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Abstract

The population dynamics in Italy show a strong spatial heterogeneity within a 

framework of persistent demographic territorial disparities. From a local point 

of view, it is necessary to understand what demographic determinants govern 

this process. In the paper, we model the population change according to a local 

(i.e., spatial varying coefficients) multiscale approach. To this aim, local demographic 

growth rates of each Italian municipality for the period 2011 – 2019 were estimated 

and modeled by means of a classic a-spatial global model (i.e., ordinary least-square), 

and a multiscale geographically weighted regression. The multiscale dimensions of 

local population changes are therefore analyzed by means of three sub-dimensions: 

Level of influence, scalability, and specificity. The results show that the determinants 

of local population changes are not spatially constant and that they vary in their 

effect at different geographical scales.

Keywords: Spatial demography; Local approach; Spatial varying  coefficients; Multiscale  

geographically weighted regression  model; Italy

1. Introduction

In Italy, demographic changes present a strong spatial heterogeneity (Billari & Tomassini, 

2021). Fertility and mortality, on the one hand, are affected by local and global spatial 

autocorrelation (Salvati et al., 2020) and by spatial diffusion (Benassi & Carella, 2022; 

Vitali & Billari, 2017). On the other hand, migrations – internal and international – are 

affected by “classic” spatial variations, like the north–south divide, urban–rural divide, 

and new ones (for example the ones related to inner areas) (Benassi et al., 2019; Bonifazi 

et al., 2021; Lamonica & Zagaglia, 2013; Strozza et al., 2016). The result of these 

processes is a dual demographic spatial landscape in which some spatial contexts grow, 

and some others shrink, with several (negative) effects on territorial cohesion and social 

sustainability (Reynaud et al., 2020).

It is crucial to understand demographic components that act as drivers of that process 

considering spatial dependence and scale heterogeneity. Although studies that approach 
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the process of demographic change in Italy from a spatial 

perspective already exist, they usually address a rather 

large geographic scale. A few studies that have referred to 

a local scale (i.e., at municipality level) have used mainly 

explorative approaches. The rare cases that have used a 

regression approach are mainly based on a-spatial models 

or, at most, spatial global models (i.e., spatial autoregressive 

models). In other words, there is a lack of local multiscale 

approach in studying demographic changes in Italy.

To fill this gap, and based on these premises, this paper 

proposes a study on population change at the local level 

(municipality) using a multiscale approach: Multiscale 

geographically weighted regression (MGWR hereafter) 

recently proposed by Oshan et al. (2019). This class of 

model has been recently used in several studies regarding 

different issues like COVID-19 fully vaccinated rates (Yang 

et al., 2022a), opioid use disorders in older populations 

(Yang et al., 2022b), and mortality (Cupido et al., 2021; 

Song et al., 2021) and has proved to be extremely useful to 

grasp the multiscale nature of population spatial processes. 

However, quite surprisingly, to the best of our knowledge, 

no application to Italy has been made. This is paradoxical if 

we bear in mind that the demographic and socio-economic 

processes in Italy are deeply interested in spatial divides 

and spatial dependence processes (Benassi & Naccarato, 

2017; Reynaud & Miccoli, 2018; Reynaud et al., 2018; 

Caltabiano et al., 2019; Zambon et al., 2020). Indeed, on 

a local scale, the heterogeneity of demographic dynamics 

increases significantly, especially with regards to the drivers 

of changes. Migrations (both internal and international) 

play a key role in such changes since the natural growth 

is negative (or at most equal to zero) almost everywhere. 

The determinants of the capacity of a municipality to 

attract people (both from other Italian municipalities 

and/or abroad) are many: Spanning from the opportunity 

of finding a job, which is typically higher in urban areas 

located in the north and the center part of Italy, to the 

level of accessibility to services and infrastructures, which 

remains nowadays very low in many areas of the country, 

especially, mountainous and inland areas, and from many 

other factors related for example the presence of certain 

services (in particular primary school) that had proven to 

be crucial to counteract depopulation processes (Benassi 

et al., 2021; 2023).

The main goals of the paper are straightforward: (i) 

Identifying what demographic determinants govern the 

process of local population change in Italy; (ii) verifying if 

these determinants are spatially constant or not; and (iii) if 

their effects vary at different geographical scale.

The paper is structured as follows: In the next section, 

data and methods are described, and then results are 

shown. The final section draws some conclusions and 
future developments.

2. Data and methods

In the paper, we modeled the yearly average total population 
growth rate (TOTPGR) by means of MGWR in function 
of a set of pure demographic determinants (independent 
variables).

These are:

•	 Yearly average natural population growth rate 
(NATPGR),

•	 Yearly average internal migratory population growth 
rate (MIGPGR),

•	 Yearly average international migratory population 
growth rate (INTPGR),

•	 Yearly average of Italian population growth rate 
(ITAPGR), and

•	 Yearly average of foreign population growth rate 
(FORPGR).

The variables refer to the Italian municipalities 
(7,904 cases) and cover the period 2011 – 2019. They have 
been standardized to a Z distribution so that their mean is 
equal to zero (μ = 0) and their standard deviation is equal 
to one (σ = 1).

In the analysis and the interpretation of the multiscale 
regression results, we follow the approach of Yang et al. 
(2022a; 2022b) in which three multiscale dimensions of 
spatial process are defined:

•	 Level of influence, the percentage of population 
affected by a certain determinant across the entire area;

•	 Scalability, the spatial process of a determinant into 
global, regional, and local process; and

•	 Specificity, the determinant that has the strongest 
association with the yearly average total population 
growth rate.

These dimensions are evaluated in relation to each 
independent variable (Key findings section).

Population data used are based on the intercensal 
reconstruction of resident population and are provided by 
the Italian National Institute of Statistics (Istat). Basically, 
they refer to stocks (resident population at a given time) 
and flows (births, deaths, emigrations, and immigrations 
occurred in a given period) of resident population (Italians 
and foreigners). The period refers to 2011 – 2019. 

The local dimension of the study lies both in the 
regression approach used (MGWR, that is a local 
regression approach) and, therefore, in the statistical 
units adopted. Indeed, our statistical units are the Italian 
municipalities. Municipalities, local administrative units 
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(LAUs) based on the Eurostat definition, are the basic 

spatial units adopted in this study. LAUs are defined with 

the aim to dividing the territory of the European Union 

for the purpose of providing statistics at local levels. They 

are low-level administrative divisions of a country below 

province, region, or state. LAUs may refer to a range of 

different administrative units, including municipalities, 

communes, parishes, or wards. In Italy, they correspond to 

municipalities.

For each municipality, we computed the rates following 

the approach proposed in Preston et al. (2001) and applied, 

among others, by Strozza et al. (2016). In such approach, 

the idea is that TOTPGR is the instantaneous growth rate 

(from one year to another) and can be expressed as the ratio 

between population change during time interval 0-t and 

the number of persons for that period t (P
t
−P

0
)/ln (P

t
/P

0
) 

(Preston et al., 2001). We computed all the other rates in 

the same way. These rates, standardized to a Z distribution, 

act as dependent (TOTPGR) and independent variables 

(NATPGR, MIGPGR, INTPGR, ITAPGR and FORPGR) 

in a MGWR model. As known, scale is a fundamental 

concept in spatial and regional demography (Howell 

et  al., 2016; Lloyd, 2016). This is currently discussed in 

the considerable and diverse literature that investigates the 

various roles that scale plays in different social processes 

(Fotheringham et al., 2017). It is generally accepted that 

different processes can operate at different spatial scales, 

and we often make a distinction between micro and 

macro, or between local and global processes, but in real-

world scenarios, data are often generated from spatial 

processes operating at different spatial scales (Wolf et al., 

2017). If we consider a less restrictive assumption that 

all spatially variable processes in a model operate at the 

same spatial scale, we can think of a more flexible model. 

Local models such as geographically weighted regression 

(GWR) (Fotheringham et al., 2002) can capture process 

heterogeneities but do not adequately incorporate the 

multiscale properties of processes into modeling. Indeed, 

the bandwidth of the latter is closely related to the spatial 

scale of the processes examined, and bandwidths for each 

independent variable are assumed to be the same. In this 

respect, the semiparametric geographically weighted 

regression (SGWR) model (Nakaya, 2015; Nakaya et al., 

2005) provides, even if in a strictly rigid or extreme form, a 

first response to the multiscale problem by distinguishing 

between factors that play a role at a local and the global 

levels. Demographic research is often based on individual 

and contextual level data over a wide range of spatial 

scales, and therefore, the corresponding variables, which 

involve correlated social and economic aspects, require 

a deep understanding of the spatial context (Mucciardi, 

2021). To overcome this problem, the development of the 

GWR/SGWR model, called MGWR, removes the single 

bandwidth assumption, and allows covariate-specific 

bandwidths to be optimized (Oshan et al., 2019).

The scale of a spatial non-stationarity relationship may 

vary for each predictor variable. The MGWR model has the 

ability to differentiate local, regional, and global processes 

by optimizing a different bandwidth for each covariate 

(Li & Fotheringham, 2020). The following equation gives 

the specification of MGWR:

  y u u xi

j

m

bwj i j ij i� � � �
�

�
0

� �,  (1)

Where β
bwj

 represents the coefficient of the bandwidth 

with the spatial weighting kernel used for estimating the 

j-th predictor variable x
ij
 at local site (i.e., municipality) 

i, ε
i
  is the error term, and y

i
 is the response variable. As 

pointed out by Oshan (Oshan et al., 2019), MGWR provides 

an extension that allows each variable to be associated with 

a distinct bandwidth by recasting GWR as a generalized 

additive model such that:

  y fi

j

k

j i� �
�

�
1

�  (2)

Where f
j
 is a smoothing function applied to the j-th 

explanatory variable at location i that may be characterized 

by distinct bandwidth parameter and ε
i
 the error term 

of the model. Hence, a key advantage of MGWR over 

GWR is that it can more accurately capture the spatial 

heterogeneity within and across spatial processes, minimize 

overfitting, mitigate concurvity (i.e., collinearity due to 

similar functional transformations), and reduce bias in 

the parameter estimates (Oshan et al., 2020). The MGWR 

model is calibrated using a “back-fitting” algorithm which 

maximizes the expected log likelihood, and the criteria 

for selecting the bandwidths are derived from the same 

procedure used in the conventional GWR framework 

using the corrected Akaike information criteria corrected 

(AICc) for finite samples (Burnham & Anderson, 2004). 

The calibration process concerns the method and the 

criterion of choosing the bandwidth. In our empirical 

estimation, we used an adaptive (bi-square) kernel because 

it is more favorable when dealing with non-uniform spatial 

distributions of observations (i.e., municipalities in our case) 

and it is also able to better handle irregularly shaped study 

areas. We recall that, although the fixed kernel could be used 

in the MGWR model, a limitation of this approach is that 

there may have calibration issues when there are sparsely 

populated regions of a study area (Oshan et al., 2019). 

Furthermore, to compare each of the bandwidths obtained 

from an MGWR model, it is necessary to standardize the 

dependent and independent variables so that they are 
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zero-centered and based on the same range of variation. 
Consequently, the bandwidths are unconstrained from the 
scale and the variation of the explanatory variables, helping 
the relative comparison of bandwidths (Oshan et al., 2020). 
In the first phase, we built a classic ordinary least square 
(OLS) model (which assumes processes to be constant 
across the study area) as a benchmark for evaluation of 
the MGWR model and report comparison. Before moving 
to the presentation of the results, it should be noted one 
limitation of the present study. The independent variables 
used (demographic rates obtained by a decomposition 
approach) can interact with each other. The estimation done 
cannot grasp this (possible) effect of interaction between 
independent variables. Nevertheless, our primary goal here 
is not to understand the “net” effect of the independent 
variables on the dependent one nor to explain the variance 
of this latter. Our primary goal is to prove that the local 
demographic change in Italy is a local multiscale process 
(i.e., it varies across spaces and across scales).

3. Key Findings

From 2011 (January 1) to 2019 (January 1), the resident 
population in Italy passed from 59,948,497 to 59,816,673 (a 
decline by −2.2‰). Those changes present a strong spatial 
variation as clearly shown in Figure 1. The right panel map 
clearly shows a sort of “broken” space that divides local contexts 
that recorded an increase of resident population during 2011 – 
2019 from the other. The positive growth areas are most of the 
cases represented by urban areas and big cities mainly located 
in the center and northern Italy (like Milan, Bologna, Florence, 
Rome) while the negative growth areas are represented by 
inner contexts but also by some important medium and 
medium-large cities mainly located in the southern part of 

the country. It is important to underline that, if we refer to the 
Italian population only (i.e., people with Italian citizenship), the 
decrease was even sharper, from 55,847,162 million residents 
to 54,820,515 (a total decline by −18.3‰), proving the growth 
of the foreign population counterpart, from 4,101,335 to 
4,966,158 (a total increase by +210.9‰).

The results of global (OLS) and local (MGWR) 
regression models are clear (Table 1). The first important 
finding is that, based on the Monte Carlo randomization 
significance test for spatial variability, all the variables 
introduced in the model are affected by spatial variability 
so that it would be misleading to treat them as constant in 
space (like in the OLS model). Moreover, they are supposed 
to be not correlated because the variance inflation factor 
(VIF) value is always lower than 10.

MGWR outperforms the OLS model: AICc is lower, 
Adj-R-square is higher, and the distribution of residuals is 
not spatially autocorrelated (see the not significant value of 
the I

_MGWR_res
 respect to the significant value of the I

_OLS_res
 

in Table  1). OLS results tell us that all the independent 
variables are statistically significant. The net effect on the 
dependent variable is always positive. NATPGR has a 
higher net impact, followed by MIGPGR.

What is important, in our view, in addition to the spatial 
variability of the local coefficients, is the variation of the 
scale (i.e., the bandwidth) for each regression coefficient. 
In the case of adaptive kernel, the bandwidth represents 
the number of nearest neighbors from the regression point 
which receives a non-zero weight in the local regressions 
(i.e., the ones which are considered as neighbors to i). The 
selection of the optimal bandwidth parameters is based on 
statistical optimization criteria like Akaike Information 

Table 1. OLS and MGWR models for the growth rate of the total population in 2011‑2019 by municipality, Italy

Parameters OLS MGWR

Min Median Mean Max S.D. Bandwidth(b)

Intercept (a) 0.000 -0.162 -0.007 -0.032 0.083 0.061 361

NATPGR (a) 0.477*** 0.093 0.342 0.355 0.649 0.133 161

MIGPGR (a) 0.455*** 0.082 0.323 0.327 0.668 0.120 170

INTPGR (a) 0.227*** 0.025 0.171 0.165 0.343 0.057 105

ITAPGR (a) 0.281*** 0.011 0.477 0.458 0.848 0.179 78

FORPGR (a) 0.099*** 0.034 0.155 0.159 0.302 0.067 202

Note: OLS model results: AICc = -5691.82; Adj-R-square=0.972; Moran I
_OLS_res

=0.034***

VIF: NATPGR=4.154; MIGPGR=4.165; INTPGR=1.800; ITAPGR=7.582; FORPGR=1.628

MGWR model results: AICc = -9779.45; Adj-R-square=0.985; Moran I
_MGWR_res

 = -0.002 (n.s.)

Spatial kernel=adaptive bi-square
(a) Monte Carlo randomization significance test for spatial variability p<0.001 (Monte Carlo tests are based on 1,000 randomizations of the data)
(b)  The bandwidth is determined with the number of nearest neighbors for each location

OLS: Ordinary least square. MGWR: Multiscale geographically weighted regression.

Dependent variable is TOTPGR 2011–2019.

*p<0.05; **p<0.01, ***p<0.001 n.s.: Not significant.
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Criteria (Fotheringham et al., 2002; Yu et al., 2020). From 
a spatial perspective, the bandwidth is an indicator of the 
spatial scale over which the processes under observation 
operate. It is interesting to note that the higher bandwidth 
is recorded by FORPGR (202) while the lower one by 
ITAPGR (78). This means that the spatial scale over 
which the effect of FORPGR operates on the dependent 
variable (TOTPGR) is higher, although it is relatively 
small in geographical sense (the total bandwidth, i.e., the 
total number of municipalities is equal to 7904). Results 
of Table  1 provide evidence that the TOTPGR is greatly 
influenced by local determinants that have different effects 
at different scales.

As known, one of the major strong points of local 
regression models is that we can map the local coefficients 
(Matthews & Yang, 2012). From Figure 2, we can understand 
how space matters. In particular, we can observe how the 
strength of the net effect of each local coefficient varies 
across space - where it is statistically significant, in MGWR 
model a “specific” adjusted alpha-value and critical t-value 
are computed for each of the independent variables 
(Oshan et al., 2020)- and the different magnitude of 
local R-squares. The historical north–south geographical 
contrast of Italy only partially explains the spatial patterns 
of local coefficients underlying the relevance of local 
scale dimension in measuring the demographic process 
(Salvati et al., 2020). The geographical distributions of the 
local parameters of NATPGR and MIGPGR draw similar 
patterns: higher values are recorded in the north and in 
particular in the north-east part of the country. It seems to 
indicate that local context that act as attractors for internal 
migration flow are the ones where the natural growth is, 
comparatively, higher. If we bear in mind that, usually, 
the internal mobility of foreigners is higher than the one 

of Italians (Benassi et al., 2019) and it follows a south to 

north axis, we can infer how relevant is the contribution of 

foreign population to the local population changes (Strozza 

et al., 2016). The map of the local estimation of INTPGR is 

quite different in terms of intensity from that of NATPGR 

and of MIGPGR. The north still remain the part of Italy 

with higher values (the majority of the municipalities 

located in the north part of the country are classified in the 

last two classes of the legend, i.e., >0.300), but the intensity 

of the local coefficients is lower than the one of the first 

two maps. Interesting to note that among all of these 

first three maps the Sardinia Island does not present any 

statistically significant local estimation. The geographies of 

the local regression coefficients related to the ITAPGR and 

FORPGR variables appear partially mirrored each other 

and, to some extent, help to better understand what has 

emerged so far. The effects are generally more intense for 

the ITAPGR variable than for FORPGR. However, in both 

cases, the largest effects occur in central and southern Italy, 

where the effects (i.e., local coefficients) of the NATPGR, 

MIGPGR, and INTPGR were smaller. In contrast to the 

Italian component, in the case of foreigners, FORPGR, 

particularly small effects are also registered in the north-

east and, albeit to a lesser extent, in the north-west as well 

as in some specific areas of the south including the islands.

Table 2. Three dimensions of multiscale spatial process for 

each independent variable based on the MGWR models

Variable 

(bandwidth)

Level of 

influence(a)

Scalability(b) Specificity(c)

NATPGR (361) Primary (7,527) Local 2,511 (31.8%)

MIGPGR (161) Primary (7,527) Local 326 (4.1%)

INTPGR (170) Primary (7,423) Local 0 (0.0%)

ITAPGR (78) Primary (7,783) Local 5,067 (64.1%)

FORPGR (202) Primary (7,800) Local 0 (0.0%)

Note: The model was adapted from Yang et al., (2022a, 2022b). 

NATPGR (yearly average natural population growth rate), MIGPGR 

(yearly average internal migratory population growth rate), INTPGR 

(yearly average international migratory population growth rate), 

ITAPGR (yearly average of Italian population growth rate), FORPGR 

(yearly average of foreign population growth rate).
(a)  If the variable affects more than 50% the total population it is a 

primary influencer; otherwise (≤50%) it is a secondary influencer. 

The percentage of municipalities affected by a factor is included in 

the parentheses.
(b)  If the bandwidth of a variable is larger than 75% of the global 

bandwidth, it is a global determinant; if the bandwidth is smaller 

than 25% of the global bandwidth, it is a local determinant; if the 

bandwidth is between 75% and 25% of the global bandwidth, it is 

a regional determinant. Global bandwidth is the total number of 

municipalities (7,904).
(c)  The number and percentage of municipalities that the focal variable 

has the strongest significant impact on the dependent variable (i.e., 

the largest absolute value of the standardized coefficients that are).

Figure 1. Yearly average total population growth rate per 1000 (TOTPGR) 

2011 – 2019, Italian municipality

Note: TOTPGR: Yearly average total population growth rate.

Source: Author’s elaboration on Istat data.
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Finally, the geographical distribution of local R2 is very 

peculiar. Indeed, local R2 values are all very high although 

the highest values are found in southern Italy itself. The 

levels then tend to decrease moving northward. This means 

that in southern Italy the local variation in population 

is basically totally explained by the combination of the 

variables introduced in the model (local R2 > 0.98).

A way to analyze these local and spatial scale varying 

effect has been recently proposed by Yang et al. (2022a; 

2022b). In their approach, they proposed three dimensions of 

multiscale spatial process: level of influence, scalability, and 

specificity. Following Yang et al. (2022a; 2022b) based on the 

local estimates of an independent variable, we could identify 

the municipalities where the effect of this independent 

variable on TOTGR is statistically significant. We then 

divided the sum of the municipalities where the variable is 

statistically significant by the total number of municipalities 

in the entire study area. If a variable is found to influence 

50% or more of the total number of municipalities, this 
variable will be categorized as into the primary influencer 
group; otherwise, (<50%) it is a secondary influencer. 
Scalability can be defined with the calibrated bandwidth of 
a variable. It has three groups: Global, regional, and local. 
According to Yang et al. (2022a; 2022b) when a calibrated 
bandwidth of a variable is >75% of the global bandwidth 
(i.e., the total number of municipalities in our case: 7,904), it 
can be defined as a global factor. If the bandwidth is between 
75% and 25% of the global bandwidth, it is regarded as a 
regional factor. Finally, when the bandwidth of a variable 
is smaller than 25% of the global bandwidth, this variable 
is defined as local. Specificity is based on the standardized 
coefficients produced by MGWR. Each municipality has 
its own estimates of the independent variable and these 
estimates can be compared within each municipality. An 
independent variable may have strongest association with 
the dependent variable in some municipalities but not in 
others. Specificity is based on the number and percentage 

Figure 2. MGWR local coefficients and local R2 for the growth rate of the total population 2011 – 2019 by municipality, Italy

Note: Dependent variable is TOTPGR 2011 – 2019. NATPGR: Yearly average natural population growth rate, MIGPGR: Yearly average internal migratory 

population growth rate, INTPGR: Yearly average international migratory population growth rate, ITAPGR: Yearly average of Italian population growth 

rate, and FORPGR: Yearly average of foreign population growth rate, NS: Not significant. All other parameters are statistically significant at p<0.05.

Source: Authors’ elaboration on Istat data. 
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of municipalities that the focal variable has the strongest 

significant impact on the dependent variable, TOTPGR 

(Yang et al., 2022a; 2022b).

Multiscale results with the three dimensions are presented 

in Table 2. They are quite interesting because they prove the 

relevance to modeling population growth not only as a spatial 

process but, most of all, as local spatial varying process. In 

particular, we can see – column (a) – that each independent 

variable plays primary level of influence on the dependent 

variable (TOTPGR). Therefore, the local importance of each 

covariate is high. Moreover, all the independent variables prove 

to be local determinants in terms of scalability so that their 

effects have to be detected at local level. In terms of specificity, 

we can appreciate a quite high heterogeneity between the 

dependent variables. ITAPGR records the highest specificity 

while INTPGR and FORPGR presents no specificity.

The map of specificity in Figure  3 reveals different 

spatial patterns for the three variables that prove to have 

a specificity effect, namely, ITAPGR, NATPGR, and 

MIGPGR. In particular, we can observe how the effect of 

ITAPGR involves much more municipalities than the other 

two. Most of them are located in the southern Italy but also 

in the north-east area. The NATPGR specificity cover the 

central part of Italy and the north-west too. Finally, the 

MIGPGR local specificity distribution covers few areas 

that are almost located in the northern part of Italy.

4. Concluding Remarks

In recent years, many papers have underlined the intrinsic 

spatial nature of demography (De Castro, 2007; Gu et al, 

2020; Raymer et al., 2019; Voss, 2007; Weeks, 2016) and 

the need to use appropriate spatial methodologies in 

population-based studies, i.e., considering space in the 

analysis (Chi & Zu, 2008; Matthews, 2019; Matthews & 

Parker, 2014; Weeks, 2004). In this general framework, a 

crucial variable is the scale of analysis (Burillo et al. 2020; 

Oshan et al. 2022).

In this study, we showed that this is particularly true 

for Italy and its local demographic dynamics but with 

two major additions: the spatial varying relationships and 

multiscale nature of these relationships. In our view, this 

proves the spatial complexity of demographic changes in 

Italy and the need for measuring demographic processes 

without a constant scale approach.

Indeed, it can be misleading if modeling the spatial 

demographic process is without considering the spatial 

dimension (classic OLS model), without considering local 

dimensions – such as, spatial global regression models like 

spatial lag model, spatial error model, and spatial Durbin 

model – or without a multiscale framework (classic GWR 

model).

At least, the case for Italy for the period 2011 – 2019 

as this paper clearly proves it. We argue that the results 

achieved provide new insights into the importance of 

treating the population process as spatial phenomena and 

in particular as local and multiscale (spatial) phenomena. 

The achieved results also have relevance in terms of policy 

implications. In Italy, as in other parts of Europe, there are 

vast areas of land in systematic depopulation (shrinking 

regions) (Klingholz, 2009), a real challenge for territorial 

planners and policy makers. Adopting this type of model 

(MGWR) allows the depopulation phenomenon to be 

modeled locally by identifying the radius of influence of 

the different explanatory variables and thus enabling the 

territorial calibration of policies to counter it.
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