod) and (𝑋mod, 𝑋exp) are presented, respectively. In this
scenario, the similarity measures (18) yield 𝑀𝐴 = 0.815, 𝑀𝑃 = 𝑀𝑅 =
0.729, and 𝑀𝐹 = 0.714.

Also in this case, the automatic selection of the parameters 𝜔, 𝛬, and
𝑐 follows Eq. (16), provided that 𝑁 is defined as the sum of the total
number of ISIs of the two spike trains 𝑋𝑖 and 𝑋𝑗 , for all pairs (𝑖, 𝑗).

2.3. Measures implementation

The STSimM measures are implemented in Python and can be
cloned and executed as a Python script directly from ModelDB sec-
tion of the Senselab database (https://modeldb.science/2016671). The
STSimM tool is open-source under the BSD 3-Clause license, allow-
ing the use, redistribution, and modification of both its source and
binary formats. The performance and similarity measures described
in Sections 2.2.1–2.2.2 were computed in parallel using the multipro-
cessing module in Python. Moreover, to speed up the Python code,
we optimized it using the Cython library. Since all Python code is
completely valid in Cython, we simply cythonized the Python code by
generating the associated .pyx file. This resulted in a significant reduc-
tion in computational time, as Cython compiles the code to machine-
level instructions specific to the operating system, thus eliminating the
requirement for a CPython interpreter.

The STSimM tool allows to compute both the performance measures
(5) by choosing the input parameter weight=1 and the similarity
measures (18) by setting weight=0.5 (see Fig. 6).

As shown in Fig. 6, the input parameters of the STSimM tool include:
two lists of data, train1 and train2, representing the spike trains to
be analyzed; the weight variable, which specifies the weight applied
to the first train (with the weight of the second train calculated as 1-
weight); the values of the model parameters 𝜔, 𝛬, and 𝑐; and the
6 
maximum stimulation time, max stimulation time. The start time
of the simulation is set to 0 ms. The values of the model parameters 𝜔,
𝛬, and 𝑐 can be specified by the user or set to auto to use default
values as described in Eq. (16). When lambda=auto is used, the
Python script outputs the resulting 𝛬 value for the analyzed spike
trains. When using the STSimM tool to compute performance measures
against experimental data, note that train1 must correspond to the
experimental spike train, and the weight parameter must be set to 1.
The tool outputs ST-Accuracy, ST-Precision, ST-Recall, and ST-Fscore.
If a measure cannot be calculated due to the nature of the spike train
pairs, its value is returned as None.

2.4. Test datasets

To evaluate the STSimM tool with respect to the SPIKE-distance,
SPIKE-synchronization, and Spike-contrast measures, we utilize four
spike train datasets with different similarity or synchrony levels. Specif-
ically, we employ spike train dataset obtained from in vivo-like synap-
tic stimulations (see Marasco et al., 2024b) to compare the perfor-
mance measures (5) on the A-GLIF models with those obtained using
SPIKE-distance, SPIKE-synchronization, and Spike-contrast. This spike
train dataset is available for download at the ModelDB section of the
Senselab database (https://modeldb.science/2016671). Additionally,
we assess the similarity measures (18) on three synthetic datasets
generated from Poisson spiking, bursting, and sub-bursting models as
reported in Cutts and Eglen (2014) and Ciba et al. (2018). The three
synthetic datasets are available for download at https://github.com/
biomemsLAB/Spike-Contrast/blob/master/Testdata.zip.

2.4.1. Synaptic in-vivo like stimulations
In Marasco et al. (2024b), a set of 130 synaptic stimulation currents

for a CA1 pyramidal neuron was generated using a double exponential
current (with rise and decay time constants of 0.5 ms and 20 ms,
respectively), activated by means of the spike times recorded dur-
ing open-field explorations from 10 CA3 pyramidal neurons of male
Long-Evans rats. Furthermore, to model the physiologically plausible
variability in the synaptic strength, peak synaptic currents in the range
of 50–1250 pA with a step of 100 pA were used. A representative spike
train pair of the somatic voltage in the reference CA1 pyramidal neuron
and A-GLIF models is reported in panel A of Fig. 8.

https://modeldb.science/2016671
https://modeldb.science/2016671
https://github.com/biomemsLAB/Spike-Contrast/blob/master/Testdata.zip
https://github.com/biomemsLAB/Spike-Contrast/blob/master/Testdata.zip
https://github.com/biomemsLAB/Spike-Contrast/blob/master/Testdata.zip
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Fig. 6. Flow-chart illustration of the STSimM algorithm. The input data includes (i) two spike trains, (ii) the value of weight 1, and (iii) the values of the parameters 𝜔, 𝛬,
and 𝑐. The tool provides the values of the performance measures (5) when weight=1 and the similarity measures (18) when weight=0.5.
Fig. 7. Comparison of the similarity measures. (A) Two spike trains completely desynchronized with 13 and 8 spike events, respectively; (B) As in panel A but with the second
train having 15 spikes; (C) At the top the same spike train as in panels A and B, while the second presents only 3 spike events. (D) Same as panel C but with the last spike
event of the second train shifted by about 20 ms. In all panels, the similarity measure (18) are computed by setting 𝜔 = 0.35, 𝛬 = 10 ms, and 𝑐 = 3. On the right of all panels the
similarity measure (18) are compared with those obtained by Spike-contrast, SPIKE-distance, SPIKE-synchronization, and their adaptive counterparts.
2.4.2. Poisson spike model
First, we consider two spike trains 𝑋1 and 𝑋2 generated by a Poisson

process with a spike rate 𝜆 of 1.5 spikes per second and a signal length
of 300 s as described in Cutts and Eglen (2014). Both spike trains share
a defined fraction of synchronous spikes from a Poisson process with a
rate of

𝜆𝑠 = 𝜆 (1 − 𝐹 ), (20)

where 𝐹 is a factor that ranges from 0 to 1 with a step of 0.05, defining
different levels of synchrony (see Ciba et al., 2018). Finally, for each
𝐹 , 𝑛 = 20 spike train pairs were generated. In the left plots of Fig. 9A,
two spike train pairs with high (𝐹 = 0) and low (𝐹 = 1) synchrony are
shown.

2.4.3. Poisson burst model
A set of data that replicates bursts of spikes is generated by a doubly

stochastic process. Firstly, the position of the burst is determined as for
7 
the spike times in Section 2.4.2 with a shared fraction 𝜆𝑠 of burst center,
and 𝜆 = 0.05 burst per second as in Eq. (20). Then, the number of spikes
in the burst and a position for each spike are generated (see Ciba et al.,
2018 for further details). Also in this case, for each 𝐹 , 𝑛 = 20 spike
train pairs were generated. As illustrated in Fig. 9B (left) even when
we consider a dataset with high synchrony (𝐹 = 0) the spike trains in
a single burst are not identical.

2.4.4. Poisson sub-bursts model
This dataset refers to bursts of spikes containing shorter bursts,

i.e. sub-burst. Following the procedure described in Ciba et al. (2018),
a spike train 𝑋1 containing sub-bursts made of spikes with ISIs of 0.02 s
was generated. Then, a second spike train 𝑋2 was created from 𝑋1 with
each spike subjected to a random jitter, i.e. small perturbation of the
spike times. The amount of random jitter was drawn from a uniform
distribution in the range [0 s, 0.02 s] 𝐹 . Following this procedure, when
𝐹 = 0 no jitter was applied, resulting in identical spike trains. Then,
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Fig. 8. Synaptic in-vivo like stimulations. A. (top) Reference (train 1) and A-GLIF model (train 2) raster plots generated by the synaptic stimulation SAP 7 with a peak synaptic
current of 650 pA during a 10 min stimulation; (bottom) Same as for the top but in the time interval 267–271 s. B. Comparison of the performance measures ST-Accuracy
and ST-Fscore (right) with Spike-contrast (left, top), SPIKE-distance (middle, top), SPIKE-synchronization (left, bottom), A-SPIKE-synchronization (middle, bottom) measures, for the
references and A-GLIF model traces obtained in response to 130 synaptic stimulations. White regions refer to traces where the similarity measures cannot be evaluated. C. (top)
Spike trains generated by SAP 10 with a weight of 550 pA, with a magnification for improved visualization of single burst of spikes (bottom).
for each 𝐹 , 𝑛 = 21 spike train pairs were generated. In Fig. 9C (left)
two spike train pairs with high (𝐹 = 0) and low (𝐹 = 1) synchrony are
shown.

3. Results

3.1. Rationale for the proposed method

A current limitation observed in most established spike train sim-
ilarity measures is their inability to accurately quantify the similarity
between pairs of spike trains in certain key scenarios as depicted in
Fig. 7. To this aim, we compare the similarity measures (18) with
Spike-contrast, SPIKE-distance, A-SPIKE-distance, SPIKE-synchronization,
and A-SPIKE-synchronization by using four ad hoc generated spike train
pairs. We start by analyzing the spike train pairs reported in panel A
and B of Fig. 7. In this scenario, since ST-Precision, ST-Recall, and ST-
Fscore are null in both cases, the method accurately detects that the
8 
spike train pairs are fully desynchronized. However, a low but non-
zero value for the ST-Accuracy measure in both cases highlights the
occurrence of common periods of inactivity, which may be indicative
of some inhibition being imposed in both cells. Overall, the similarity
measures in STSimM account for both fully desynchronized spike times
and the shared periods of inactivity, which may be information-rich.
On the contrary, Spike-contrast, SPIKE-distance, and A-SPIKE-distance
quantify a non-zero spike synchronization in both cases. However,
while Spike-contrast determines low values of synchrony, ranging from
0.249 in case A to 0.156 in case B, SPIKE-distance and A-SPIKE-distance
even detect a slight improvement in case B (0.575) compared to case
A (0.556). Then, both SPIKE-distance and A-SPIKE-distance measures
appear to be more sensitive to the smaller difference in the number
of spikes between the two (mostly uncorrelated) spike trains in panel
B compared to that in panel A, whereas Spike-contrast quantifies the
similarity in the opposite manner. Differently, SPIKE-synchronization



A. Marasco et al.

t
i

f
c
s
F
a
s
t
s
f
A
e
p
p
w
A

a
h
h
v
a
m
i
s

s

s

w
i
t

S

b
F
1
s
S

l
f
A

i
t
t
r
5

o

Journal of Neuroscience Methods 415 (2025) 110324 
and its adaptive variant A-SPIKE-synchronization correctly detect the
desynchronization in both spike train pairs.

The spike trains at the top of both panels C and D are identical,
whereas the spike trains at the bottom of these panels differ only in
the last spike, which is shifted by about 20 ms. In this case, the ST-
Accuracy decreases from 0.558 in case C to 0.527 in case D, while the
other measures in STSimM are lower but non-zero. Despite the shared
silent period of about 600 ms within 800 ms, the low values of the ST-
Accuracy (below 0.56) account for 10 and 11 mismatched spikes (FP)
between the two pairs of spike trains in cases C and D, respectively. Fur-
hermore, the percentage of relevant spike times detected (ST-Precision)
s 0.577 in case C and 0.410 in case D, while the fraction of correctly

detected spike times (ST-Recall) is lower in both cases (0.449 in case
C and 0.410 in case D). The lower values of the ST-Fscore measure
allow to highlight the detection of an high number of both FP and FN
(0.313 in case C and 0.250 in case D). On the other hand, in contrast
to SPIKE-distance, the similarity measures SPIKE-synchronization and its
adaptive variant, as well as Spike-contrast, appear to be insensitive to
the shift of the last spike in the second train, quantifying the level of
synchrony as 0.375 and 0.5 for both cases, respectively. Finally, SPIKE-
distance and A-SPIKE-distance, unexpectedly, exhibit a higher level of
synchrony, with values of 0.897 and 0.935 for case C, and 0.884 and
0.923 for case D, respectively.

All STSimM measures are defined in a similar manner, starting
rom the elements of the confusion matrix. However, only ST-Accuracy
an be considered sensitive to silence, as it is able to emphasize both
ilent periods (TN) and the detection of single spike times (TP, FP, and
N). Conversely, all the other measures in STSimM consider only the
ccurate detection of relevant spike times as significant. Nevertheless,
ince both silent periods and single spike events contribute equally to
he similarity between two or more spike trains, it is appropriate to con-
ider these quantities simultaneously. For the sake of simplicity, in the
ollowing sections, we streamline the analysis by focusing solely on ST-
ccuracy and ST-Fscore, as these two measures effectively capture the
ssential aspects of spike train similarity, including sensitivity to silent
eriods and accuracy in spike detection. Nevertheless, the STSimM tool
rovides the values of all ST measures in each run. For similar reasons,
e will focus exclusively on SPIKE-distance, SPIKE-synchronization, and
-SPIKE-synchronization in the subsequent sections.

Furthermore, all the proposed measures contain free parameters
(𝜔, 𝛬, 𝑐), hence allowing for enhanced control over the analysis. In fact,
n appropriate selection of these parameters on one hand allows to
ighlight some relevant features present in the data, and on the other
and allows to emphasize the silent periods over spike events or vice
ersa. However, all the ST-measures become parameter-free when the
utomatic selection is set as input. In this case, it is still advisable to
onitor the value of 𝛬 calculated by the STSimM tool to ensure that

t aligns with time measures that correctly define two spike trains as
ynchronous (see Section 2.2.1 for more details).

3.2. Comparison of the performance and similarity measures
STSimM, Spike-contrast, SPIKE-distance, SPIKE-synchronization, and A-
SPIKE-synchronization

In this section, we compare the similarity measures implemented
in the Spike-contrast, SPIKE-distance, SPIKE-synchronization, A-SPIKE-
ynchronization, and STSimM tools using the four datasets described

in Sections 2.4.1–2.4.4, which exhibit varying levels of similarity or
ynchrony.

Specifically, spike train datasets obtained from in vivo-like synap-
tic stimulations (refer to Section 2.4.1) are utilized to compare the
performance measures ST-Accuracy and ST-Fscore (see Eq. (5)) of the
A-GLIF model with those derived using Spike-contrast, SPIKE-distance,
SPIKE-synchronization, and A-SPIKE-synchronization. Furthermore, we
evaluate the similarity measures (18) on three synthetic datasets gener-
ated from Poisson spiking, bursting, and sub-bursting models described
in Sections 2.4.2–2.4.4.
 F

9 
To quantitatively assess the predictive power of a neuron model
ith respect to experimental data, it can be useful to preliminarily ver-

fy that the two sets of data are at least statistically indistinguishable,
hereby confirming that they are not completely uncorrelated (Marasco

et al., 2023, 2024b). Hence, in Marasco et al. (2024b), we preliminarily
verified statistically that the A-GLIF model was able to reproduce the
spike trains in response to each of the 130 synaptic stimulation cur-
rents (𝑝-value >0.05 for all pairwise Mann–Whitney U-test for median
difference on spike trains with at least 10 spike events). Subsequently,
we relied on the performance measures (5) to assess whether the A-
GLIF model accurately detected the occurrence (or non-occurrence) of
a spike within a specified time interval.

An example of raster plots for the reference spike train (train 1)
and the A-GLIF model (train 2), generated by synaptic stimulation
SAP 7 with a peak synaptic current of 650 pA during a 10-minute
stimulation, is shown in panel A of Fig. 8. The results obtained by
setting 𝜔 = 0.35, 𝛬 = 10 ms, 𝑐 = 3 are presented in panel B of
Fig. 8 together with those achieved using Spike-contrast, SPIKE-distance,
PIKE-synchronization, and A-SPIKE-synchronization measures.

As can be observed, the ST-Accuracy exhibits a similar range of
values to all the other similarity measures. However, its values are
significantly lower compared to those of the SPIKE-distance measures.
In detail, the ST-Accuracy ranges from 0.734 to 1 with a mean value
of 0.911 over the entire set of simulations (see Fig. 8, panel B, top
right). Furthermore, the ST-Precision had a mean value of 0.852 over all
simulations with at least one spike event, and was below 0.8 in only 28
out of 112 cases (see Supp. Fig. A.4), while ST-Recall had a mean value
of 0.788 over all simulations with at least one spike, and it was slightly
lower (<0.7) for 12 out of 112 cases (see Supp. Fig. A.4). The minimum
ST-Precision and ST-Recall values (ST-Precision=0.333, ST-Recall=0.2)
occurred in the extreme case (SAP 5, weight 150 pA) where the A-
GLIF model generated 3 spikes for an experimental trace with 5 spikes,
resulting in only 1 TP. Finally, in the simulations where the ST-Fscore
can be computed, the measure had a mean value of 0.812, with only
10 out of 112 cases having a value just below 0.7 (see Fig. 8, panel B,
ottom right). As ST-Precision and ST-Recall, the minimum value of ST-
score (ST-Fscore=0.250) occurred in the case of SAP 5 with a weight of
50 pA. In this particular case, both SPIKE-synchronization and A-SPIKE-
ynchronization take their lowest value of 0.5, while SPIKE-distance and
pike-contrast show values of 0.711 and 0.656, respectively.

Overall, the similarity measure Spike-contrast ranges from 0.4 to
0.975, with a mean value of 0.868 over all simulations with at least
two spikes in a train (see Fig. 8, panel B, top left) whereas SPIKE-
distance ranges from 0.698 to 1, with a mean value of 0.987 (see
Fig. 8, panel B, top middle). Finally, both the SPIKE-synchronization
and A-SPIKE-synchronization measures range from 0.5 to 1, with mean
values of 0.856 and 0.876, respectively (see Fig. 8, panel B, bottom
eft and middle). We note that, overall, there are no significant dif-
erences between the values detected by the SPIKE-synchronization and
-SPIKE-synchronization tools.

We emphasize that ST-Accuracy evaluates the model’s ability to
reproduce both spiking and silent periods in each experimental trace. In
contrast, all other ST-performance measures (see Eq. (5)) do not explic-
tly consider silent periods, except for mismatched spike events within
hese periods (FP). To better illustrate this distinction in the quantita-
ive assessment of the A-GLIF model, in panel C of Fig. 8, we display the
aster plots of the spike train pair generated by SAP 10 with a weight of
50 pA (marked by a square in all heat maps in panel B of Fig. 8). This

case refers to the lower value of ST-Accuracy, which is 0.734, corre-
sponding to a drastic change in the firing regime (see Figs. 10 and A2
in Marasco et al. (2024b)). Furthermore, in this particular case, our
performance measures exhibit significantly lower values compared to
Spike-contrast (0.947) and SPIKE-distance (0.996). On the contrary, both
SPIKE-synchronization and A-SPIKE-synchronization detect a lower value
f 0.661, which lies between the values of ST-Accuracy (0.734) and ST-

score (0.589). The overall comparison of the two spike trains in panel
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Fig. 9. Comparison of Spike-contrast, SPIKE-distance, SPIKE-synchronization, and A-SPIKE-synchronization with STSimM using Poisson spike (A), Poisson burst (B) and Poisson sub-burst
(C) test datasets. Left: Magnification of test datasets with high (𝐹 = 0) and low (𝐹 = 1) synchrony. Middle: Mean synchrony values (𝑆) w.r.t. 𝐹 of Spike-contrast, SPIKE-distance,
SPIKE-synchronization, A-SPIKE-synchronization and STSimM. Each data point represents the mean synchrony value 𝑆 of 𝑛 = 20 spike train pairs obtained for each synchrony level
𝐹 (𝐹 = 0, 0.05, 0.1,… , 1). Right: Same as the middle panel but with automatic parameter selection for ST-measures.
C at the top seems to confirm the perfect similarity between the spike
trains as detected by Spike-contrast and SPIKE-distance. Effectively,
during the long synaptic stimulation of 600 s, macroscopically the spike
trains seem to share both the silent periods and the ‘‘burst activities’’.
However, when we look at the magnification of a single interval in
which a ‘‘burst activity’’ seems to occur, we realize that on a scale of
5 s, what appears as a typical ‘‘burst activity’’ indeed seems to be an
interval where regular spiking activity is interleaved with some silent
periods. Then, when we change the time scale, it becomes evident that
the detection of the spike times is not correct as one would expect.
This completely justifies the low values computed by STSimM for the
ST-Precision (0.5), ST-Recall (0.717), and F-score (0.589), whereas a
higher value for the ST-Accuracy is linked to the presence of long silent
intervals. Qualitatively, it appears that the Spike-contrast and SPIKE-
distance measures are sensitive to bursts, while neglecting smaller
time scales. From this perspective, STSimM outperforms Spike-contrast
and SPIKE-distance. In contrast, SPIKE-synchronization, and A-SPIKE-
synchronization both appear to be more sensitive to small scales, and
the common value detected by these measures aligns more closely with
those obtained from the ST performance measures. Finally, we note
that for these in vivo-like synaptic stimulations, the results obtained
using the automatically determined set of parameters 𝜔, 𝛬, and 𝑐 can
lead to inaccurate results, as in these cases, due to the presence of long
silent intervals, the values of 𝛬 determined by Eq. (16) are generally too
10 
high to evaluate model performance (see Supp. Fig. A.3, left panel). In
Fig. 9, following Ciba et al. (2018), we compare the similarity measures
(18) for the three spike train datasets with different synchrony levels
determined by the factor 𝐹 , ranging from 0 (highest synchrony level)
to 1 (lowest synchrony level) with those derived from Spike-contrast,
SPIKE-distance, SPIKE-synchronization, and A-SPIKE-synchronization. On
the left of all panels in Fig. 9 we depict magnifications of typical
spike train pairs, highlighting that only for the Poisson spike and
Poisson sub-burst models with 𝐹 = 0 both spike trains were identical.
Conversely, for the Poisson burst model, only the burst center points
of both spike trains were synchronized, but not the spike times within
a burst. A statistical analysis confirms that the spike train pairs in all
three datasets are statistically distinguishable in a significant number of
cases (see Suppl. Fig. A.1). This is particularly the case for the Poisson
burst model, in which 242 out of 400 spike train pairs are statistically
distinguishable. Although in this case it may not be appropriate to
conduct an analysis to quantify the similarity levels of pairs of spike
trains, we proceed nevertheless to facilitate the comparison of STSimM
with respect to Spike-contrast, SPIKE-distance, SPIKE-synchronization,
and A-SPIKE-synchronization. For the same reasons, numerical results
on similarity measures will be provided not for individual pairs as in
the case of synaptic inputs, but as averages of the values obtained
for the 20 pairs of spike trains corresponding to each value of 𝐹 in
each of the three datasets. Consequently, comparisons between the
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measures in STSimM with respect to Spike-contrast, SPIKE-distance,
SPIKE-synchronization, and A-SPIKE-synchronization will only provide an
verage level of similarity for each value of 𝐹 in each of the three

datasets, both when 𝜔 = 0.35, 𝛬 = 10 ms, and 𝑐 = 3 (Fig. 9, middle
panels), and for the automatically determined set of these parameters
(Fig. 9, right panels).

As expected, all the similarity measures assume a value of 1 for
𝐹 = 0, and it decrease as a function of 𝐹 for 𝐹 > 0 in the Poisson spike
and Poisson sub-burst models (Fig. 9A, C), except for SPIKE-distance
and Spike-contrast, which remain almost constant in the Poisson sub-
burst model (see Fig. 9 C). Moreover, for the Poisson spike model,

hen 𝜔 = 0.35, 𝛬 = 10 ms, and 𝑐 = 3 (see Fig. 9A, middle panel),
the ST-Accuracy curve lies below the curve corresponding to the mean
similarity measure of SPIKE-distance and above all the others, but for
all the other similarity measures (18) the curves overlap and assume
he lowest values (Fig. 9A, middle panel). In this case, the similar-

ity measures ST-Precision, ST-Recall, and F-score appear to be more
sensitive to precise detection of spike times, while ST-accuracy main-
ains higher values depending on shared silent periods. Nevertheless,
ith automatic parameter selection, the ST-Accuracy curve remains
elow the SPIKE-distance curve, but it overlaps with the Spike-contrast
urve (see Fig. 9A, right panel). In this case, all similarity measures,

except for SPIKE-distance, are comparable, with the ST-Fscore curve
overlapping the A-SPIKE-synchronization curve. The higher ST-Fscore
values observed with the automatic selection of parameters 𝜔, 𝛬, and
𝑐, compared to values 𝜔 = 0.35, 𝛬 = 10 ms, and 𝑐 = 3, are attributed to
the STSimM tool selecting 𝛬 values between 200 ms and 300 ms (see
Supp. Fig. A.3), which allows for less precision in spike detection.

Furthermore, for the Poisson burst model, the similarity measures
(18), SPIKE-synchronization, and A-SPIKE-synchronization significantly
iffer from both Spike-contrast and SPIKE-distance (see Fig. 9B). In

this case, Spike-contrast and SPIKE-distance show significantly higher
average similarity values compared to all other measures, even though
or this dataset the majority of spike train pairs were statistically

distinguishable. Conversely, when 𝜔 = 0.35, 𝛬 = 10 ms, and 𝑐 = 3 our
imilarity measures ST-Precision, ST-Recall, and ST-Fscore dramatically

decrease from 0.18 to 0.01 because the spikes in all sub-bursts are
desynchronized, whereas ST-Accuracy shows a quasi-constant behavior
round a value of 0.55, as this measure is affected by silent periods. For
his dataset, SPIKE-synchronization and A-SPIKE-synchronization reached
 maximum value of 0.32 and 0.51, respectively, when 𝐹 = 0. and
ecrease w.r.t. 𝐹 , converging to 0 as 𝐹 approaches 1, since the spike
rain pairs become fully desynchronized when 𝐹 = 1. We would
mphasize that, with the automatic selection of the parameters, the sim-
larity measures (18) all decrease with respect to 𝐹 (see Fig. 9B, right

panel). Specifically, the ST-Accuracy curve lies below that of all other
ST measures and between those of A-SPIKE-synchronization and SPIKE-
synchronization. Additionally, the ST-Fscore curve exhibits behavior
imilar to A-SPIKE-synchronization, as the values of 𝛬, which represent

the maximum half-width of each interval in which two spike times are
considered synchronous, range from 1.8 to 2.8 s (see Supp. Fig. A.3).

Finally, for the Poisson sub-burst model, Spike-contrast and SPIKE-
distance maintain an almost constant value around 1 for all 𝐹 , whereas
SPIKE-synchronization and A-SPIKE-synchronization reach this value only
for 𝐹 ≤ 0.3 and 𝐹 ≤ 0.45, respectively (see Fig. 9C). Similarly, all
similarity measures (18) assume a value of 1 only for 𝐹 ≤ 0.35 and

≤ 0.5, when 𝜔 = 0.35, 𝛬 = 10 ms, and 𝑐 = 3 or when the automatic
arameter selection procedure is implemented, respectively. (Fig. 9C,

middle and right panels). Moreover, starting from 𝐹 = 0.35 (or 𝐹 = 0.5)
the behavior diverges, and the curves of the mean values of (18), SPIKE-
synchronization, and A-SPIKE-synchronization rapidly decrease. For this
dataset, all similarity measures (18), SPIKE-synchronization, and A-
PIKE-synchronization appear to be more sensitive to both the precise

detection of spike times and to shared silent periods. In this case, the
selection of parameters 𝜔, 𝛬, and 𝑐 = 3 results in markedly different
behaviors in the ST-Accuracy and ST-Fscore curves. Specifically, with
11 
𝜔 = 0.35, 𝛬 = 10 ms, and 𝑐 = 3, the ST measures exhibit lower values
compared to those obtained with automatic parameter selection. In
his configuration, ST-Accuracy aligns with the SPIKE-synchronization
urve, whereas with automatic parameter selection, it aligns with the
-SPIKE-synchronization curve. Notably, the lowest values for ST-Fscore
re associated with the parameters 𝜔 = 0.35, 𝛬 = 10 ms, and 𝑐 = 3,
ince the automatic selection yields nearly constant 𝛬 values around
31 ms for this dataset (see Supp. Fig. A.3). As a result, less precision is
equired in determining when two spikes are considered synchronous.

We emphasize that the proposed measures exhibit a strong adaptive
ature, enabling customization according to the intrinsic characteristics
f the data. Specifically, these measures offer the flexibility to adjust
o different patterns of neuronal activity, such as precise spike timing
n both regular spiking and bursting, as well as the detection of silent
eriods. This adaptability is particularly advantageous under specific
xperimental conditions, as it enhances sensitivity to subtle varia-
ions within the data. Such flexibility renders our approach especially
ffective for a wide range of neuroscientific analyses.

3.3. Statistical analysis of datasets and correlation of the similarity mea-
ures

The overall results presented in Figs. 7–9 demonstrate that STSimM
is more sensitive than Spike-contrast and SPIKE-distance in detecting the
level of similarity of spike train pairs. In fact, although both Spike-
contrast and SPIKE-distance measures are independent of time scales,
i.e., they automatically detect the time scales within spike train data,
they appear to be insensitive to small time scales when analyzing
datasets containing multiple time scales. Moreover, the results ob-
tained with the STSimM tool are overall more aligned with those of
the SPIKE-synchronization and A-SPIKE-synchronization measures, par-
ticularly in cases of highly desynchronized spike trains. However,
utomatic timescale detection can reduce synchronization precision
hen long silent intervals are present. The STSimM tool addresses this
y displaying the 𝛬 value, representing the maximum half-width of
ach interval in which two spikes are considered synchronous, allowing
sers to select a 𝛬 value better suited to their specific dataset.

Furthermore, we observe that only the spike train pairs of the
Poisson sub-burst model were statistically indistinguishable in all cases
(see Suppl. Fig. A.1, right panel for the Mann–Whitney U-test results
t the 0.05 significance level), as the majority of the 400 spike train

pairs from the Poisson spike model (353 out of 400). In contrast,
only 158 out of 400 spike train pairs from the Poisson sub-burst
model were statistically indistinguishable (see Suppl. Fig. A.1, left
and middle panels). In this last case, evaluating the level of sim-
ilarity appears to have limited significance, except to confirm the
easons for the low levels of similarity detected by STSimM, SPIKE-
ynchronization and A-SPIKE-synchronization tools. Nevertheless, when
valuating the Spearman correlation among all the similarity measure,
s in Ciba et al. (2018), we observed correlations for all datasets,

except for those obtained from in vivo-like synaptic stimulations (see
Supp. Table A.1 and Suppl. Fig. A.2). Specifically, in this case, the
T measures correlate only with SPIKE-synchronization and A-SPIKE-
synchronization. This result should not be surprising, as the spike train
pairs considered originate from in vivo-like synaptic stimulations of a
biophysically accurate neuron model, unlike Poisson spike, burst, and
sub-burst models (Marasco et al., 2024b). Consequently, their structure
is not affected by the statistical manipulation employed to generate the
oisson models.

3.4. Comparison of the computational times

To accelerate computational time and fully utilize the multiprocess-
ng module for evaluating the similarity measures in STSimM, SPIKE-
distance, Spike-contrast, SPIKE-synchronization, and A-SPIKE-
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Fig. 10. Computational speed. A. Computational time required for Spike-contrast (green squares), SPIKE-distance (cyan squares), SPIKE-synchronization (gray diamonds), A-SPIKE-
synchronization (black diamonds), and STSimM (red circles) similarity measures as a function of the average number of spikes in spike train pairs across synaptic in-vivo dataset
(left), Poisson spike (middle), Poisson sub-burst (highlighted in the black box), and Poisson burst models (right). In all cases, except for synaptic in-vivo data where performance
measures are evaluated with 𝜔 = 0.35, 𝛬 = 10 ms, and 𝑐 = 3, the computational time of the STSimM tool for the similarity measures corresponds to that of the automatic parameter
selection.
synchronization, we employed a login node with 2 CPUs of an HPC clus-
ter from the EBRAINS-Italy infrastructure (https://www.ebrains-italy.
eu). The computational efficiency of our performance and similarity
measures have been further improved through the cythonization of the
Python script. In Fig. 10, we compare the computational time per mean
spike count for Spike-contrast, SPIKE-distance, SPIKE-synchronization,
A-SPIKE-synchronization, and STSimM using the datasets described in
Section 2.4. We observe that for the Poisson spike and burst datasets,
our method is computationally more efficient than Spike-contrast , while
for the synaptic in vivo, and Poisson sub-burst datasets (with a fixed
mean spike count of 1341 across the Poisson dataset), our method
has comparable computational time. Our method generally performs
better computationally on shorter spike trains (e.g., 300 s as in the
case of Poisson spike and sub-burst models) and worse on longer spike
trains (e.g., 3600 s as in the case of Poisson burst model). Overall, the
STSimM tool is considerably less computationally efficient than SPIKE-
distance, SPIKE-synchronization, and A-SPIKE-synchronization. However,
it provides all four performance measures — ST-Accuracy, ST-Precision,
ST-Recall, and ST-Fscore — in each run.

4. Discussion

Measures to identify the similarity among spike trains are applied
in two major scenarios: to assess the quality of predictions of (spiking)
neuron models, and to estimate the degree of similarity between two
or more spike trains. In the literature, there are at least 34 correla-
tion or similarity measures (see Cutts and Eglen, 2014 for a detailed
comparison). However, most of them are sensitive to user-defined fixed
time scales, thus ignoring the different time scales typically present in
real-neuron data, ranging from regular spiking to bursting, and often
interleaved with silent periods. The most popular time scale-dependent
measures used are the Victor and Purpura (1996) and van Rossum
(2001) distances. Complementary approaches that are adaptive to time
scales and often free of parameters have been proposed (see Cutts and
Eglen, 2014; Kreuz et al., 2015; Satuvuori et al., 2017; Ciba et al.,
2018). Although the synchrony measures embedded in Spike-contrast
and SPIKE-distance are independent of time scales, they appear to over-
look the importance of accurately detecting the timing of individual
spikes (see Figs. 7C–D, 8B–C, 9B–C).

Conversely, SPIKE-synchronization and A-SPIKE-synchronization ap-
pear to be more sensitive to fully or partially desynchronized spike
trains (see Figs. 7A–B, 9B–C). However, their automatic timescale
detection can reduce synchronization precision when long silent inter-
vals are present (see Figs. 5, 9C), and generally disregards periods of
inactivity (Figs. 7A–B, 8B). In contrast, all measures of the STSimM tool,
particularly ST-Fscore, ensure precise identification of spike occurrences
12 
using the parameter 𝜔 ≤ 0.5, with a maximum shift of ±𝛬 ms that can
be defined by the user (see Figs. 2, 4, and 5). In particular, a maximum
shift of ±10 ms ensures precise identification of spike occurrences for
CA1 neuron in-vivo activities (Marasco et al., 2024b), whereas other
studies suggest detecting a spike event with a precision of less than
±5 ms (Kara et al., 2000; Reinagel and Reid, 2002).

Another important aspect of spike train analysis involves shared
inactivity or silent periods (Lyttle and Fellous, 2011), while most
similarity measures appear to overlook this aspect or even exclude it
when computing correlations (Cutts and Eglen, 2014). In particular,
Spike-contrast requires that at least one of the two spike trains contains
two or more spikes, while ST-Fscore can only be determined if at least
one of the two spike trains includes at least one spike. Conversely,
ST-Accuracy, SPIKE-distance, SPIKE-synchronization, and their adaptive
variants can always be evaluated, even when both spike trains are
empty. In our framework, the ST-Accuracy measure, besides accounting
for precise spike time detection, can identify shared silent periods of
inactivity between spike trains. To account for this characteristic, it
is sufficient to assign an appropriate value to the parameter 𝑐, which
controls the extent to which silent periods are emphasized.

Despite the computational efficiency of our performance and sim-
ilarity measures have been improved through the utilization of the
Python multiprocessing module and the cythonization of the Python
script, the STSimM tool remains significantly less computationally
efficient than SPIKE-distance, SPIKE-synchronization, and
A-SPIKE-synchronization. Nevertheless, for the Poisson spike and burst
datasets, our method exhibits superior computational performance
compared to Spike-contrast. However, for the synaptic in vivo, and
Poisson sub-burst datasets, has comparable computational time to
Spike-contrast. Moreover, STSimM tool remains computationally in-
tensive when computing measures for more than two spike trains,
indicating the potential for further optimization through parallelization
techniques.

Although we observed a high correlation between STSimM and all
other synchrony measures for most datasets, our measures appear to be
better suited for detecting both the precise timing of single spikes and
shared silent periods. Notably, for the synaptic in-vivo spike dataset,
our measures correlate only with SPIKE-synchronization and A-SPIKE-
synchronization, demonstrating a closer alignment of the STSimM tool
with these measures in accurately detecting spike times. Furthermore,
the inclusion of three key measures allows for an easy distinction
of similarity levels across neuronal activity, whether interleaved with
silent periods (ST-Accuracy) or solely focusing on spike timing accuracy
(ST-Precision, ST-Recall, and ST-Fscore). Furthermore, the integration of
three free model parameters that allow both precise spike detection
(𝜔, 𝛬) and the weighting of silent periods (𝑐) provides users with

https://www.ebrains-italy.eu
https://www.ebrains-italy.eu
https://www.ebrains-italy.eu
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Fig. A.1. Statistical indistinguishability of spike train datasets. Graphical representation of the p-values from the Mann–Whitney U-test for spike train pairs in the three
datasets. Black and white squares represent p-values less than or greater than 0.05, respectively.
Table A.1
Spearman correlation coefficients. Lack of correlation is indicated in bold.
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Spike-contrast 1. 0.382 0.231 0.237 0.116 0.017 0.197 0.254 1. 0.996 0.996 0.996 0.995 0.996 0.996 0.996
SPIKE-distance 1. 0.61 0.665 0.448 0.349 0.465 0.637 1. 0.996 0.996 0.996 0.996 0.996 0.996
SPIKE-sync 1. 0.937 0.885 0.621 0.801 0.959 1. 0.998 0.998 0.998 0.998 0.998
A-SPIKE-sync 1. 0.801 0.567 0.78 0.933 1. 0.996 0.996 0.996 0.996
ST-Accuracy 1. 0.845 0.685 0.912 1. 1. 1. 1.
ST-Precision 1. 0.299 0.667 1. 1. 1.
ST-Recall 1. 0.823 1. 1.
ST-Fscore 1. 1.

synaptic in-vivo Poisson

Spike-contrast 1. 0.992 0.989 0.991 0.854 0.987 0.988 0.988 1. 0.877 0.861 0.805 0.85 0.85 0.85 0.85
SPIKE-distance 1. 0.99 0.991 0.858 0.987 0.988 0.987 1. 0.971 0.931 0.969 0.968 0.968 0.968
SPIKE-sync 1. 0.998 0.877 0.995 0.996 0.996 1. 0.961 0.983 0.984 0.984 0.984
A-SPIKE-sync 1. 0.867 0.995 0.995 0.995 1. 0.962 0.963 0.963 0.963
ST-Accuracy 1. 0.895 0.892 0.894 1. 1. 1. 1.
ST-Precision 1. 1. 1. 1. 1. 1.
ST-Recall 1. 1. 1. 1.
ST-Fscore 1. 1.

Poisson Burst Poisson Sub-Burst
additional flexibility in spike train analysis. Finally, we found that the
quantitative results reported in the previous section were unaffected
by the numerical choice of the parameters 𝜔, 𝛬, and 𝑐 provided that
the numerical values used were reasonably physiological (results not
shown). Even though originally developed within a neuroscientific
framework to assess the performance of spiking neuron models and
the similarity between pairs of spike trains, the measures implemented
in STSimM can be applied to general discrete time series consisting of
sequences of events of any nature. To this end, an automatic procedure
is also available to set the numerical values of the three parameters, 𝜔,
𝛬, and 𝑐.
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Fig. A.2. Synchrony values of Spike-contrast versus ST-Accuracy (red squares), SPIKE-distance versus ST-Accuracy (blue squares), SPIKE-synchronization versus ST-Accuracy (cyan
squares), and A-SPIKE-synchronization versus ST-Accuracy (orange squares) for all spike train datasets.
Fig. A.3. Automatic values of 𝛬 obtained from Eq. (16) for each dataset.
Fig. A.4. Synaptic in-vivo like stimulations. ST-Precision and ST-Recall performance measures (5) for the references and A-GLIF model traces obtained in response to 130 synaptic
stimulations.
/

Data availability

All Python scripts and datasets are available for download from the
ModelDB section of the Senselab database (https://modeldb.science/
2016671) and at https://github.com/biomemsLAB/Spike-Contrast/blob
master/Testdata.zip.
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