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Abstract
Background Circulating immune cells play a pathogenic role in multiple sclerosis (MS). However, the role of specific lym-
phocyte subpopulations is not unveiled yet, especially in progressive stages. We aimed to investigate lymphocyte changes 
during siponimod treatment in active secondary progressive MS (aSPMS) and their associations with clinical outcomes.
Methods We enrolled 46 aSPMS patients starting on siponimod treatment with at least 6 months of follow-up and two visits 
within the scheduled timeframes and 14 sex- and age-matched healthy controls (HCs). Clinical and laboratory data were 
collected retrospectively at baseline, 3rd, 6th, 12th, and 24th month for MS patients, and at baseline for HCs.
Results At baseline SPMS patients presented with increased naïve regulatory T lymphocytes (p = 0.02) vs. HCs. Over time, 
SPMS patients showed decreased T CD4+ (coeff. range = −24/−17, 95% CI range = −31.60 to −10.40), B lymphocyte 
(coeff. range = −3.77/−2.54, 95% CI range = −6.02 to −0.35), memory regulatory B cells (coeff. range = −0.78/−0.57, 95% 
CI range = −1.24 to −0.17) and CD4/CD8 ratio (coeff. range = −4.44/−0.67, 95% CI range = −1.61 to −0.17) from month 3 
thereafter vs. baseline, and reduced CD3+CD20+ lymphocytes from month 12 thereafter (coeff. range = −0.32/−0.24, 95% 
CI range = −0.59 to −0.03). Patients not experiencing disability progression while on siponimod treatment showed B lym-
phocyte reduction from month 3 (coeff. range = −4.23/−2.32, 95% CI range = −7.53 to −0.15) and CD3+CD20+ lymphocyte 
reduction from month 12 (coeff. range = −0.32/−0.24, 95% CI range = −0.59 to −0.03) vs. patients experiencing progression.
Conclusions Patients treated with siponimod showed a T and B lymphocyte reduction, especially CD4+, CD3+CD20+ and 
naïve regulatory T cells and memory regulatory B cells. Disability progression while on siponimod treatment was associated 
with a less pronounced effect on B and CD3+CD20+ lymphocytes.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory, demy-
elinating and degenerative CNS disease [1]. Pathological 
changes are fuelled by the activation of circulating and 
CNS resident immune cells [2]. T, B and natural killer 
lymphocytes contribute to MS pathology, but the exact 
interplay between these classes of lymphocytes as well 
as between different T (i.e., CD4+, CD8+, CD3+CD20+ 
and regulatory T cells) and B (naïve and memory B cells 
and naïve and memory B regulatory) subsets is not com-
pletely unveiled yet [2]. Striking evidence has accumulated 
demonstrating that in relapsing stages of MS the success 
of disease modifying therapies (DMT) in halting disease 
activity relies on the modulating activity on peripheral 
immune cells [3]. Conversely, in progressive stages, the 
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role of peripheral immune cells is still questioned. Hereby, 
CNS-compartmentalised inflammation (i.e., the activa-
tion of CNS resident immune cells) is thought to be the 
major driver for undergoing progressive neuronal loss 
[4]. A recent study highlighted that in animal models of 
MS, meningeal B cells, responsible for cortical pathol-
ogy implicated in progressive MS phenotypes, derive 
from both the calvarial bone barrow and from blood pool, 
suggesting a dynamic interchange between peripheral and 
CNS immune cells [5]. In addition, a group of T cells also 
expressing B cell markers (CD3+CD20 +) was reported 
to be increased in peripheral blood of progressive MS [6]. 
Therefore, drugs acting on modulating peripheral immune 
cells may also contribute to prevent disease progression.

The only two approved drugs for secondary and pri-
mary progressive MS (i.e., siponimod and ocrelizumab) 
act as immunosuppressors with siponimod preventing 
lymphocytes egress from secondary lymphoid organs and 
ocrelizumab depleting circulating B lymphocytes through 
a CD20-antibody-dependent cellular cytotoxicity [7]. Lon-
gitudinal assessment of lymphocytes subset in progressive 
MS patients treated with siponimod or ocrelizumab, and 
their correlation with clinical outcomes would provide a 
window into MS pathogenesis, especially for those mecha-
nisms underpinning neuronal loss. A preliminary analysis 
assessing lymphocytes changes in siponimod-treated sec-
ondary progressive MS patients has been already performed 
on a relatively small sample from the EXPAND trial with 
a 1-year follow-up [8]. In this study, authors demonstrated 
that patients treated with siponimod had reduced overall 
lymphocyte absolute number and reduced CD4+and CD8+ 
T cells, as well as increased T and B regulatory cells [8]. 
However, these findings deserve further confirmation given 
the relatively small sample size (23 patients) and the short 
follow-up (1 year). In addition, Wu and colleagues did not 
assess correlation between lymphocyte changes and clinical 
outcomes (i.e., relapse occurrence and disability accrual) 
thus, leaving open questions on the clinical relevance of 
biological changes.

Against this background, we assessed longitudinal 
changes of immune cells in patients treated with siponimod 
over 2-year follow-up time. We aimed to investigate the tem-
poral dynamics of lymphocyte changes in active secondary 
progressive MS (aSPMS) patients treated with siponimod. 
We also aimed to explore whether worse clinical outcomes 
(i.e., disability progression or treatment drop-out) associated 
with specific trajectories in immune cell changes over time. 
In line with previous reports [5, 6, 8], we anticipated overall 
decreased number of naïve T and B cells, an increased num-
ber of regulatory B and T cells as well as a reduced rate of 
circulating CD3+CD20+ cells. We also hypothesised that 
patients with worse clinical outcomes might present with 
reduced or absent aforementioned changes.

Methods

Study design and population

This was a mono-centric exploratory longitudinal study. We 
included consecutive aSPMS subjects enrolled at MS Clini-
cal Care and Research Centre of the Federico II University 
Hospital of Naples, Italy, satisfying the following inclusion 
criteria: (1) MS diagnosis according to the 2017 McDon-
ald criteria [9] and active progressive phenotype [10]; (2) 
patients starting on siponimod treatment as for European 
prescription indication; (3) no history of significant medi-
cal illnesses, fever or substance abuse in the 30 day before 
sample collection; (4) no other major systemic, psychiatric 
or neurological diseases; (5) no relapse or corticosteroid 
treatment in the 30 day before sample collection; (6) at least 
6 months of follow-up under siponimod treatment and two 
visits over the follow-up. We also included healthy subjects 
performing sample collection only at baseline.

Standard protocol approvals, registrations, 
and patient consents

Approval was received from the local ethical committees. 
All subjects gave written informed consent prior to study 
participation. The study was performed in accordance with 
good clinical practices and the Declaration of Helsinki.

Clinical assessment

Patients were followed-up up to 2 years after siponimod start 
and samples were collected retrospectively and according to 
scheduled routine clinical visit at baseline, and after 3, 6, 12, 
and 24 month. At baseline controls also had blood draws.

At baseline we recorded demographic, clinical and radi-
ological data (i.e., age, sex, disease duration [time from 
symptom onset to baseline visit], previous DMT [platform 
vs. highly effective treatment as well as treatment classified 
according to the mechanism of action], CYP2C9 genotype 
[determining siponimod dosage], time from conversion 
to aSPMS phenotype, MRI status [new T2 hyperintense 
lesions, enlarging T2 hyperintense lesions, gadolinium 
enhancing lesions] and number of previous relapses before 
siponimod start) as for clinical practice. At baseline and after 
3, 6, 12, and 24 month, aSPMS patients underwent a clinical 
examination, including the assessment of physical disabil-
ity through the Expanded Disability Status Scale (EDSS) 
[11]. EDSS progression was defined as sustained increase 
in EDSS by 1 point if baseline EDSS was 5.5 or lower, or 
increase in EDSS by 0.5 point if baseline EDSS was above 
5.5, assessed 3 months apart [12]. Relapse occurrence was 
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recorded at each study visit and possible corticosteroid treat-
ment in the last 30 days determined study exclusion. Safety 
information was recorded as for clinical practice.

Blood sample assessment

At each timepoint, MS patients underwent blood draws. 
An aliquot (50 μL) of anti-coagulated ethylenediaminetet-
raacetic acid (EDTA) whole fresh blood (within 12 h) was 
incubated at 4 °C for 30 min in the presence of appropriate 
amounts of monoclonal antibodies. The mixtures were then 
diluted 1:20 in ammonium chloride lysing solution, incu-
bated at room temperature for 10 min and finally washed. 
Samples were analysed on Becton Dickinson Facs Canto II 
cytometer BD Facs Diva software. The lower level of detec-
tion was 10–4 (as such, zero corresponds to a level below 
1/10,000 cells). The values have been expressed both as a 
percentage and absolute numbers at each time point. For the 
time-points following baseline we also calculated the per-
centage change of the absolute number as the ratio between 
difference between follow-up and baseline measure over 
baseline measure. If follow-up assessment is zero, we cal-
culated the percentage of the difference between follow-up 
and baseline assessment. For lymphocyte absolute count, we 
coupled cytometry to complete blood count on haematologi-
cal counter (double platform).

The following antigens were analyzed: CD3 Pacific Blu 
(from Beckman Coulter, Marseille Cedex 9, France), CD4 
PEcy5 (from Beckman Coulter, Marseille Cedex 9, France), 
CD8 APCcy7 (from Beckman Coulter, Marseille Cedex 9, 
France), CD19 APC (from Beckman Coulter, Marseille 
Cedex 9, France), CD20 FITC (from Beckman Coulter, 
Marseille Cedex 9, France), CD56 PEcy7 (from Beckman 
Coulter, Marseille Cedex 9, France), CD45 FITC (from BD 
San Diego, CA, USA), CD27 FITC (from BD San Diego, 
CA, USA), CD24 APC (from Sony Biotechnology, San Jose, 
CA, USA), CD38 APC (from BD San Diego, CA, USA), 
CD 127 FITC (from Miltenyi Biotec, Bergisch Gladbach, 
Germany), CD25 PE (from Miltenyi Biotec, Bergisch Glad-
bach, Germany), CD45RA APC (from BD San Diego, CA, 
USA), CD45RO PEcy7 (from Sony Biotechnology, San 
Jose, CA, USA), CD183 PE (from BD San Diego, CA, 
USA), CD196 PEcy7 (from BD San Diego, CA, USA) HLA-
DR HV500 (from BD San Diego, CA, USA). The lower 
level of detection was 10–4 (as such, zero corresponds to a 
level below 1/10,000 cells). The gating strategy was as fol-
lows: lymphocyte cells were gated using CD45 vs. SSC-A 
identifying 50,000 events. This gate was used to identify T 
lymphocytes (CD3 +), B lymphocytes CD19+ and CD20+ 
and natural killer NK lymphocytes CD56+CD3− T helper 
(TH) and T cytotoxic cells were identified as CD3+CD4+ 
and CD3+CD8+, respectively. CD3+CD20dim represent a 
heterogeneous T-cell subpopulation. T regulatory cells were 

identified as CD3+CD4+CD25+CD127−; T-Reg Naive as 
CD3+CD4+CD25+CD127−CD45RA+ and T-Reg Memory 
as CD3+CD4+CD25+CD127−CD45RO+. From the lym-
phocytes (CD45vsSSC-A), activated T lymphocytes were 
identified as CD3+DR+. B-Reg Naïve cells were identified 
as CD38+, CD19+ and CD24+ and B-Reg Memory cells 
were identified as CD38+, CD19+ and CD27+. Laboratory 
procedures were performed in accordance with UK-NEQAS 
quality standards (https:// ukneq as. org. uk/).

Statistical analysis

Statistical analyses were performed using the Stata software 
(version 13; StataCorp LP, College Station, TX). Demo-
graphic, clinical and laboratory features of study subjects 
are presented as means, medians or proportions as appropri-
ate. All demographic, clinical and laboratory variables were 
checked for normality using the Shapiro–Wilk normality 
test. Differences between controls and patients for demo-
graphic features were assessed through t Test, Mann–Whit-
ney U or Chi-squared as appropriate. Differences between 
controls and aSPMS patients for laboratory measures were 
assessed using logistic regression models adjusted for age 
and sex.

Changes in laboratory variables over time were explored 
through generalised linear mixed-effect regression mod-
els including laboratory variables, in turn, as dependent 
variable, timepoint as independent variable (using base-
line values as reference), age, sex, genotype and previous 
DMT category as covariates, and subject id as random fac-
tor. Association between laboratory changes over time and 
clinical outcomes (i.e., EDSS progression or relapse occur-
rence) were explored using generalised linear mixed-effect 
regression models including laboratory variables, in turn, 
as dependent variable, interaction between timepoints and 
clinical outcomes (EDSS progression, relapse occurrence) 
as independent variable (using baseline values as reference), 
age, sex, genotype, follow up time and DMT category as 
covariates, and subject id as random factor.

A p value < 0.05 was considered statistically significant. 
Given the exploratory nature of the study, no correction for 
multiple comparisons was applied.

Results

Clinical and laboratory measures at baseline

Demographic, clinical and radiological data from sub-
jects enrolled in the study are summarized in Table 1. We 
included 46 MS patients and 14 age and sex matched healthy 
controls. Compared with controls, aSPMS patients presented 
reduced T lymphocytes (57.35 ± 18.06 vs. 68.29 ± 10.45, 

https://ukneqas.org.uk/
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p = 0.05), increased naïve regulatory T lymphocytes 
(0.18 ± 0.31 vs. 0.03 ± 0.05; p = 0.02), and a trend towards an 
increase in CD3+CD20+ lymphocytes (0.32 ± 0.63 vs. 0 ± 0; 
p = 0.07). Of note, none of the controls had CD3+CD20+ 
cells, while 29 out of 46 patients (64%) presented detect-
able CD3+CD20+ cells at baseline (Fig. 1a, b, d). Results 
of lymphocyte analysis for patients treated with siponimod 
and HCs at baseline are outlined in Table 2. Notably, 13 
out of 46 patients were previously treated with Anti-CD20 
(12 patients treated with rituximab and 1 patient treated 
with ocrelizumab) with a mean time from last infusion of 
15.1 ± 7.1 months. Except for the only patient switching 
from ocrelizumab to siponimod for tolerability issues and 
MRI evidence of disease activity (i.e., one enlarging T2 
lesion) after 8 months, remaining patients were all refus-
ing infusive treatments and experienced disease progression 

in the time between anti-CD20 stop and siponimod start. 
Among patients previously treated with anti-CD20, three 
patients previously treated with rituximab experienced fur-
ther disability progression after 7, 8 and 12 months.

Laboratory measures analysis over the follow‑up

Results of lymphocyte analysis over the follow-up for 
patients treated with siponimod are outlined in Table 3. Com-
pared with baseline, aSPMS patients treated with siponimod 
showed reduced lymphocytes, T lymphocytes, CD4+ lym-
phocytes, CD4/CD8 ratio, B lymphocytes, memory regula-
tory B cells from month 3 thereafter (lymphocytes: coeff. 
range = −699/−486, 95% CI range = −941.08 to −4.55; T 
lymphocytes: coeff. range = −21/−9, 95% CI range = −29.43 
to −1.56; CD4+ lymphocytes: coeff. range = −24/−17, 

Table 1  Demographic and 
clinical features of controls and 
patients with multiple sclerosis 
(MS)

MS multiple sclerosis, HCs healthy controls, EDSS expanded disability status scale, SD standard deviation
*  Chi-squared or t test as appropriate (p < 0.05)
**  Data available for 39 patients

MS patients HCs p value*
Number of subjects 46 14

Sex
Male, N (%) 18 (39) 4 (29) 0.47
Female, N (%) 28 (61) 10 (71)
Age, mean (SD) (years) 53.6 (6.4) 49.8 (6.2) 0.06
Annualized relapse rate at siponimod start, mean (SD) 0.46 (0.36) –
EDSS at siponimod start, median (range) 6 (3–6.5) –
Disease duration, median (range) (years) 13 (1–40) –
Baseline MRI activity**
New T2 hyperintense lesions, N (%) 16 (41)
Enlarging T2 hyperintense lesions, N (%) 23 (59)
Gadolinium-enhancing lesions, N (%) 0 (0)
Follow-up time, median (range) (months) 18 (6–24) –
Previous DMT category
Platform treatment, N (%) 25 (54) –
 Glatiramer acetate, N (%) 4 (9)
 Interferon, N (%) 9 (20)
 Dimethyl fumarate, N (%) 8 (17)
 Teriflunomide, N (%) 4 (9)

High efficacy treatment, N (%) 20 (44) –
 S1P receptor modulators, N (%) 7 (15)
 Anti-CD20, N (%) 13 (28)

Time since last anti-CD20 infusion, mean (SD) (months) 15.51 (7.14)
Naive, N (%) 1 (2) –
Genotype
1/1, N (%) 32 (70) –
1/2, N (%) 8 (17) –
2/2, N (%) 3 (7) –
1/3, N (%) 2 (4) –
2/3, N (%) 1 (2) –
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95% CI range = −31.60 to −10.40; CD4/CD8 ratio: coeff. 
range = −4.44/−0.67, 95% CI range = −1.61 to −0.17; 
B lymphocytes: coeff. range = −3.77/−2.54, 95% CI 
range = −6.02 to −0.35; memory regulatory B: coeff. 
range = −0.78/−0.57, 95% CI range = −1.24 to −0.17), 
reduced naïve regulatory T cells from month 6 thereaf-
ter (coeff. range = −0.16/−0.11, 95% CI range = −0.27 
to −0.02) and reduced CD3+CD20+ lymphocytes from 
month 12 thereafter (coeff. range = −0.32/−0.24, 95% 
CI range = −0.59 to −0.03). Conversely, compared with 
baseline, aSPMS patients treated with siponimod showed 
increased natural killer lymphocytes from month 3 thereaf-
ter (coeff. range = 13.76/19.36, 95% CI range = 6.85–26.45) 
and increased naïve regulatory B cells from month 6 there-
after (coeff. range = 0.85/1.48, 95% CI range = 0.30–2.18). 
Finally, aSPMS patients treated with siponimod showed 

increased CD8+ lymphocytes at month 3 (coeff. = 5.44, 
95% CI = 1.89–9.01) and increased memory regulatory T 
cells at month 6 (coeff. = 0.31, 95% CI = 0.02–0.59). Lym-
phocyte changes over the follow-up adjusted for the previ-
ous DMT classified according to mechanism of action were 
overlapping (Supplementary Table 1). Moreover, similar 
results were obtained when expressing lymphocyte subset 
changes as percentage compared to baseline, (Supplemen-
tary Table 2), except for NK cells that did not change over 
time, for CD3+CD20+ lymphocytes that showed a more 
pronounced reduction from month 6 thereafter, and for naïve 
regulatory B cells that only increased at month 24.

Association between laboratory changes 
and clinical outcomes

Over the follow-up, only one patient experienced a clini-
cal relapse, therefore, the association between lymphocyte 
changes and relapse occurrence was not assessed. Ten 
patients (22%) dropped from siponimod treatment after a 
mean time of 18 ± 8 months. Five patients dropped because 
of EDSS progression, four patients dropped because of 
adverse events (two patients presented with persistent 
migraine, one patient presented with grade III lymphopenia 
and one patient presented with hypertension) and one patient 
dropped for personal decision. Dropped-out patients did no 
longer perform blood sample. Disability progression was 
observed in 10 patients (22%) after a mean follow-up of 
9.3 ± 2.7 months. Results for the association between dis-
ability progression and laboratory trajectories are depicted 
in Table 4.

Differently from patients experiencing disability progres-
sion, patients not experiencing disability progression while 
on siponimod treatment revealed reduced B lymphocytes 
from month 3 thereafter (coeff. range = −4.22/−2.28, 95% 
CI range = −7.52 to −0.11), increased CD8+ T lymphocytes 
at month 3 (coeff. = 5.40, 95% CI = 1.45–9.36), reduced 
CD4/CD8 ratio already at month 3 and 6 (coeff. = −1.20, 
95% CI = −1.81 to −0.58; coeff. = −0.80, 95% CI = −1.33 
to −0.26; respectively), increased natural killer already 
at month 3 and 6 (coeff. = 11.85, 95% CI = 3.79–19.92; 
coeff. = 13.78, 95% CI = 6.79–20.78 respectively), reduced 
CD3+CD20+ lymphocytes at month 6 (coeff. = −0.29, 95% 
CI = −0.53 to −0.05), increased naïve regulatory B cells 
already at month 6 (coeff. = 0.86, 95% CI = 0.26–1.45), and 
reduced memory regulatory B cells from month 3 thereaf-
ter (coeff. range = −0.64/−0.54, 95% CI range = −1.03 to 
−0.09). When assessing percentage change of the absolute 
number we confirmed that not progressing MS patients 
showed a marker reduction of CD3+CD20+ lymphocytes 
from month 6 thereafter, a slight naïve regulatory T cells 
reduction from month 6 thereafter and a marked reduction in 
memory regulatory B cells from month 3 thereafter with no 

Fig. 1  Flow cytometer dot plots. Plot of CD3+CD20+ cells in one 
male healthy control with no detectable cells (a), an aSPMS patient 
not progressing while on siponimod treatment at baseline with 0.9% 
CD3+CD20+ cells (b) and after 6 months from treatment start with 
0.1% CD3+CD20+ cells (c) and an aSPMS patient progressing while 
on siponimod treatment at baseline with 0.1% CD3+CD20+ cells (d) 
and after 6 months from treatment start with 2% CD3+CD20+ cells 
(e)
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differences among progressing and non-progressing patients 
for CD8+ T lymphocytes, CD4/CD8 ratio and natural killer 
(Supplementary Table 3).

Discussion

In this study, we investigated peripheral lymphocyte 
changes over time in aSPMS patients treated with siponi-
mod and their associations with disability progression. 
aSPMS patients presented with an overall T cell reduc-
tion with increased naïve regulatory T lymphocytes and a 
trend towards an increase in CD3+CD20+ lymphocytes. 
Patients treated with siponimod showed a sustained reduc-
tion of T lymphocytes, especially CD4+, CD3+CD20+ 
and naïve regulatory T cells, B lymphocytes and memory 
regulatory B cells, with relative increase of naïve regula-
tory B lymphocytes. In addition, we showed that disabil-
ity progression while on siponimod treatment was associ-
ated with the lack of drug effect on B lymphocytes and 
CD3+CD20+ lymphocytes.

Previous studies demonstrated that T lymphocyte sub-
populations are altered in MS compared with healthy con-
trols, but characterizations of T-cell subset are discord-
ant. In some studies, MS patients showed increased levels 
of CD8+ effector T-cells in peripheral blood [13], while 
other authors described a decreased number of this T-cell 
subset [14, 15] and the reason for this discrepancy might 
lay in the different MS phenotypes included in these stud-
ies. SPMS and primary progressive MS patients showed 
normal or increased frequency of effector and memory 
CD8+ T-cells [15, 16] vs. controls and relapsing–remit-
ting MS. Differently from T lymphocytes subsets that 
have been widely studied, a full characterization of B-cell 
subpopulations in peripheral blood of MS patients is still 

lacking [17] and, only recently, with the introduction of 
CD20-targeting drugs, this cell population is under inves-
tigation. DMTs in MS act by modulating patients’ lym-
phocytes with different mechanisms of action. Previous 
studies evaluating the impact of different treatments on 
immune cells have demonstrated a peculiar immunomodu-
latory profile for each drug. For example, dimethyl fuma-
rate showed increased percentage of naïve and effector T 
cells [18, 19], natural killer [19] and naïve B cells [19], 
though the total B cell count decreased especially for 
memory cells [20]. Conversely, by impeding lymphocytes 
from crossing the blood–brain barrier, natalizumab pro-
duces an increased count for total lymphocytes, natural 
killers, CD8+, memory and regulatory B cells [21, 22] 
and increased B cell percentage [23]. With specific regards 
to sphingosine-1 receptor modulators, most of available 
findings refer to the effect of fingolimod. These find-
ings report on decreased naïve and memory B cells with 
increased regulatory B cells [23–25], decreased CD4+ T 
cells [23–25], and decreased CD8+ T cells [25], whilst no 
changes were detected for natural killer lymphocytes [25, 
26]. The only available report on siponimod highlights 
that patients have a reduction of B cells, CD4+ and CD8+ 
T cells, with an increase of regulatory B cells, which is 
quite in line with our finding supporting the reduction of 
T cells lineage and an increase in the regulatory cells [8]. 
Taken together, these reports suggest that while DMTs 
for MS have the common goal to prevent disease activity 
(relapse and disability progression), the regulation of the 
immunological cells is specific for each drug. Similarly 
to fingolimod, siponimod produces a shift toward a more 
regulatory environment mediated by B cells and a preva-
lent reduction of the T cell lineage.

Another interesting finding from our study is the 
association between disability progression while under 

Table 2  Lymphocytes 
percentage in multiple sclerosis 
(MS) patients and healthy 
controls (HCs)

MS multiple sclerosis, HCs healthy controls, SD standard deviation
*  Logistic regression adjusted for age and sex (p < 0.05)

MS patients HCs p value
Number of subjects 46 14

T lymphocyte, mean ± SD 57.35 ± 18.06 68.29 ± 10.45 0.05*
B lymphocytes, mean ± SD 9.85 ± 6.76 13.5 ± 5.37 0.13
CD4+ lymphocytes, mean ± SD 36.72 ± 16.38 42.36 ± 10.3 0.26
CD8+  lymphocytes, mean ± SD 16.91 ± 6.73 20.29 ± 6.5 0.16
CD4/CD8 ratio, mean ± SD 2.46 ± 1.49 2.3 ± 0.92 0.83
Natural killer lymphocytes, mean ± SD 14.61 ± 11.31 11.07 ± 5.5 0.30
CD3+CD20+ lymphocytes, mean ± SD 0.32 ± 0.63 0 ± 0 0.07
Naïve regulatory T cells, mean ± SD 0.18 ± 0.31 0.03 ± 0.05 0.02*
Memory regulatory T cells, mean ± SD 0.7 ± 0.45 0.61 ± 0.38 0.38
Naïve regulatory B cells, mean ± SD 0.52 ± 0.71 0.36 ± 0.32 0.34
Memory regulatory B cells, mean ± SD 1.17 ± 1.54 1.43 ± 1.89 0.51



4287Journal of Neurology (2024) 271:4281–4291 

Ta
bl

e 
3 

 W
hi

te
 b

lo
od

 c
el

l c
ou

nt
 a

nd
 ly

m
ph

oc
yt

es
 c

ha
ng

es
 o

ve
r t

he
 fo

llo
w

-u
p 

in
 p

at
ie

nt
s t

re
at

ed
 w

ith
 si

po
ni

m
od

C
oe

ffi
ci

en
ts

 a
nd

 9
5%

 C
I w

er
e 

ob
ta

in
ed

 th
ro

ug
h 

ag
e-

, s
ex

-, 
ge

no
ty

pe
 a

nd
 D

M
T 

ca
te

go
ry

-c
or

re
ct

ed
 g

en
er

al
iz

ed
 li

ne
ar

 m
ix

ed
-e

ffe
ct

 re
gr

es
si

on
 m

od
el

s u
si

ng
 b

as
el

in
e 

va
lu

es
 a

s r
ef

er
en

ce
C

I c
on

fid
en

ce
 in

te
rv

al
, N

K
 n

at
ur

al
 k

ill
er

, S
D

 st
an

da
rd

 d
ev

ia
tio

n

M
on

th
 0

M
on

th
 3

C
oe

ff.
95

%
 C

I
M

on
th

 6
C

oe
ff.

95
%

 C
I

M
on

th
 1

2
C

oe
ff.

95
%

 C
I

M
on

th
 2

4
C

oe
ff.

95
%

 C
I

N
um

be
r o

f 
pa

tie
nt

s
46

19
27

32
14

Ly
m

ph
o-

cy
te

s, 
m

ea
n ±

 S
D

10
29

 ±
 68

9
55

8 ±
 37

2
−

48
2.

19
−

69
6.

34
−

26
8.

05
41

7 ±
 22

5
−

56
6.

57
−

75
4.

63
−

37
8.

51
35

9.
98

 ±
 15

3.
64

−
65

3.
90

−
83

1.
59

−
47

6.
22

30
0 ±

 83
−

70
5.

66
−

94
6.

35
−

46
4.

97

T 
ly

m
ph

o-
cy

te
, 

m
ea

n ±
 S

D

57
.3

5 ±
 18

.0
6

48
.7

4 ±
 13

.6
8

−
8.

86
−

16
.1

7
−

1.
56

38
.4

8 ±
 16

.2
5

−
17

.2
5

−
23

.6
3

−
10

.8
7

38
.3

4 ±
 18

−
18

.6
7

−
24

.6
8

−
12

.6
6

35
.9

3 ±
 14

.5
−

21
.1

8
−

29
.4

3
−

12
.9

4

B
 ly

m
ph

o-
cy

te
s, 

m
ea

n ±
 S

D

9.
85

 ±
 6.

76
4.

76
 ±

 3.
15

−
3.

77
−

6.
02

−
1.

53
7.

3 ±
 5.

5
−

2.
56

−
4.

52
−

0.
60

7 ±
 5.

61
−

2.
51

3
−

4.
35

−
0.

67
7.

43
 ±

 6.
44

−
2.

89
−

5.
44

−
0.

35

C
D

4+
  ly

m
-

ph
oc

yt
es

, 
m

ea
n ±

 S
D

36
.7

2 ±
 16

.3
8

19
.3

7 ±
 11

.7
7

−
16

.8
7

−
23

.3
1

−
10

.4
3

18
.5

2 ±
 10

.3
4

−
18

.1
0

−
23

.9
5

−
12

.4
1

15
 ±

 9.
36

−
21

.6
5

−
27

.0
5

−
16

.2
6

12
.6

4 ±
 7.

08
−

24
.3

6
−

31
.5

7
−

17
.1

5

C
D

8+
  ly

m
-

ph
oc

yt
es

, 
m

ea
n ±

 S
D

16
.9

1 ±
 6.

73
23

.5
3 ±

 9.
57

5.
47

1.
91

9.
03

15
.7

4 ±
 8.

51
−

0.
25

−
3.

35
2.

85
16

.9
4 ±

 11
.0

7
−

0.
32

−
3.

25
2.

59
18

 ±
 11

.2
2

1.
02

−
3.

00
5.

05

C
D

4/
C

D
8 

ra
tio

, 
m

ea
n ±

 S
D

2.
46

 ±
 1.

49
1.

08
 ±

 1.
3

−
1.

02
−

1.
60

−
0.

44
1.

75
 ±

 1.
71

−
0.

68
−

1.
17

−
0.

18
1.

24
 ±

 1.
23

−
1.

11
−

1.
61

−
0.

61
1.

21
 ±

 1.
82

−
4.

36
−

6.
55

−
2.

17

N
K

 ly
m

-
ph

oc
yt

es
, 

m
ea

n ±
 S

D

14
.6

1 ±
 11

.3
1

29
.4

7 ±
 17

.2
5

13
.9

2
6.

84
21

.0
0

28
.6

9 ±
 14

.1
9

13
.7

5
7.

48
20

.0
2

34
.2

2 ±
 19

.6
2

19
.3

5
13

.5
1

25
.1

8
33

.3
6 ±

 20
.1

6
18

.4
7

10
.4

9
26

.4
5

C
D

3+
C

D
20

+
 

ly
m

ph
oc

yt
es

, 
m

ea
n ±

 S
D

0.
32

 ±
 0.

63
0.

12
 ±

 0.
24

−
0.

19
−

0.
43

0.
06

0.
11

 ±
 0.

41
−

0.
20

−
0.

42
0.

02
0.

08
 ±

 0.
44

−
0.

24
−

0.
45

−
0.

03
0 ±

 0
−

0.
32

−
0.

59
−

0.
04

N
aï

ve
 

re
gu

la
to

ry
 

T 
ce

lls
, 

m
ea

n ±
 S

D

0.
18

 ±
 0.

31
0.

08
 ±

 0.
15

−
0.

1
−

0.
20

0.
00

2
0.

07
 ±

 0.
1

−
0.

12
−

0.
21

−
0.

02
0.

03
 ±

 0.
07

−
0.

16
−

0.
24

−
0.

07
0.

03
 ±

 0.
06

−
0.

15
−

0.
27

−
0.

04

M
em

or
y 

re
gu

la
to

ry
 

T 
ce

lls
, 

m
ea

n ±
 S

D

0.
7 ±

 0.
45

0.
59

 ±
 0.

58
−

0.
11

−
0.

43
0.

20
1.

01
 ±

 0.
81

0.
30

0.
02

0.
58

0.
79

 ±
 0.

71
0.

09
−

0.
18

0.
36

0.
54

 ±
 0.

35
−

0.
16

−
0.

51
0.

19

N
aï

ve
 

re
gu

la
to

ry
 

B
 c

el
ls

, 
m

ea
n ±

 S
D

0.
52

 ±
 0.

71
0.

63
 ±

 0.
49

0.
28

−
0.

33
0.

90
1.

33
 ±

 1.
16

0.
84

0.
30

1.
38

1.
53

 ±
 1.

7
1.

03
0.

51
1.

54
1.

98
 ±

 2.
32

1.
49

0.
80

2.
18

M
em

or
y 

re
gu

la
to

ry
 

B
 c

el
ls

, 
m

ea
n ±

 S
D

1.
17

 ±
 1.

54
0.

41
 ±

 0.
62

−
0.

57
−

0.
97

−
0.

17
0.

49
 ±

 0.
65

−
0.

63
−

1.
00

−
0.

28
0.

47
 ±

 0.
8

−
0.

61
−

0.
94

−
0.

28
0.

41
 ±

 0.
53

−
0.

78
−

1.
24

−
0.

33



4288 Journal of Neurology (2024) 271:4281–4291

Ta
bl

e 
4 

 A
ss

oc
ia

tio
n 

be
tw

ee
n 

lo
ng

itu
di

na
l l

ym
ph

oc
yt

es
 a

nd
 d

is
ab

ili
ty

 p
ro

gr
es

si
on

 in
 m

ul
tip

le
 sc

le
ro

si
s p

at
ie

nt
s t

re
at

ed
 w

ith
 si

po
ni

m
od

C
oe

ffi
ci

en
ts

 a
nd

 9
5%

 C
I w

er
e 

ob
ta

in
ed

 th
ro

ug
h 

ag
e-

, s
ex

-, 
ge

no
ty

pe
 a

nd
 D

M
T 

ca
te

go
ry

-c
or

re
ct

ed
 g

en
er

al
is

ed
 li

ne
ar

 m
ix

ed
-e

ffe
ct

 re
gr

es
si

on
 m

od
el

s u
si

ng
 b

as
el

in
e 

va
lu

es
 a

s r
ef

er
en

ce

M
on

th
 3

M
on

th
 6

M
on

th
 1

2
M

on
th

 2
4

C
oe

ff.
95

%
 C

I
C

oe
ff.

95
%

 C
I

C
oe

ff.
95

%
 C

I
C

oe
ff.

95
%

 C
I

Ly
m

ph
oc

yt
es

 N
on

 p
ro

gr
es

si
ng

−
50

2.
83

−
74

2.
51

−
26

3.
15

−
60

0.
45

−
80

9.
16

−
39

1.
74

−
63

6.
80

−
84

2.
64

−
43

0.
95

−
64

0.
34

−
95

7.
37

−
32

3.
31

 P
ro

gr
es

si
ng

−
41

9.
31

−
87

7.
45

38
.8

3
−

38
0.

42
−

80
1.

75
40

.9
0

−
64

6.
08

−
99

3.
03

−
29

9.
12

−
67

5.
31

−
10

71
.5

2
−

27
9.

09
B

 ly
m

ph
oc

yt
es

 N
on

 p
ro

gr
es

si
ng

−
3.

71
5

−
6.

23
−

1.
20

−
2.

28
−

4.
44

−
0.

11
−

2.
86

−
4.

99
−

0.
73

−
4.

22
−

7.
52

−
0.

93
 P

ro
gr

es
si

ng
−

3.
87

−
8.

65
0.

91
−

4.
34

−
8.

73
0.

04
−

1.
83

−
5.

38
1.

72
−

1.
23

−
5.

33
2.

86
C

D
8+

 ly
m

ph
oc

yt
es

 N
on

 p
ro

gr
es

si
ng

5.
40

1.
45

9.
36

0.
69

−
2.

72
4.

11
−

0.
06

−
3.

43
3.

30
−

0.
59

−
5.

78
4.

61
 P

ro
gr

es
si

ng
5.

12
−

2.
42

12
.6

5
−

3.
95

−
10

.8
6

2.
96

−
1.

03
−

6.
64

4.
58

2.
85

−
3.

61
9.

31
C

D
4+

 ly
m

ph
oc

yt
es

 N
on

 p
ro

gr
es

si
ng

−
15

.7
0

−
22

.9
3

−
8.

47
−

16
.7

3
−

23
.0

7
−

10
.4

0
−

20
.0

3
−

26
.2

8
−

13
.7

8
−

22
.4

5
−

32
.0

4
−

12
.8

6
 P

ro
gr

es
si

ng
−

20
.6

1
−

34
.4

2
−

6.
79

−
23

.2
8

−
36

.0
2

−
10

.5
5

−
26

.2
0

−
36

.7
9

−
15

.6
0

−
27

.8
4

−
39

.8
6

−
15

.8
1

C
D

4/
C

D
8 

ra
tio

 N
on

 p
ro

gr
es

si
ng

−
1.

20
−

1.
81

−
0.

58
−

0.
80

−
1.

33
−

0.
26

−
1.

05
−

1.
58

−
0.

53
−

1.
45

−
2.

27
−

0.
64

 P
ro

gr
es

si
ng

−
1.

10
−

2.
28

0.
08

−
0.

72
−

1.
80

0.
36

−
1.

30
−

2.
19

−
0.

43
−

1.
56

−
2.

58
−

0.
55

N
at

ur
al

 k
ill

er
 ly

m
ph

oc
yt

es
 N

on
 p

ro
gr

es
si

ng
11

.8
5

3.
79

19
.9

2
13

.7
8

6.
79

20
.7

8
15

.6
8

8.
79

22
.5

7
22

.6
2

11
.9

8
33

.2
6

 P
ro

gr
es

si
ng

12
.1

7
−

3.
24

27
.5

7
14

.0
0

−
0.

14
28

.1
5

22
.5

5
10

.9
9

34
.1

0
12

.3
1

−
0.

95
25

.5
7

C
D

3+
C

D
20

+
 ly

m
ph

oc
yt

es
 N

on
 p

ro
gr

es
si

ng
−

0.
17

−
0.

45
0.

10
−

0.
29

−
0.

53
−

0.
05

−
0.

23
−

0.
47

0.
00

4
−

0.
39

−
0.

75
−

0.
02

 P
ro

gr
es

si
ng

−
0.

20
−

0.
72

0.
32

0.
12

−
0.

36
0.

60
−

0.
29

−
0.

69
0.

12
−

0.
31

−
0.

77
0.

15
N

aï
ve

 re
gu

la
to

ry
 T

 c
el

ls
 N

on
 p

ro
gr

es
si

ng
8.

71
2.

61
14

.8
1

8.
38

3.
08

13
.6

9
11

.8
0

6.
57

17
.0

3
8.

95
0.

89
17

.0
1

 P
ro

gr
es

si
ng

9.
60

−
2.

06
21

.2
6

6.
02

−
4.

69
16

.7
4

9.
15

0.
36

17
.9

5
3.

58
−

6.
48

13
.6

4
M

em
or

y 
re

gu
la

to
ry

 T
 c

el
ls

 N
on

 p
ro

gr
es

si
ng

−
7.

64
−

13
.5

2
−

1.
76

−
9.

02
−

14
.1

2
−

3.
92

−
10

.0
3

−
15

.0
6

−
5.

00
−

5.
32

−
13

.0
8

2.
43

 P
ro

gr
es

si
ng

−
10

.8
8

−
22

.1
1

0.
35

−
10

.7
6

−
21

.0
7

−
0.

44
−

7.
11

−
15

.5
5

1.
33

−
0.

24
−

9.
91

9.
43

N
aï

ve
 re

gu
la

to
ry

 B
 c

el
ls

 N
on

 p
ro

gr
es

si
ng

0.
21

−
0.

48
0.

89
0.

86
0.

26
1.

45
0.

91
0.

31
1.

51
0.

90
−

0.
00

6
1.

81
 P

ro
gr

es
si

ng
0.

55
−

0.
76

1.
86

0.
56

−
0.

65
1.

76
1.

29
0.

30
2.

28
2.

26
1.

13
3.

39
M

em
or

y 
re

gu
la

to
ry

 B
 c

el
ls

 N
on

 p
ro

gr
es

si
ng

−
0.

54
−

0.
99

−
0.

09
−

0.
61

−
1.

00
−

0.
22

−
0.

64
−

1.
03

−
0.

25
−

0.
60

−
1.

19
−

0.
01

 P
ro

gr
es

si
ng

−
0.

67
−

1.
53

0.
18

−
0.

70
−

1.
48

0.
09

−
0.

51
−

1.
15

0.
13

−
0.

97
−

1.
70

−
0.

23



4289Journal of Neurology (2024) 271:4281–4291 

siponimod treatment and the trajectory of lymphocytes 
changes over time. Specifically, we reported that patients 
presenting with disability progression showed a reduced 
effect of siponimod on B cells, CD3+CD20+ lymphocytes 
and naive regulatory B cells.

While the association with the lack of effect on B cells 
in patients with disability accrual was quite expected, 
given that the only other drug showing efficacy in halting 
disability progression in MS is the anti-CD20 ocrelizumab 
[27], the effect on CD3+CD20+ cells is quite intriguing 
and novel. CD3+CD20+ cells derive from the trogocy-
tosis occurring during the B mediated-T cell activation 
process, which is when B and T cells get in contact for 
the activation of T cells, these latter steal part of the B 
cell membrane, thus co-expressing CD20 antigen on their 
surface [28].

Some evidence showed that CD3+CD20+ cells have pro-
inflammatory activity and could play a role in pathogenesis 
of autoimmune disorders. For example, higher levels were 
found in psoriasis, rheumatoid arthritis and Sjogren’s dis-
ease [29]. Previous reports have already demonstrated that 
in patients with MS, higher levels of CD3+CD20+ cells 
are associated with an up-regulation of production of pro-
inflammatory cytokines, such as IFN-γ, GM-CSF, IL-17, 
and TNFα [30]. Moreover, CD3+CD20+ cells are present 
in blood and chronic brain lesions of MS patients [31], and 
their level was higher in PPMS compared with healthy con-
trols, correlating with EDSS [6]. This evidence indicated 
that CD3+CD20+ cells may play a role in progression of 
MS and hence they deserve to be further investigated.

T and B regulatory cells appear to sustain immune tol-
erance, through production of anti-inflammatory cytokines 
(e.g., IL-10), but their role in MS pathogenesis is still poorly 
understood [32].

In patients with MS, T regulatory cells are found to be 
increased in the CSF [33], but not in peripheral blood. How-
ever, RRMS patients showed reduced naïve T regulatory 
cells in favor of memory T regulatory [34], whilst in pro-
gressive stages of disease, T regulatory cells showed recov-
ery of their normal function [35].

On the other hand, contradictive reports have been pub-
lished about B regulatory cells levels in MS patients [36]. 
However, B regulatory cells in MS patients showed a reduc-
tion in production of IL-10 compared to controls [37].

DMTs seem to affect these subpopulations in a peculiar 
way. Fingolimod, for example, affects regulatory lympho-
cyte populations, as it leads to increase of both B and T 
regulatory cells [38, 39]. Similarly, in our study siponimod 
induced a significant change in B and T regulatory popula-
tions in aSPMS patients, in particular an increasing of naïve 
regulatory B cells and memory regulatory T cells. Moreover, 
patients experiencing disability progression while on siponi-
mod treatment did not show increase in naïve regulatory B 

cells and reduction in memory regulatory B cells. Although 
these results point towards a role of these cells in progres-
sion of disease, more studied are needed to confirm our 
finding.

Although in our study we mostly focused on the asso-
ciation between lymphocyte changes and overt disability 
accrual, it would be interesting also to explore the associa-
tion between lymphocyte changes and other biological and 
clinical factors associated with progression. For example, 
it would be intriguing to explore the association between 
lymphocyte changes, especially those relevant for the EDSS 
progression and invisible symptoms associated with progres-
sion such as fatigue, cognition and depressive symptoms. 
Furthermore, it would be even more interesting to evaluate 
the association between lymphocyte changes and advanced 
MRI metrics such as paramagnetic rim lesion and slowly 
expanding lesions. Previous studies have clearly demon-
strated the association between paramagnetic rim lesion and 
slowly expanding lesions with EDSS progression, and the 
predictive value of these metrics [40–44]. In our study we 
could not assess such an association, nor we could exclude 
the occurrence of overt MRI inflammation during follow-
up, since we did not properly collect MRI scans in a stand-
ardised fashion. Therefore, future studies could be able to 
assess the presumptive association further emphasizing the 
possible predictive value of lymphocytes subset related to 
disability accrual.

We do acknowledge that this study is not without limita-
tions. First, whilst this is a longitudinal study, patients did 
not strictly adhere to the study timelines resulting in differ-
ent numbers of patients at different timepoints. However, to 
counteract this limitation we modelled trajectories using a 
mixed-linear statistical model. Secondly, we did not collect 
any MRI finding which could be helpful to further elucidate 
the role of lymphocyte populations on different pathologi-
cal processes underpinning MS. Thirdly, sample size for 
controls is quite limited and we only obtained laboratory 
sample at baseline in this population, thus possibly limiting 
the assessment of lymphocyte changes in siponimod-treated 
patients. However, lymphocyte changes were assessed 
against baseline thus accounting for possible inter-subjects 
variability.

Finally, patients undergoing siponimod treatment may 
have received previous DMTs that could also impact on lym-
phocyte subsets, thus biasing our results. However, we used 
DMT category as covariate to account for this possible bias.

Future multicentre studies with higher sample size are 
needed to investigate lymphocyte changes in aSPMS while 
on siponimod treatment, eventually using healthy subjects, 
aSPMS, non-active SPMS or SPMS patients not taking 
DMT as the comparator.

In conclusion, in our study, we observed that patients with 
aSPMS treated with siponimod had decreased number of 
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both naïve T and B cells, an increased number of regula-
tory B and T cells, as well as a reduced rate of circulating 
CD3+CD20+ cells over 2-year follow-up. Moreover patients 
that experienced disability progression while on siponimod 
treatment did not demonstrate reduction in B lymphocytes 
and CD3+CD20+ lymphocytes. Therefore, the analysis 
of lymphocyte subpopulations in peripheral blood in MS 
patients could be a biomarker for treatment efficacy, espe-
cially in those patients with progressive disease course.
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