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Abstract 

Objectives  Extraprostatic extension (EPE) of prostate cancer (PCa) is predicted using clinical nomograms. Incorpo-
rating MRI could represent a leap forward, although poor sensitivity and standardization represent unsolved issues. 
MRI radiomics has been proposed for EPE prediction. The aim of the study was to systematically review the literature 
and perform a meta-analysis of MRI-based radiomics approaches for EPE prediction.

Materials and methods  Multiple databases were systematically searched for radiomics studies on EPE detection 
up to June 2022. Methodological quality was appraised according to Quality Assessment of Diagnostic Accuracy 
Studies 2 (QUADAS-2) tool and radiomics quality score (RQS). The area under the receiver operating characteristic 
curves (AUC) was pooled to estimate predictive accuracy. A random-effects model estimated overall effect size. Sta-
tistical heterogeneity was assessed with I2 value. Publication bias was evaluated with a funnel plot. Subgroup analyses 
were performed to explore heterogeneity.

Results  Thirteen studies were included, showing limitations in study design and methodological quality (median 
RQS 10/36), with high statistical heterogeneity. Pooled AUC for EPE identification was 0.80. In subgroup analysis, test-
set and cross-validation-based studies had pooled AUC of 0.85 and 0.89 respectively. Pooled AUC was 0.72 for deep 
learning (DL)–based and 0.82 for handcrafted radiomics studies and 0.79 and 0.83 for studies with multiple and single 
scanner data, respectively. Finally, models with the best predictive performance obtained using radiomics features 
showed pooled AUC of 0.82, while those including clinical data of 0.76.

Conclusion  MRI radiomics–powered models to identify EPE in PCa showed a promising predictive performance 
overall. However, methodologically robust, clinically driven research evaluating their diagnostic and therapeutic 
impact is still needed.

Clinical relevance statement  Radiomics might improve the management of prostate cancer patients increasing 
the value of MRI in the assessment of extraprostatic extension. However, it is imperative that forthcoming research 
prioritizes confirmation studies and a stronger clinical orientation to solidify these advancements.

Key Points 

• MRI radiomics deserves attention as a tool to overcome the limitations of MRI in prostate cancer local staging.

• Pooled AUC was 0.80 for the 13 included studies, with high heterogeneity (84.7%, p < .001), methodological issues, and poor  
  clinical orientation.
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• Methodologically robust radiomics research needs to focus on increasing MRI sensitivity and bringing added value to  
  clinical nomograms at patient level.

Keywords  Magnetic resonance imaging, Prostatic neoplasms, Neoplasm staging

Introduction
Prostate MRI has reshaped prostate cancer (PCa) diag-
nostic pathway, as the “MRI-first” approach is increas-
ingly gaining recognition as standard-of-care, with lesion 
detection to be performed following acknowledged MRI 
guidelines (Prostate Imaging-Reporting and Data Systems 
version 2.1 (PI-RADS v2.1)) [1, 2]. As for local staging, 
MRI-based grading systems for extraprostatic exten-
sion (EPE) detection appear promising, with suspicious 
imaging features mainly represented by tumor capsular 
contact length, capsular bulge/irregularity, and frank cap-
sular breach [3–7]. Nevertheless, present guidelines still 
base pre-treatment local staging (cT) assessment exclu-
sively on digital rectal examination findings, with only a 
weak recommendation to the use of MRI in this setting 
[8, 9]. This might be partly due to the lack of standardiza-
tion affecting the ability of radiologists to detect EPE on 
MRI, as well as to the reported poor sensitivity [3, 10]. 
The adoption of different clinical nomograms differently 
incorporating cT, patient’s demographics, and labora-
tory and biopsy findings is widespread as a tool for EPE 
prediction and overall risk stratification, but these do not 
include imaging features [11]. However, in external vali-
dation cohorts, multivariate risk calculators accounting 
for MRI features have shown significantly higher perfor-
mance compared to clinical nomograms [12, 13].

Novel MRI biomarkers and advanced quantitative tech-
niques have been recently investigated to further enhance 
the value of MRI for EPE detection and possibly over-
come current limits [14–26]. In particular, radiomics is 
a novel approach that can translate images into valuable 
quantitative datasets by the analysis of many mathemati-
cal parameters describing different MR image properties 
[27]. Furthermore, the application of artificial intelli-
gence (AI) and machine learning (ML) may improve the 
discovery of task-specific features such as anatomic 
localization, tumor contacting, neurovascular bundles, 
or direct evidence of abnormalities in periprostatic soft 
tissue. However, AI in medicine is facing a reproducibil-
ity crisis which is hindering the translation of radiomics 
research into clinical practice, with the scientific com-
munity advocating for more robust methodology in the 
field [28–32]. Additionally, radiomics studies should be 
specifically designed to address unsolved clinical needs. 
In the case of EPE prediction, this would mean contextu-
alizing the possible added value of radiomics compared 
to current standard (i.e., cT and/or clinical nomograms) 

as well as possibly viable alternatives (i.e., conventional 
MRI approaches).

In this light, we performed a systematic review and 
meta-analysis aiming to provide insights into MRI-based 
radiomics approaches for EPE prediction, by estimating 
their performance, exploring their heterogeneity, sum-
marizing the main factors impacting the diagnostic accu-
racy, and focusing on those methodological and study 
design shortcomings that must be addressed to increase 
their clinical value.

Materials and methods
This meta-analysis followed the PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Anal-
yses) statement (supplementary material for PRISMA 
Checklist) [33]. The review protocol is registered on 
PROSPERO (CRD42023392319) [34].

Literature search and study selection
An English literature search was performed using the 
PubMed, Embase, Scopus, and Web of Science databases 
to identify articles published until June 30th, 2022. The 
study search was restricted to data obtained in humans 
and conducted using the following key words with 
their variations: “Magnetic Resonance Imaging,” “MRI,” 
“Prostate cancer,” “Machine Learning,” “Radiomics,” and 
“Extraprostatic.” The full search strategy is presented in 
the supplementary materials. The title and abstract of 
potentially relevant studies were screened for appropri-
ateness before retrieval of the full article by two reviewers 
(M.G. and A.S.) and disagreements were discussed with 
a third reviewer (A.P.) to reach a consensus. The full-
published reports of the abstracts selected by the review-
ers were retrieved and the same reviewers independently 
performed a second-step selection based on the inclu-
sion criteria; disagreements were resolved by consensus. 
Furthermore, in accordance with PRISMA guidelines, 
the bibliographies of retrieved articles were manually 
reviewed to identify additional items meeting inclusion 
criteria.

Data extraction and eligibility
Data from the included studies was collected in a data-
base. Each study was initially identified considering 
author, journal, and year of publication. Total patient 
population, number of positive and negative cases, study 
type, and MRI field strength were recorded. Furthermore, 
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information regarding the radiomics and ML pipeline, 
MRI sequences included, lesion segmentation details, 
image and data preprocessing steps, feature extraction, 
feature selection, algorithm, prediction model, and vali-
dation strategy were collected. Additionally, the follow-
ing details regarding study design were also registered: 
(1) whether the radiomics predictive model incorporated 
non-radiomics characteristics and if so their specif-
ics; (2) whether a comparison with clinical nomograms 
and/or conventional imaging assessment was performed 
to investigate the added value of radiomics. Finally, rel-
evant accuracy metrics were extracted for the subsequent 
pooled analysis. No minimum sample size was chosen for 
inclusion. A study was included if all the following crite-
ria were met: (1) an analysis focused on EPE prediction 
was presented; (2) information on area under the receiver 
operating curve (AUC) and total number of positive and 
negative cases, respectively defined as patients with or 
without EPE included in the analysis, were reported; (3) 
clear definition of the dataset used in the study and input 
data source. For the purposes of data pooling, in case 
of studies reporting data for either internal or external 
test-set, we considered them separately, while if differ-
ent models were built, the one with the best predictive 
performance was selected. Reviews, editorials, abstracts, 
animal studies, conference presentations, and studies not 
focused on the topic of interest, published in languages 
other than English, or presenting insufficient data for 
pooling were excluded.

Data quality assessment
The methodological assessment of the quality of eligible 
studies was performed by two reviewers independently 
(A.S. and A.P.), according to the Quality Assessment of 
Diagnostic Accuracy Studies 2 (QUADAS-2) tool [35] 
and radiomics quality score (RQS) [36]. The QUADAS-2 
tool offers obvious grades of bias and applicability of pri-
mary diagnostic accuracy studies. It comprises four sig-
nificant domains, namely (1) patient selection; (2) index 
test; (3) reference standard; and (4) the flow and timing. 
Each domain contains several signal questions used to 
help judge the risk of bias (low, high, or unclear). The 
two reviewers completed the screening process indepen-
dently. Disagreement in the process of answering ques-
tions was discussed until consensus was reached. The 
RQS represents a system of metrics for the overall evalu-
ation of the methodological validity and thoroughness of 
radiomics-based studies, and has been adopted in differ-
ent topics, mainly focused on oncology [37, 38]. It con-
sists of 16 items regarding different steps in the workflow 
of radiomics. The summed total score ranges between − 8 
and 36, while the percentage is calculated on a 0–36 
scale.

Statistical analysis
The predictive accuracy (predicting presence of EPE) 
was quantified using the AUC for the receiver operating 
characteristic curve analysis. For each of the included 
studies, the AUC was extracted with corresponding 95% 
confidence intervals. The AUC standard error was cal-
culated from the total number of positive and negative 
EPE patients. The I2 value was used to assess statisti-
cal heterogeneity, providing an estimate of the percent-
age of variability among included studies. I2 values of 
0–25%, 25–50%, 50–75%, and > 75% represent very low, 
low, medium, and high heterogeneity, respectively. I2 was 
calculated as follows: I2 = 100% × (Q − df) / Q, where Q is 
Cochran’s heterogeneity statistic and df the degrees of 
freedom. The weight of each study was calculated with 
the inverse variance method, in which the weight given 
to each study is chosen to be the inverse of the variance 
of the effect estimate, minimizing the uncertainty of the 
pooled effect estimate. Pooling of studies was conducted, 
and effect size assessed using a random-effects model, 
which allows to estimate the distribution of true effects 
between studies accounting for heterogeneity. Publica-
tion bias was explored using the effective sample size 
funnel plot described by Egger et  al Two-sided p val-
ues ≤ 0.05 were considered statistically significant [39]. 
Subgroup analyses were also performed in relation to the 
use of dedicated test-set or not, deep learning (DL) or 
not, single or multiple scanners, and if the best predictive 
models only included radiomics features or if they com-
bined radiomics features with clinical data.

Results
Study selection and data extraction
The complete literature search process is presented in 
Fig.  1. In brief, the initial search identified 260 poten-
tially eligible citations. After removing duplicates, 206 
records were screened by the reviewers. After the titles 
and abstracts evaluation, 192 citations were discharged 
because they were judged to be non-relevant or non-
pertinent. Thus, 14 full-text articles were blindly assessed 
by each investigator for eligibility. After revision, 2 arti-
cles were excluded leaving 12 articles. Furthermore, after 
screening the reference lists of the eligible studies, we 
identified one additional article that had not been ini-
tially captured in our initial search, despite the presence 
of the selected keywords. Finally, 13 items were the basis 
of the present meta-analysis [14–26].

The baseline characteristics of the included studies 
are shown in Tables 1 and 2. Briefly, 3 studies involved 
more than one institution [14, 15, 19], while 6 inves-
tigations adopted multiple scanners [14, 15, 17, 19, 
21, 22]. Regarding MRI field strength, a 3-T scanner 
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was mostly adopted (10/13) [14, 17–19, 21–26], while 
one study was conducted on both 1.5-T and 3-T scan-
ners [15]. Only 1 study used a semi-automatic lesion 
segmentation approach [16], while the remaining 

investigations performed either 3D-manual segmenta-
tion [14, 15, 17, 18, 21, 22, 24–26] or a combination of 
manual and automatic approach [20]. Details regard-
ing the study design are presented in Supplementary 

Fig. 1  Literature search and study selection process flowchart

Table 1  Baseline characteristics of the included studies (1)

EPE, extraprostatic extension; T2w, T2-weighted; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; DCE, dynamic contrast enhanced

Study type Field strength EPE (n) No EPE (n) Sequences Lesion segmentation

Bai [14] Multi-center/multiple scanners 3.0 T 112 172 T2w, ADC Manual-3D

Cuocolo [15] Multi-center/multiple scanners 1.5 T/3.0 T 76 117 T2w, ADC Manual-3D

Damascelli [16] Single-center/single scanner 1.5 T 38 24 T2w, ADC Semi-automatic-3D

Fan [17] Single-center/multiple scanners 3.0 T 50 182 T2w, DWI, DCE Manual-3D

He [18] Single-center/single scanner 3.0 T 113 160 T2w, ADC Manual-3D

Hou [19] Multi-center/multiple scanners 3.0 T 142 658 T2w, DWI, ADC Manual-2D

Losnegård [20] Single-center/single scanner 1.5 T 86 142 T2w, ADC, DCE Manual-3D, automatic

Ma [21] Single-center/multiple scanners 3.0 T 101 109 T2w, DWI, DCE Manual-3D

Ma [22] Single-center/multiple scanners 3.0 T 100 138 T2w Manual-3D

Moroianu [23] Single-center/single scanner 3.0 T 38 85 T2w, ADC Manual-2D

Shiradkar [24] Single-center/single scanner 3.0 T 23 22 T2w Manual-3D

Stanzione [25] Single-center/single scanner 3.0 T 16 23 T2w, ADC Manual-3D

Xu et al [26] Single-center/single scanner 3.0 T 49 66 T2w, DWI, ADC, DCE Manual-3D
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Tables 1 and 2. Finally, 9 studies had a dedicated test-
set [14, 15, 17–19, 21–23, 26].

Data quality assessment
The methodological quality assessment of risk of bias 
within eligible studies according to QUADAS-2 is shown 
in Fig. 2. In particular, risk of bias due to patient selection 

was unclear in six studies because a statement on con-
secutive or random selection was not present [14, 16, 17, 
23, 24, 26]. Regarding index test domain, the risk of bias 
was unclear in seven studies due to the lack of preproc-
essing details [14, 18–22, 26], while it was high in three 
studies who did not test feature robustness [17, 24, 25]. 
Only one study had an unclear risk of bias for providing 

Table 2  Baseline characteristics of the included studies (2)

§ In case of multiple models, the one with the best performance was reported, ^ internal test-set, * external test-set 1, ° external test-set 2

NR, not reported; VA, variance analysis; IA, intensity analysis; MRMR, maximum relevance minimum redundancy; LASSO, least absolute shrinkage and selection 
operator; SVM, support vector machine; HCA, hierarchical clustering analysis; RFE, recursive feature elimination; RF, random forest; LR, logistic regression; DL, deep 
learning

Feature 
extraction 
(software)

Image 
preprocessing

Data 
preprocessing

Feature selection Algorithm Model§ Validation AUC§

Bai [14] First- and  
higher-order 
(PyRadiomics)

Resampling, 
intensity  
normalization

NR Feature stability, VA, 
IA + MRMR

LASSO regression Combined Test-set 0.72^

0.68*

Cuocolo [15] First- and  
higher-order, shape 
(PyRadiomics)

Resampling, 
intensity  
normalization, 
and discretization

Feature scaling 
and class 
balancing

Feature stability, 
VA, and IA + subset 
evaluator

SVM Radiomics Test-set 0.80*

0.73°

Damascelli [16] First- and  
higher-order, 
shape (3D slicer)

Resampling, 
intensity 
standardization, 
normalization, 
and discretization

NR Feature stability, VA Unsupervised 
HCA, SVM

Radiomics Cross-validation 0.98

Fan [17] First- and  
higher-order, shape 
(PyRadiomics)

NR NR MRMR, RFE based 
on RF

RF Combined Test-set 0.85

He [18] First- and  
higher-order, shape 
(PyRadiomics)

Intensity  
normalization

Feature scaling Feature stability test-
ing, VA, and IA + MRMR

LR Combined Test-set 0.73

Hou [19] Deep radiomics Resampling, 
intensity  
normalization

NR NA DL network Radiomics Test-set 0.81^

0.73*

Losnegård [20] First- and  
higher-order 
(Matlab)

Discretization NR RF RF Combined Cross-validation 0.80

Ma [21] First- and  
higher-order 
(Matlab)

NR NR Feature stability 
and Kendall  
correlation analysis

LASSO regression Radiomics Test-set 0.88

Ma [22] First- and  
higher-order 
(Matlab)

Intensity  
normalization

NR Feature stability 
and Kendall  
correlation analysis

LASSO regression Radiomics Test-set 0.82

Moroianu [23] Deep radiomics Registration,  
resampling,  
intensity 
standardization, 
and normalization

NA NA DL network Radiomics Test-set 0.54

Shiradkar [24] First- and  
higher-order 
(Matlab)

Intensity  
standardization

Feature scaling Wilcoxon, IA + JMI SVM Radiomics Cross-validation 0.88

Stanzione [25] First- and  
higher-order 
(PyRadiomics)

Intensity  
normalization

NR Subset evaluator Bayesian Network Radiomics Cross-validation 0.88

Xu [26] First- and  
higher-order  
(PyRadiomics)

Resampling NR Feature  
stability + MRMR

LASSO regression Radiomics Test-set 0.87
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very few details regarding reference standard [24]. In five 
cases, the authors did not clearly report the time passed 
between MRI and radical prostatectomy, receiving an 
unclear risk of bias [14, 16, 17, 23, 24]. As for applicability 
concerns, one study scored at unclear risk of bias for the 
lack of sufficient details regarding patient selection and 
reference standard [24].

The methodological quality assessment of the 
included studies according to RQS is shown in Supple-
mentary Table 3. The total RQS ranged from 0 to 33% 
of the maximum rating, with a median score of 10/36 
(interquartile range 11). The RQS was low especially 

due to the lack of prospective design (all studies were 
retrospective) and of comparison with gold standard. 
All investigations performed discriminations statistics 
while none of them made their code or data publicly 
available.

Statistical analysis
The radiomics models for EPE characterization showed 
an overall pooled AUC = 0.80 (95% CI = 0.74–0.86) 
(Fig. 3). Study heterogeneity was 84.7% (p < 0.001).

Subgroup analysis was performed to compare 
studies employing a dedicated test-set within their 

Fig. 2  Methodological quality of the included studies assessed according to the Quality Assessment of Diagnostic Accuracy Studies 2 tool for risk 
of bias and applicability concerns. The green circle represents the low risk of bias, the yellow circle the unclear risk of bias, and the red circle the high 
risk of bias
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pipeline and those who did not. Four studies belonged 
to the latter group with a pooled AUC of 0.89 (95% 
CI = 0.78–0.99) and heterogeneity of 89.6% (p < 0.001). 
The pooled AUC for the remaining studies was 
0.78 (95% CI = 0.73–0.82) and 46.4% heterogeneity 
(p = 0.038). The corresponding plots are presented in 
Supplementary Fig. 1.

Three studies employed DL within their pipeline 
for EPE assessment, with a pooled AUC of 0.72 (95% 
CI = 0.60–0.84) and heterogeneity of 68.4% (p = 0.042). 
The pooled AUC for the studies not adopting DL was 
0.82 (95% CI = 0.76–0.89) with heterogeneity of 83.7% 
(p < 0.001). The corresponding plots are presented in 
Supplementary Fig. 2.

Nine studies employed multiple scanners with a 
pooled AUC of 0.79 (95% CI = 0.74–0.84) and hetero-
geneity of 32.6% (p = 0.16). The pooled AUC for the 
investigations adopting single scanners was 0.83 (95% 
CI = 0.73–0.92) with heterogeneity of 89.8% (p < 0.001). 
The corresponding plots are presented in Supplemen-
tary Fig. 3.

Finally, the five studies in which the best predic-
tive performance was achieved by combined models 
showed a pooled AUC of 0.76 (95% CI = 0.71–0.82) and 
heterogeneity of 14.8% (p = 0.320). The pooled AUC 
for the remaining studies wherein the best predictive 
performance was obtained with only-radiomics mod-
els was 0.82 (95% CI = 0.75–0.89) with heterogeneity 

Fig. 3  Forest plot of single studies for the pooled area under the curve (AUC) and 95% CI of extraprostatic extension (EPE) characterization. 
Horizontal lines represent 95% confidence interval of the point estimates. The diamond means the pooled AUC estimate. The red dotted vertical 
line represents the overall pooled estimate. ^ internal test-set, * external test-set 1, ° external test-set 2
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of 84.3% (p < 0.001). The corresponding plots are pre-
sented in Supplementary Fig. 4.

Discussion
The present systematic review allowed to identify 13 
studies focused on MRI radiomics applications for EPE 
detection, published between 2019 and 2022, which is 
in line with the growing overall interest in the field [40, 
41]. Most involved more than 100 patients and explored 
the feasibility of a broad spectrum of different algorithms 
and models, with none reporting negative results. Nev-
ertheless, limitations in study design and methodological 
quality were present. In order to be clinically relevant, 
these studies should seek proofs of an added value of 
radiomics for EPE prediction over or in addition to MRI 
and/or currently embraced clinical nomograms. Unfor-
tunately, less than half of the included studies proposed 
a comparison with conventional MRI assessment as per-
formed by a radiologist while only a single study com-
paring the radiomics model with a recognized clinical 
nomogram was found. Similarly, a minority of the studies 
included clinical data in a holistic radiomics model, and 
only one presented a fully integrated prediction model 
obtained combining an established clinical nomogram, 
the radiologist assessment, and MRI radiomics features 
[20]. Finally, none of the studies was specifically designed 
to investigate the possible role of radiomics in filling the 
previously reported sensitivity gap of conventional MRI 
assessment for EPE detection [10]. Regarding methodo-
logical concerns emerged with QUADAS-2, the shortage 
of preprocessing details and lack of test feature robust-
ness represent crucial points, as also highlighted by 
“how to” guides recently published aiming to standard-
ize practice in radiomics [42, 43]. Furthermore, dataset 
quality should be prioritized to avoid the “garbage-in, 
garbage-out” phenomenon, for example, by defining the 
maximum time elapsed between MRI and radical pros-
tatectomy to ensure that EPE cases are reliably classified 
[32]. Using a dedicated tool (RQS), the overall methodo-
logical quality of included studies was found to be het-
erogeneous, with no prospectively designed studies and 
sometimes inadequate validation strategies. Neglected 
items also include investigating biological correlates and 
publicly sharing data, which might allow researchers to 
increase the understanding of how radiomics features 
can play a role for EPE prediction. Indeed, poor explain-
ability is a recognized problem with radiomics, especially 
compared to more understandable MRI quantitative 
parameters, like the apparent diffusion coefficient, that 
have also shown a potential value for EPE prediction 
[44]. However, low RQS scores should not be intended 
as a synonym of poor quality but rather as a guide to 
identify room for improvement; it was also pointed out 

that DL studies might be penalized by this tool specifi-
cally tailored for handcrafted radiomics [45]. In addition 
to the RQS, there are other checklists currently accessi-
ble [46, 47]. For instance, the CLAIM one proves valu-
able in reporting the modeling components of radiomics 
research [46]. Furthermore, CLEAR presents a viable 
alternative, encompassing even more aspects of the stud-
ies comprehensively through a single checklist, with a 
public repository being available to allow the radiom-
ics community to comment on the items and adapt the 
tool for future versions [47]. All those checklists should 
be considered to enhance the quality and dependabil-
ity of radiomics research, and consequently fostering its 
reproducibility.

Overall, our findings are in line with those of a recent 
systematic review which included 11 radiomics studies 
on the topic and similarly underlined the need for greater 
standardization and rigorousness in methodology [48]. 
To their merit, the authors of this previous work also 
included a qualitative synthesis of non-radiomics nomo-
grams for EPE prediction, suggesting a possible added 
value of MRI to clinical data. Approaching this matter 
from an alternative perspective, we further expand the 
knowledge in the field providing a quantitative synthesis 
of the literature that has shown promising results, with a 
pooled AUC of 0.80 for EPE prediction MRI-based radi-
omics models. Different clinical nomograms have been 
proposed for EPE prediction, including the Memorial 
Sloan Kettering Cancer Center nomogram and the Partin 
tables [49, 50]. Nonetheless, these risk stratification tools 
displayed low accuracy and are strictly correlated with 
final histopathologic results, with reported AUCs rang-
ing from 0.61 to 0.81 [51]. In a previous meta-analysis, de 
Rooij et al showed that the pooled sensitivity and speci-
ficity were 0.57 and 0.91 for detection of EPE with pros-
tate MRI [10]. However, the included studies assessed 
EPE with different modalities, including dichotomiza-
tion, Likert scales, or a standardized lexicon. PI-RADS 
also addresses EPE, reporting the suspicious features 
such as tumor contact length, capsule bulging, irregular-
ity, and gross extension, as well as loss of rectoprostatic 
angle [1]. In a recent meta-analysis of ten studies based 
on the ESUR PI-RADS scoring system, Li et al reported 
a pooled AUC of 0.80, with pooled sensitivity and speci-
ficity respectively of 0.71 and 0.76 [52]. Furthermore, a 
3-point EPE grading system has been recently proposed 
by Mehralivand and colleagues [53]. In a meta-analysis of 
four studies using the EPE grading system, Li et  al [51] 
reported a pooled area under the hierarchical summary 
receiver operating characteristic curve of 0.82. Therefore, 
our meta-analysis shows that radiomics models align in 
terms of performance to that of conventional MRI assess-
ment and possibly exceed that of clinical nomograms for 
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the prediction of EPE in PCa, although conflicting data of 
sensitivity and specificity have been reported.

The subgroup analysis showed lower AUCs for stud-
ies with a dedicated (either internal or external) valida-
tion set compared to those without that (0.78 vs 0.89). 
This is unsurprising and widely explained by overfitting, 
a statistical modeling error that occurs when a function 
is too closely aligned to a limited set of data [54]. Con-
versely, a reasonable performance drop is expected when 
testing a model on an independent external dataset, but 
this allows to determine its reproducibility and gener-
alizability which are pivotal for clinical translation [55, 
56]. Furthermore, the subgroup analysis showed better 
predictive values for the models using handcrafted radi-
omics and non-deep ML algorithms compared to those 
that employed DL (AUC, 0.82 vs 0.72). These results 
could be at least in part explained by the intrinsic nature 
of the post-processing ML pipelines, with handcrafted 
radiomics approaches performing comparably or bet-
ter than DL algorithm on relatively small-sized datasets 
[57]. Although new DL algorithms receive much interest 
from the scientific community, greater attention should 
be paid to the quality and size of datasets to choose the 
algorithm that favors the best generalizability of the pre-
dictive model. However, it should also be considered that 
all three studies exploring the predictive performance of 
DL algorithms had a dedicated test-set. Similar predictive 
values were found for studies employing single and multi-
ple scanners to assess EPE (AUC of 0.83 and 0.79 respec-
tively). To allow radiomics crossing the translational 
line between an exploratory investigation method and a 
standardized added value to precision medicine work-
flow, more efforts should be done to overcome issues 
related to multi-scanners and non-uniform scanning 
parameters from different centers. Finally, the counterin-
tuitive finding of the radiomics-clinical vs radiomics-only 
models (AUC respectively 0.76 vs 0.82) may be at least 
partly explained looking at the characteristics of the stud-
ies. Indeed, the highest performances of radiomics-only 
studies were almost exclusively reported in settings with 
no dedicated test-set [16, 21, 24, 25], with one reaching 
an AUC as high as 0.98 [16]. Without a proper independ-
ent validation, the risk of overly optimistic performance 
estimates is not negligible. On the other hand, all but one 
of the radiomics-clinical models [17] were evaluated on 
a test-set, thus possibly showing lower but more reliable 
assessments.

Based on the qualitative and quantitative synthe-
sis conducted, we must acknowledge that the primary 
objective of all the included investigations was to assess 
new algorithms rather than confirming the predic-
tive performance of previously tested radiomics mod-
els. As a result, this has unavoidably led to increased 

heterogeneity. Given the plethora of available radiom-
ics approaches, we strongly advocate for the necessity 
of replicative and confirmatory studies to enhance the 
quality and reliability of radiomics research. Moreo-
ver, it is crucial to prioritize the clinical setting wherein 
radiomics could potentially provide added value. There-
fore, radiomics studies should not be limited to tech-
nical modeling exercises; instead, they should strive to 
build compelling evidence and instill confidence in the 
clinical significance of radiomics.

Our meta-analysis has some limitations to acknowl-
edge. First of all, since accuracy metrics reporting was 
inconsistent, we were only able to focus on AUC val-
ues to perform our meta-analysis. Although previous 
studies adopted this approach and offer an insight on 
discriminatory ability [57], pooling additional accuracy 
metrics would have provided valuable information. Due 
to the relatively small number of studies included in 
the quantitative synthesis as well as the high (although 
expected) heterogeneity, the pooled data should be 
cautiously interpreted. However, this is a common 
occurrence in diagnostic accuracy meta-analysis and 
we explored sources of heterogeneity with the sub-
group analyses [58]. Finally, the gray literature was not 
searched; while some relevant articles might have been 
missed, gray literature searches are not standardized 
and source reliability is difficult to prove [59].

In conclusion, radiomics introduces an added layer 
of complexity to prostate MRI and while it might open 
an exciting path toward more personalized and precise 
EPE assessment, its possible role must be brought into 
context with established tools and more practical alter-
natives. Technical and diagnostic efficacy studies indi-
cate that radiomics could contribute to redefine how 
EPE is predicted, alongside radiologist’s evaluation. 
Methodologically robust research evaluating its diag-
nostic and therapeutic impact are advocated.
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