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A B S T R A C T

Percolation and synchronization are two paradigmatic examples of phase transitions that can take place in
network dynamical systems. In this paper, we show how percolation can induce an explosive, first-order
transition to synchronization in pinning control, a classical feedback strategy that exploits the network topology
to drive the network dynamics to a desired synchronous solution. When the number of control signals is limited
by physical or economical constraints, only a fraction of the network nodes can be effectively synchronized
onto the desired trajectory. Determining the sensitivity of this fraction to the number of pinning control signals
is then key to decide if it is worth adding additional control signals. We find that when the network graph
percolates, that is, it becomes endowed with a giant strongly connected component (𝐺SCC), an explosive
transition to synchronization occurs as we increase the fraction of nodes where we can inject the pinning
signals. Motivated by this numerical observation, we exploit the probabilistic conditions that ensure the
presence of a 𝐺SCC to predict the number of pinning signals such that all of its nodes will converge to
the desired synchronous trajectory. We test the validity and robustness of our analytical derivations through
numerical simulations on both synthetic and real networks, proving the benefit of such analysis in supporting
decision-making for control design.
1. Introduction

In the last decades, the complex networks paradigm has risen as
the tool of choice to model real world systems made of interacting
agents [1]. As the ability to model, analyze, and design interventions
on these systems requires combining tools from statistical mechanics,
nonlinear dynamics, and control theory, research on complex networks
has attracted joint efforts by physicists, applied mathematicians, and
control engineers [2–4]. The overarching goal in studying the dynamics
of network systems has been that of linking the emergence of collective
phenomena with the structure of interaction network and the individual
dynamics of the nodes [5]. For example, in [6], the authors study
the emergence of traffic jams for different selections of the routing
protocol. A critical problem in studying the onset of a collective be-
havior is understanding whether the transition from an incoherent to
a coherent network behavior is abrupt or smooth. In an analogy with
thermodynamics, the former is deemed as a first-order phase transition
(discontinuous and irreversible), while the latter a second-order phase
transition (continuous and reversible) [7–9].

When the collective behavior under analysis is synchronization,
a classical model to study its emergence considers a network of 𝑁
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dynamical systems over a digraph , whose dynamics can be written
as

𝑥̇𝑖 = 𝑓 (𝑥𝑖, 𝑡) + 𝑐
𝑁
∑

𝑗=1
𝑎𝑖𝑗 ℎ̃(𝑥𝑖, 𝑥𝑗 ), 𝑖 = 1,… , 𝑁, (1)

where 𝑥𝑖 ∈ R𝑛 is the state of the 𝑖th node, 𝑐 is the coupling strength
between neighboring nodes, 𝑎𝑖𝑗 the entry 𝑖𝑗 of the adjacency matrix
associated to , the vector field 𝑓 ∶ R𝑛 ×R≥0 → R𝑛 describes the nodal
intrinsic dynamics, and ℎ̃ ∶ R𝑛 × R𝑛 → R𝑛 is the coupling function.
We study the onset of collective behaviors in network (1) under the
assumption that the coupling function ℎ̃ can be written as a function of
the state difference between neighboring nodes, that is,

ℎ̃(𝑥𝑖, 𝑥𝑗 ) = ℎ(𝑥𝑗 − 𝑥𝑖),

where ℎ ∶ R𝑛 → R𝑛.
In synchronization problems, the transition to coherent oscilla-

tory dynamics is typically regulated by the coupling strength 𝑐, see
e.g. [10–12]. In this scenario, a second-order phase transition usu-
ally occurs [11], albeit first-order transitions have been observed in
the presence of specific coupling configurations and individual dy-
namics [12,13]. However, synchronization does not always emerge
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spontaneously, but may also be induced by the injection of control
signals, modeled as an additional term in the right-hand side of (1),
see e.g. [14,15] and references therein. In [16], the authors identified
the minimum driver node selection that makes the network structurally
controllable.

A classical control strategy that aims at steering the nodes of a
complex network towards a desired solution 𝑠(𝑡) of the individual
dynamics is pinning control, which prescribes to exert a proportional
feedback control action on a limited number of network nodes, the
pinned nodes  [17,18]. In the presence of this external control action,
the dynamics of the 𝑖th node modifies as

̇ 𝑖 = 𝑓 (𝑥𝑖, 𝑡) + 𝑐
𝑁
∑

𝑗=1
𝑎𝑖𝑗ℎ(𝑥𝑗 − 𝑥𝑖) − 𝜅𝛿𝑖ℎ(𝑥𝑖 − 𝑠), (2a)

𝑁
∑

𝑖=1
𝛿𝑖 = 𝑚, (2b)

where the binary variable 𝛿𝑖 is one only if node 𝑖 is pinned, 𝜅 is
the control gain modulating the strength of the control action, and
constraint (2b) sets the allowed number of pinned nodes to 𝑚, that is,
|| = 𝑚.

In the presence of a pinning control action, then two factors, in
addition to the coupling strength 𝑐, regulate the transition to the
desired synchronous solution: the control gain 𝜅, and the selection of
the nodes where the control signals are injected, that is, the choice
of 𝛿1,… , 𝛿𝑁 . In [19], the authors showed that, given that 𝑐 and 𝜅
are sufficiently large, and that the vector field 𝑓 fulfills the so-called
QUAD condition1 [21], the selection of the pinned nodes (i.e., of the
non-zero 𝛿𝑖-s) determines the extent to which a network synchronizes,
that is, the set of nodes  that converge to the reference trajectory 𝑠(𝑡).
Furthermore, they proposed an algorithm to maximize the number of
nodes that achieve synchronization (i.e., the cardinality of ), given
the number 𝑚 of pinned nodes.

Under the assumption that the individual dynamics fulfill the QUAD
condition [21], the application of the algorithm in [19] to the con-
trolled network system (2) for all possible values of 𝑚 allows then to
discriminate the type of transition to synchronization. In Fig. 1, the
fraction of controlled nodes ||∕𝑁 is shown as a function of the number
of pinned nodes 𝑚 for two different graph topologies, one reconstructed
from Facebook friendships and the other from the network of scientific
collaborations [22]. The two different graph topologies induce two
different transitions to synchronization: first-order for the Facebook
friendship network, and second-order for the network of scientific col-
laborations. The main difference between the two network topologies is
that only the first is endowed of a giant strongly connected component
𝐺SCC. This observation suggests that the presence of a 𝐺SCC, whose
development is the result of a percolation, determines an explosive
phase transition in the fraction of nodes that we are able to control
as we increase the number of pinned nodes. In this paper, we call
this phenomenon percolation-induced explosive synchronization, and
explore how we can detect its emergence. The knowledge of the type
of transition occurring in (2) would be indeed paramount for control
design. In taking the decision of adding more control signals, one may
expect proportional gains in the fraction of nodes that we are able to
control. This is, however, far from true in a first-order transition, in
which adding further control signals may be worth only if it implies
overcoming the critical threshold for the transition to take place.

In this work, we show that the algorithm in [19] can be extended
to a wider class of network systems, whose individual dynamics may
not fulfill the QUAD condition. In principle, the algorithm could then
be extensively utilized by varying the fraction of controlled nodes

1 The QUAD condition, first introduced in [20], is a generalization of the
ne-side Lipschitz condition that defines a space of functions that can be upper
ounded by a linear function.
2

a

to determine whether a first- or second-order transition takes place.
Unfortunately, the computational cost of detecting the phase transition
type, and the tipping point in case of first-order transitions, through
the algorithm in [19] is as high as the value of information they would
bring to the control designer, since it would require solving a (large)
sequence of combinatorial NP-hard optimization problems.

These considerations prompted us to attempt estimating the main
features of the phase transition that takes place as we increase the
number of nodes we can pin, without the necessity of solving the
algorithm in [19]. In particular, we leveraged the properties of the
generating functions to derive this estimation solely based on the
knowledge of the degree distribution of the network we are aiming to
control.

The outline of the manuscript is as follows. In Section 2, we gener-
alize the results on pinning control provided in [19] to a wider class of
coupled dynamical systems, extending the definition of type II master
stability function provided e.g. in [1,23]. We then use this result to
show that, when a giant component is present, the phase transition in
the number of controllable nodes is explosive. In Section 3, we then
focus on the case in which an explosive transition takes place. Namely,
we derive an analytical prediction of the critical fraction of controlled
nodes triggering the transition, and we provide a lower and upper
bound for the number of nodes that we can control as the transition
takes place. In Section 4, we then gauge the accuracy of our estimate
on both real and synthetic datasets. Finally, we draw the conclusions
and outline future research avenues in Section 5.

2. Linking phase transitions in pinning controlled nodes with
network topology

2.1. Digraphs and their condensation graph

A digraph  is described by the pair (, ), where  is the set
of its nodes, and  is the set of its edges, defined as ordered pairs of
nodes. Given two nodes 𝑖, 𝑗 ∈ , 𝑖 is reachable from 𝑗 if there exists
a directed path from 𝑗 to 𝑖. For a given node 𝑖, we define the node
in-degree 𝑘in(𝑖) and out-degree 𝑘out (𝑖) as the number of edges coming
in and going out from node 𝑖, respectively.

Given a subset of nodes  ⊂ , the downstream ( ) of  is the
set of nodes reachable from a node in  , whereas its upstream  ( )
is the set of nodes from which a node in  is reachable. Note that,
from this definition  ⊆  ( ),  ⊆ ( ), and  =  ( ) ∩( ).

A strongly connected component (SCC) of a digraph  is a strongly
connected subgraph () of  such that any other subgraph  ′()
trictly containing () is not strongly connected. Any graph  has 𝑝 ≥ 1
CCs, which we denote 𝑖, 𝑖 = 1,… , 𝑝. With a slight abuse of notation,
e will denote 𝑖 and 𝑖 the node and edge sets of 𝑖, respectively.

The condensation of  is the directed acyclic graph 𝐷 = {𝐷, 𝐷},
hose nodes are the SCCs of , and whose edges represent the inter-
CC connections. Namely, the existence of at least an edge (𝑙, 𝑚) ∈ 𝐷

eans that there is an edge from a node 𝑖 in the 𝑙th SCC of  to a node
in the 𝑚th SCC of . A SCC that does not have any inbounding edge

that is, a node of the condensation graph with zero in-degree) is called
root strongly connected component (𝑅SCC) of .

.2. Pinning control of digraphs and the special role of the 𝑅SCC-s

Let us consider the ℎth SCC, and let us identify the pinner node,
hich injects the control signal, as the node 𝑁 +1, with state 𝑥𝑁+1(𝑡) =
(𝑡). We then define an extended adjacency matrix 𝐴ext , which includes
he pinner, and can be written as

ext =
[

𝐴 𝛾𝛿
0T𝑁 0

]

, (3)

here 𝛿 = [𝛿1,… , 𝛿𝑁 ]T is a binary vector that indicates the nodes that

re receiving the control signal, and 𝛾 = 𝜅∕𝑐 is the ratio between the
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Fig. 1. Different transitions to synchronization in the controlled network systems (2) on real-world topologies when dynamics and inner coupling function fulfill the condition
in [19]. The plots report the normalized number of controlled nodes ||∕𝑁 as a function of the number of control inputs deployed, 𝑚. The left panel depicts the first-order phase
transition occurring when the coupling topology is a digraph retrieved from Facebook [22] that is endowed of a 𝐺SCC, whereby ||∕𝑁 abruptly increases when 𝑚 reaches 45. The
right panel depicts a second-order phase transition where the coupling topology is given by a digraph describing a network of scientific collaboration [22] that is not endowed
with a 𝐺SCC, whereby ||∕𝑁 smoothly increases with 𝑚.
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control and coupling gains. Denoting 𝑐ℎ = | (ℎ)|, we then consider a
permutation 𝑃 that relabels as 1,… , 𝑐ℎ the nodes in the upstream of ℎ,
nd as 𝑐ℎ +1 the node corresponding to the pinner. Then, 𝐴 = 𝑃 T𝐴ext𝑃
ill be the adjacency matrix obtained through this node relabeling.
rom the definition of upstream, 𝐴 is block-triangular, and can be
ecomposed as

̃=
[

𝑅 0𝑐ℎ+1,𝑁−𝑐ℎ
𝑆 𝑊

]

, (4)

here 𝑅 ∈ R(𝑐ℎ+1)×(𝑐ℎ+1), 𝑆 ∈ R(𝑁−𝑐ℎ)×(𝑐ℎ+1), and 𝑊 ∈ R(𝑁−𝑐ℎ)×(𝑁−𝑐ℎ).
onsidering that the pinner has the same dynamics as the rest of the
etwork, once we have sorted the nodes according to the permutation
atrix 𝑃 , we can then rewrite the dynamics of the nodes in the
pstream of ℎ and of the pinner as

̇ 𝑖 = 𝑓 (𝑥𝑖, 𝑡) + 𝑐
𝑐ℎ+1
∑

𝑗=1
𝑟𝑖𝑗ℎ(𝑥𝑗 − 𝑥𝑖), 𝑖 = 1,… , 𝑐ℎ + 1, (5)

here 𝑟𝑖𝑗 is the entry 𝑖𝑗 of 𝑅. The coupling term in (5) vanishes at
he synchronization manifold 𝑥𝑖 = 𝑠 for all 𝑖 = 1,… , 𝑐ℎ, which, since
he pinner’s trajectory 𝑠(𝑡) is a solution of the individual dynamics, is
nvariant. We can then define 𝛿𝑥𝑖 = 𝑥𝑖 − 𝑠 as the deviation of the 𝑖th
ode from 𝑠, and linearizing about the synchronous solution we obtain

𝑥̇𝑖 = JF(𝑠)𝛿𝑥𝑖 − 𝑐
𝑐ℎ+1
∑

𝑗=1
𝐿ℎ
𝑖𝑗JH(0)𝛿𝑥𝑗 . (6)

here JF ∈ R𝑛×𝑛, JH ∈ R𝑛×𝑛 are the Jacobian matrices associated with
and ℎ, respectively, while 𝐿ℎ

𝑖𝑗 is the entry 𝑖𝑗 of the Laplacian matrix
ℎ ∈ R(𝑐ℎ+1)×(𝑐ℎ+1) associated to 𝑅, and we omit for brevity the explicit
ependence on time.

In what follows, we assume that at least one node in each 𝑅SCC in
(ℎ) is pinned. This is a necessary and sufficient condition for the

ubgraph defined by the nodes in  (ℎ) to encompass a spanning tree
riginating from the node associated to the pinner, and equivalently,
necessary and sufficient condition for the eigenvalue 0 of 𝐿ℎ to be

simple. In what follows, we denote by 𝜆1 = 0 the simple 0 eigenvalue
of 𝐿ℎ, and by 𝜆𝑖, 𝑖 = 2,… , 𝑐ℎ + 1 its remaining eigenvalues, all with
positive real part.

Defining the vector 𝛿𝑥 =
[

𝛿𝑥1;… ; 𝛿𝑥𝑐ℎ+1
]

, and the matrix 𝑉 such
that 𝑉 −1𝐿ℎ𝑉 is in Jordan form, we can then introduce the transfor-
mation 𝜂 =

(

𝑉 −1 ⊗ 𝐼𝑛
)

𝛿𝑥 whose components are
[

𝜂1;… ; 𝜂𝑐ℎ+1
]

, where
𝜂𝑖 ∈ R𝑛.

From (6), the dynamics along the synchronization manifold will be
described by 𝜂̇1 = JF(𝑠)𝜂1. To study synchronizability, we then focus
3

n the remaining blocks of the Jordan canonical form [24,25]. Given p
an eigenvalue 𝜆 ∈ spec(𝐿ℎ) ⧵ {𝜆1}, let us denote 𝜇𝐴(𝜆) and 𝜇𝐺(𝜆) its
algebraic and geometric multiplicity, respectively. The Jordan block
associated to 𝜆 will have size 𝑏𝑖 = 1+𝜇𝐴(𝜆)−𝜇𝐺(𝜆) and will be associated
with the transformed variables 𝜂𝑖,… , 𝜂𝑖+𝑏𝑖−1, whose dynamics are

𝜂̇𝑖 = (JF(𝑠) − 𝑐𝜆JH(0)) 𝜂𝑖,

𝜂̇𝑖+1 = (JF(𝑠) − 𝑐𝜆JH(0)) 𝜂𝑖+1 − JH(0)𝜂𝑖,

⋮

̇ 𝑖+𝑏𝑖−1 = (JF(𝑠) − 𝑐𝜆JH(0)) 𝜂𝑖+𝑏𝑖−1 − JH(0)𝜂𝑖+𝑏𝑖−2.

Introducing the master equation

𝜁̇ = (JF(𝑠) − 𝜈JH(0))𝜁, (7)

where 𝜁 ∈ R𝑛, and 𝜈 ∈ C𝑛, then the maximum Lyapunov exponent
𝛬(𝜈) associated with (7) is the master stability function for network
5). Hence, if
ℎ
max(𝑐) = max

𝑖=2,…,𝑐ℎ+1
𝛬
(

𝑐𝜆𝑖
)

< 0, (8)

hen all the Jordan blocks will be asymptotically stable. Therefore, the
ynchronization manifold of (5) will be locally asymptotically stable,
hereby meaning that all nodes in the upstream of the ℎth SCC will
onverge onto the pinner’s trajectory.

emark 1. Note that the same derivations could be performed also
hen the coupling function in (1) is selected as ℎ̃(𝑥𝑖, 𝑥𝑗 ) = ℎ(𝑥𝑖) − ℎ(𝑥𝑗 )

nstead of ℎ̃(𝑥𝑖, 𝑥𝑗 ) = ℎ(𝑥𝑖 − 𝑥𝑗 ). The only difference would be that the
acobian of ℎ should be computed at 𝑠 rather than at 0, and therefore
n all equations from (6) to (7) JH(0) should be replaced by JH(𝑠).

The fulfillment of (8) depends on the coupling gain 𝑐 and on
the eigenvalues of 𝐿ℎ, which in turn depend on the topology of the
upstream of the ℎth SCC, and on the ratio 𝛾 between the control and
coupling gain. Therefore, for a given network topology and a given 𝛾,
𝛬ℎ
max will only depend on 𝑐. Starting from the classification first given

in [1] and then extended to higher-order interactions in [23,26], we
extend the definition of type II master stability function to the case of
a pinning controlled network.

Definition 1. Given the controlled network dynamical system (2), the
master stability function associated to it is of type II if for all topologies
such that the 0 eigenvalue of the Laplacian 𝐿ℎ is simple, and for all
𝛾 > 0, there exists a threshold 𝑐(𝛾, 𝐿ℎ) such that the master stability
unction is negative for all 𝑐 > 𝑐(𝛾, 𝐿ℎ).

An immediate consequence of the above definition is the following

roposition:
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Fig. 2. Example of application of Proposition 1. Panel (a) depicts the network topology; each node is a Lorenz oscillator, whereby in (5) we set 𝑓 = [10(𝑥𝑖2 − 𝑥𝑖1); 𝑥𝑖1(28 − 𝑥𝑖3) −
𝑥𝑖2; 𝑥𝑖1𝑥𝑖2 − 8∕3𝑥𝑖3], whereas the coupling function is set to ℎ(𝑥) = 𝑥. We focus on controlling the SCC ℎ = {4, 5, 6}, shaded in red, whose upstream  (ℎ) is shaded in pink
and composed by 𝑐ℎ = 6 nodes. To control ℎ, we add the pinner node (𝑐ℎ + 1 = 7, in red) that directly controls one of the nodes in the sole 𝑅SCC of  (ℎ), that is, node 1 in
1 = {1, 2, 3}. We set the ratio 𝛾 to 1, and are free to suitably tune the coupling gain 𝑐. Panel (b) depicts a colormap of the master stability function 𝛬(𝜈) as a function of the
complex parameter 𝜈. Panel (c) depicts the function 𝛬ℎ

max as a function of the coupling gain 𝑐 for the network in panel (a). In panel (d) we report the dynamics of the third
state variable of each node 𝑥𝑖3(𝑡) when 𝑐 is set to 3 so that 𝛬ℎ

max(𝑐) < 0; the trajectories of the nodes in  (ℎ) are depicted in red, and the trajectory of the pinner is dotted.
The trajectories of the remaining nodes are depicted in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Proposition 1. Let the controlled network dynamical system (2) have
a type II master stability function according to Definition 1. Then, for
any 𝛾 > 0, if at least one node in each 𝑅SCC of  (ℎ) is pinned, and
𝑐 > 𝑐(𝛾, 𝐿ℎ), then all nodes in  (ℎ) are locally pinning controlled.

Proof. As at least one node in each 𝑅SCC of  (ℎ) is pinned, the
Laplacian 𝐿ℎ will have a simple 0 eigenvalue. From Definition 1, we
then have that, for all 𝑐 > 𝑐(𝛾, 𝐿ℎ), 𝛬ℎ

max is negative, and thus the thesis
follows. □

Remark 2. Note that the class of controlled network systems with
a type II master stability function is wider than the class of systems
that can be globally pinning controlled according to [19]. Indeed, all
systems in [19] will have a negative master stability function beyond a
certain threshold, otherwise the necessary condition for pinning control
would not be fulfilled. On the other hand, the conditions in [19] only
include QUAD dynamical systems, whereas type II master stability
functions can be also exhibited by non-QUAD dynamical systems, such
as the Lorenz system, as illustrated in Fig. 2.

The application of the result illustrated in Proposition 1 to the
entire network (2) implies that, if the coupling and control gains 𝑐
and 𝜅 are large enough, the nodes of an SCC will synchronize only
if at least one node in each 𝑅SCC of its upstream is pinned, whereas
none will synchronize otherwise. This result then explains the role
played by the 𝐺SCC in determining the onset of an explosive transition
in the number of nodes controlled to the pinner’s trajectory. Fig. 3
illustrates the classic decomposition of a graph endowed with a 𝐺SCC,
where the upstream and downstream of the 𝐺SCC corresponds to the
giant in- and out-components 𝐺IN and 𝐺OUT, respectively, according to
the standard illustration in [27]. When the number of pinned nodes
𝑚 reaches the number 𝑚⋆ of roots in 𝐺IN, this triggers an explosive
first-order phase transition in the number of controllable nodes. Indeed,
the 𝐺SCC encompasses most of the network nodes (except when the
average network degree is very small) and, by pinning one node in
each root of the 𝐺IN, we can pinning control all nodes in 𝐺IN, plus
the remaining SCCs that have an upstream whose 𝑅SCC-s are contained
in 𝐺IN. Therefore, when the number of pinned nodes reaches 𝑚⋆, the
number of pinning controllable nodes will be lower bounded by the size
of 𝐺IN, abruptly switching from being negligible to being the majority
of the network nodes.

3. Predicting the onset of an explosive phase transition from de-
gree distribution

According to the above considerations, when the network topology
4

is known, the SCCs of a graph can be identified by using the Tarjan’s
algorithm [28], so that the presence of the 𝐺SCC can be detected,
and the critical threshold 𝑚⋆ triggering the explosive transition to
synchronization be computed by using the algorithm in [19]. However,
this path cannot be followed when the network topology is unknown.

Next, we consider the case in which we are only aware of the
network joint in- and out-degree distribution 𝑃 (𝑘in, 𝑘out ), that is, the
probability that a randomly chosen node has in-degree 𝑘in and out-
degree 𝑘out , and, based on this information, we will try to predict the
type of phase transition that occurs when increasing the number of
pinning controllable nodes and, if an explosive one is expected, the
threshold 𝑚⋆ that triggers the transition.

As we discussed in Section 2.2, when the network control system has
a type II master stability function, the nodes of the 𝐺SCC will be pinning
controllable only if at least one node in each 𝑅SCC is pinned. Therefore,
the problem of predicting the onset of an explosive transition can be
translated into the problem of estimating the number of 𝑅SCC-s in the
upstream of the 𝐺SCC. To perform this estimate, we first approximate
the number of 𝑅SCC-s to the number of nodes belonging to the in-giant
component with in-degree zero, and then estimate how many of these
will be roots of the upstream of 𝐺SCC.

In deriving our estimates, we shall use the results on the joint in-
and out-degree distribution that hold for infinite size networks, and
then we will test the accuracy of the estimations on finite-size network
topologies.

To this aim, we introduce the generating function 𝛷(𝑥, 𝑦) =
∑

𝑘in ,𝑘out
𝑃 (𝑘in, 𝑘out )𝑥𝑘in𝑦𝑘out , where 𝑥 and 𝑦 are two scalars such that

|𝑥| ≤ 1 and |𝑦| ≤ 1, thus guaranteeing the convergence of the
series [29,30]. As illustrated in [27], denoting 𝑘̄ ∶= 𝜕𝑥𝛷(𝑥, 1)|

|𝑥=1 =
𝜕𝑦𝛷(1, 𝑦)||

|𝑦=1
the average in- and out-degree of the network, the giant

strongly connected component is present if

𝜕2𝑥𝑦𝛷(𝑥, 𝑦)|𝑥=𝑦=1
𝑘̄

=

∑

𝑘in ,𝑘out
𝑘in𝑘out𝑃 (𝑘in, 𝑘out )

𝑘̄
> 1,

or, equivalently, if

𝑘̄ +
E[(𝑘in − 𝑘̄)(𝑘out − 𝑘̄)]

𝑘̄
> 1. (9)

Eq. (9) implies that for networks with uncorrelated in- and out-degree
distributions the existence of the 𝐺SCC is expected when the average
degree 𝑘̄ is greater than one. As discussed in Section 2.2, as the presence
of the 𝐺SCC implies an explosive pinning synchronizability of the
network, the fulfillment of (9) determines whether such an explosive
phase transition will occur.

Next, we define 𝛷in
1 (𝑥) =

𝜕𝑦𝛷(𝑥,𝑦)||
|𝑦=1

𝑘̄ and 𝛷out
1 (𝑦) = 𝜕𝑥𝛷(𝑥,𝑦)|𝑥=1

𝑘̄ . Then,
we introduce the scalars 𝑥𝑐 and 𝑦𝑐 such that

𝑥 = 𝛷(𝑖)(𝑥 ), 𝑦 = 𝛷(𝑜)(𝑦 ), (10)
𝑐 1 𝑐 𝑐 1 𝑐



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 185 (2024) 115129C. Ancona et al.

c
𝐺
d

w
c
t

n
I
i
p
i
h
r

𝑃

w
r
b

𝑥

T
c
n

B

U
i
d
t
b
i

𝑥

Fig. 3. Directed acyclic graph condensation of a digraph  endowed with a 𝐺SCC.  is first decomposed in the giant weakly connected component 𝐺WCC, which is the weakly
onnected component enclosing the 𝐺SCC, and all remaining disconnected components DC. Within 𝐺WCC, we can then identify the giant in-component 𝐺IN and giant out-component
OUT that correspond to the upstream and downstream of 𝐺SCC, respectively, and whose intersection is 𝐺SCC, and the TUBES that are the nodes not in 𝐺SCC such that there is a
irected path originating in 𝐺IN and terminating in 𝐺OUT. The remaining SCCs in 𝐺WCC are called tendrils.
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here 𝑥𝑐 (𝑦𝑐) can be interpreted as the probability that the strongly
onnected component obtained moving against (along) the edge direc-
ions, starting from a randomly chosen edge, is finite [27].

Finding 𝑥𝑐 and 𝑦𝑐 allows us to estimate the threshold 𝑚⋆, that is, the
umber of pinned nodes required for the onset of the phase transition.
ndeed, 1 − 𝑦𝑘out𝑐 will be the probability that a vertex whose out-degree
s 𝑘out has infinite components in its downstream, and 1 − 𝑥𝑘in𝑐 the
robability that a vertex with in-degree 𝑘in has infinite components in
ts upstream. Then, the probabilities that a randomly picked node, say 𝑖,
as infinite in- or out-component, that is, 𝑃 (𝑖 ∈ 𝐺IN

) and 𝑃 (𝑖 ∈ 𝐺OUT
),

espectively, are

𝑃 (𝑖 ∈ 𝐺IN
) =

∑

𝑘in ,𝑘out

𝑃 (𝑘in, 𝑘out )(1 − 𝑦𝑘out𝑐 ) =
∑

𝑘out

𝑃out (𝑘out )(1 − 𝑦𝑘out𝑐 ) (11)

(𝑖 ∈ 𝐺OUT
) =

∑

𝑘in ,𝑘out

𝑃 (𝑘in, 𝑘out )(1 − 𝑥𝑘in𝑐 ) =
∑

𝑘in

𝑃in(𝑘in)(1 − 𝑥𝑘in𝑐 ), (12)

here 𝑃in and 𝑃out are the marginal in- and out-degree distribution,
espectively. Without any assumption on the in- and out-degree distri-
utions, we have

𝑐 =

∑

𝑘in
𝑥𝑘in𝑐

∑

𝑘out
𝑘out𝑃

(

𝑘in, 𝑘out
)

𝑘̄
, (13)

𝑦𝑐 =

∑

𝑘out
𝑦𝑘out𝑐

∑

𝑘in
𝑘in𝑃

(

𝑘in, 𝑘out
)

𝑘̄
. (14)

hen, under the approximation that the number of network 𝑅SCC-s
oincides with the number of nodes with zero in-degree, the expected
umber 𝑚∗ of 𝑅SCC-s in 𝐺IN can be estimated as

𝑚̂⋆ = 𝑁
∑

𝑘out

𝑃
(

0, 𝑘out
)

(

1 − 𝑦𝑘out𝑐

)

. (15)

y substituting (14) in (15), one obtains

𝑚̂⋆ = 𝑁
∑

𝑘out

𝑃
(

0, 𝑘out
)

(

1 −
(

∑

𝑘out
𝑦𝑘out𝑐

∑

𝑘in
𝑘in𝑃

(

𝑘in, 𝑘out
)

𝑘̄

)𝑘out
)

. (16)

sing Eq. (16) to estimate 𝑚⋆ assumes the knowledge of the joint
n- and out-degree distribution. When only the marginal in- and out-
istributions, denoted 𝑃in(𝑘𝑖) and 𝑃out (𝑘𝑜), respectively, are available,
o perform the estimation one needs to assume in- and out-degrees to
e independent, so that the joint distribution can be factorized. Indeed,
n this case the expressions of 𝑥𝑐 and 𝑦𝑐 simplify as

𝑐 =
∑

𝑃in
(

𝑘in
)

𝑥𝑘in , 𝑦𝑐 =
∑

𝑃out
(

𝑘out
)

𝑦𝑘out𝑐 ,
5

𝑘in 𝑘out
since 𝑘̄ =
∑

𝑘out
𝑘out𝑃out

(

𝑘out
)

=
∑

𝑘in
𝑘in𝑃in

(

𝑘in
)

, and 𝑚̂⋆ becomes

𝑚̂⋆ = 𝑁
∑

𝑘out

𝑃
(

0, 𝑘out
)

(

1 − 𝑦𝑘out𝑐

)

= 𝑁𝑃in(0)
∑

𝑘out

𝑃out (𝑘out )
(

1 − 𝑦𝑘out𝑐

)

= 𝑁𝑃in(0)(1 − 𝑦𝑐 ).

(17)

Predicting the number of nodes in 𝐺WCC that we still cannot control when
the explosive transition occur.

From the results in Section 2.2, and considering the decomposition
of a digraph illustrated in Fig. 3, when 𝑚 = 𝑚⋆, the number of
controllable nodes is the cardinality of the set (𝑚⋆) = (𝐺IN

) ⧵
((RTIN)), where RTIN are the root strongly connected components of
he tendrils from which the 𝐺OUT is reachable. We denote with (𝑚⋆)

the complement of (𝑚⋆) with respect to 𝐺WCC
, whose cardinality is

he number of nodes in 𝐺WCC we cannot control when the transition
ccurs.

In what follows, we will provide a lower and an upper bound for
he probability 𝑃 (𝑖 ∈ (𝑚⋆)) that the generic node 𝑖 ∈ 𝐺WCC

will not
be controllable, namely 𝑃 and 𝑃 such that

𝑃 ≤ 𝑃 (𝑖 ∈ (𝑚⋆)) ≤ 𝑃 . (18)

Once having an expression for 𝑃 and 𝑃 , a lower and an upper bound
or |(𝑚⋆)| can be computed by considering that |(𝑚⋆)| = 𝑃

(

𝑖 ∈
(𝑚⋆)

)

𝑁 .
To derive the upper bound 𝑃 , we can refer to the decomposition in

Fig. 3 and write

𝑃
(

𝑖 ∈ (𝑚⋆)
)

≤ 𝑃
(

𝑖 ∈ 𝐺WCC

)

− 𝑃
(

𝑖 ∈ 𝐺IN

)

, (19)

here the expressions for 𝑃 (𝑖 ∈ 𝐺IN
) has been given in Eq. (11); to

ompute 𝑃 (𝑖 ∈ 𝐺WCC
), we first recall that we can ignore the direc-

ionality in the graph when computing the probability that 𝑖 belongs
o 𝐺WCC [30]. By introducing 𝛷(𝑤)(𝑥) = 𝛷(𝑥, 𝑥), and denoting 𝛷(𝑤)′

ts derivative, we calculate the scalar 𝑡𝑐 from the implicit equation
𝑐 = 𝛷(𝑤)′ (𝑡𝑐 )∕2𝑘̄. Then, 𝑃 (𝑖 ∈ 𝐺WCC

) can be computed as [27]

(𝑖 ∈ 𝐺WCC
) = 1 −

𝛷(𝑤)′ (𝑡𝑐 )
2𝑘̄

= 1 −
∑

𝑘 𝑘𝑃𝑤(𝑘)𝑡𝑘−1𝑐

2𝑘̄
, (20)

here 𝑘 = 𝑘in + 𝑘out , and 𝑃𝑤(𝑘) =
∑

𝑘in
𝑃 (𝑘in, 𝑘− 𝑘in). Putting (19), (20),

11) together, we can write

𝑃 = 1 −
∑

𝑘 𝑘𝑃𝑤(𝑘)𝑡𝑘−1𝑐
̄ −

∑

𝑃out (𝑘out )(1 − 𝑦𝑘out𝑐 ). (21)

2𝑘 𝑘out
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Similarly, the fraction of nodes that are not controlled is lower

bounded by the zero indegree nodes not in 𝐺IN
∪ 𝐺OUT

, that is,

𝑃 = 𝑃
(

(𝑘in(𝑖) = 0) ∩ 𝑖 ∈ 𝐺WCC
⧵ (𝐺IN

∪ 𝐺OUT
)
)

Assuming independence yields

𝑃 = 𝑃
(

𝑘in(𝑖) = 0
)

𝑃
(

𝑖 ∈ 𝐺WCC
⧵ (𝐺IN

∪ 𝑉𝐺OUT
)
)

. (22)

From the decomposition in Fig. 3, we can write

𝑃
(

𝑖 ∈ 𝐺WCC
⧵ (𝐺IN

∪ 𝐺OUT
)
)

=

𝑃
(

𝑖 ∈ 𝐺WCC

)

− 𝑃
(

𝑖 ∈ 𝐺IN

)

− 𝑃
(

𝑖 ∈ 𝐺OUT

)

+ 𝑃
(

𝑖 ∈ 𝐺SCC

)

. (23)

The expressions for 𝑃 (𝑖 ∈ 𝐺IN
) and 𝑃 (𝑖 ∈ 𝐺OUT

) has been given in
qs. (11) and (12), respectively, whereas the probability that 𝑖 belongs
o the giant strongly connected component is
(

𝑖 ∈ 𝐺SCC

)

=
∑

𝑘in

∑

𝑘out

𝑃 (𝑘in, 𝑘out )(1 − 𝑥𝑘in𝑐 )(1 − 𝑦𝑘out𝑐 ) (24)

Then, substituting (11), (12), (20), (23) and (24) in (22), yields

= 𝑃in(0)
(

1 −
∑

𝑘 𝑘𝑃𝑤(𝑘)𝑡𝑘−1𝑐

2𝑘̄
−
∑

𝑘out

𝑃out (𝑘out )(1 − 𝑦𝑘out𝑐 )

−
∑

𝑘in

𝑃in(𝑘in)(1 − 𝑥𝑘in𝑐 ) +
∑

𝑘in ,𝑘out

𝑃 (𝑘in, 𝑘out )(1 − 𝑥𝑘in𝑐 )(1 − 𝑦𝑘out𝑐 )
)

. (25)

4. Numerical results

To test the proposed analytical prediction, we generated a collection
of synthetic digraphs where we assumed the in- and out-distributions
to be independent and identical, and then we considered test-bed
real-world graphs, where this assumption is not necessarily met.

We assign a given degree distribution by means of the configuration
model [31]. Namely, we consider two classes of degree distributions:
(i) Poisson distribution 𝑃in(𝑧) = 𝑃out (𝑧) = 𝜆𝑧

𝑧! 𝑒
−𝜆 whose mean and

variance both equal to 𝜆 [32], and (ii) a discretized version of the scale-
free generalized Pareto distribution, with marginal probability density

functions 𝜑in(𝑧) = 𝜑out (𝑧) = 1
𝜎

(

1 + 𝜂 (𝑧−𝜃)
𝜎

)− 𝜂+1
𝜂 [33], where 𝑘 ≠ 0 is

the shape parameter, 𝜎 is the scale parameter, and 𝜃 is the threshold
parameter with mean 𝜃 + 𝜎

1−𝜂 and infinite variance. The probability
𝑃in(0) that a node is a root is then 𝑒−𝜆 and 𝜑in(0)∕

∑𝑁−1
𝑧=0 𝜑n(𝑧) for the

oisson and generalized Pareto distributions, respectively, so that for
ll 𝑘̄ ≥ 1 the generated graph was endowed with a 𝐺SCC.

We tested our ability to predict the number of pinned nodes 𝑚⋆

equired to induce the explosive phase transition on a set of randomly
enerated and scale-free networks of 1 million nodes, where we varied
he average degree 𝑘̄ in the interval [100 103] so that for all 𝑘̄ the

generated graph was endowed with a 𝐺SCC. Namely, for Poisson degree
distributions, we vary the parameter 𝜆 = 𝑘̄ ranging in logarithmic scale
between 100 and 103, whereas, for scale-free distributions, we select
𝜃 = 0, 𝜂 = 0.5 and 𝜎 modulated so that 𝑘̄ approximately ranges in
logarithmic scale between 100 and 103.

Fig. 4 shows that our estimate 𝑚̂⋆ from Eq. (15) is in excellent
agreement with 𝑚⋆. Moreover, we can note that this threshold peaks
at 𝑘̄ = 1.5 and 𝑘̄ = 2.5 for random and scale-free graphs, respectively,
to then approach 0. In random graphs, as 𝑘̄ is further increased, the
network then becomes strongly connected thus pinning one 𝑅SCC is
sufficient to control the entire of the network (this occurs when the
𝑘̄ approaches 5). In scale-free networks, instead, 𝑚̂⋆ reduces at a much
slower pace with 𝑘̄ because of the presence of a relevant fraction of
low-degree nodes that would still not belong to the 𝐺SCC.

For the same two sets of topologies, for each degree distribution
type and selection of the average degree, we compute the lower and
upper bound, 𝑃 from (25) and 𝑃 from (21) respectively, of the expected
fraction of nodes that we cannot control. These bounds are then com-
pared in Fig. 5 with the observed fraction of nodes of 𝐺 that we are
6

WCC
not able to control, that is, |(𝑚⋆)|∕|𝐺WCC|. We notice how the bounds
orrectly hold for all 𝑘̄ and distribution type, and that both 𝑃 and upper

bound 𝑃 converge to |(𝑚⋆)|∕|𝐺WCC| when 𝑘̄ increases, even though at
a slower pace in scale-free compared to the case of the Poisson random
degree distributions.

Next, we retrieved three large real digraphs of about one million
nodes from the network repository in [22] and performed the same
simulations made for the synthetic dataset. From Table 1, we can
appreciate how well the estimation (17) of 𝑚⋆ works also for real
topologies where the assumption on the statistical independence of
the in- and out-degree may not hold. In 2 out of 3 real networks the
estimation error is 0, and in all the cases, is never larger than 12%. The
lower and upper bounds 𝑃 and 𝑃 capture the fact that the fraction of
observed nodes that we cannot control is small. For the same reason,
though, the approximations considered in the estimation of the bounds
become dominant, limiting their accuracy.

5. Conclusion

Percolation in graphs with an arbitrary degree distribution is a well-
known phenomenon, as well as pinning synchronizability is in complex
networks. This work aims to bridge this two established research av-
enues in network science, and explain, with the sole knowledge of the
networks in- and out-degree distributions, how pinning synchroniza-
tion can be induced by the presence of a percolation cluster, a giant
strongly connected component. Leveraging tools from the generative
functions’ theory, we analytically and numerically illustrate that, when
the network percolates and a giant component appears, the phase
transition in the number of controllable nodes as we increase the
number of control signals becomes explosive. To do so, we first identify
the class of network dynamical systems for which this result hold, by
extending the classical definition of class II master stability function
to the case of controlled networks. Then, for this class of networks,
we analytically estimate the threshold in the number of controlled
nodes that, when attained, determines the onset of the explosive phase
transition. Finally, we also provide an upper and lower bound on the
fraction of nodes that we are still unable to control when the transition
takes place. The analytical findings are then corroborated by extensive
numerical analyses on large synthetic network (up to approximately
one million nodes), and by a validation on select real networks with size
of the order of one million nodes, which show an excellent agreement
between the theoretical prediction and the actual transition threshold.

Future works could be devoted to investigate how this analysis
would extend when we go beyond pairwise interactions, and consider
that the network systems may exhibit group interactions that cannot be
decomposed as combinations of pairwise ones. To this aim, one could
leverage the recent results on percolation in hypergraphs [34,35], and
study the possible implications on control of networks with higher-
order interaction, to explain whether and when explosive transitions
in the number of controlled nodes can be expected. Richer phenomena
due to the presence of higher-order interactions may also be expected.
Another research avenue that could be considered is the impact of
alternative control strategies, other than standard, proportional pinning
control, and in particular when the coupling strengths or the network
topology change over time [36,37].
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Fig. 4. Comparing the critical fraction 𝑚⋆∕𝑁 of pinned nodes that triggers an explosive phase transition (the red stars) with the analytic prediction 𝑚̂⋆ (black solid lines). In
panel (a), we consider random networks and, in panel (b), scale-free networks, both with average degree 𝑘̄ ranging from 1 to 1000. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Computation of the lower 𝑃 from (25) and upper bound 𝑃 (21) in blue and yellow respectively, of the expected fraction of nodes that we cannot control |(𝑚⋆)|∕|𝐺WCC|

in red. In panel (a), we validate the prediction for random networks, whereas, and in panel (b), we validate it for scale-free networks. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Predicting the threshold of 𝑚⋆ for real directed networks. The first column reports the tag for the network used in [22], the
second to the network size, the third column the average degree 𝑘̄, the fourth the estimate 𝑚̂⋆ according to (17), and the
fifth the actual threshold 𝑚⋆. The last three columns report the lower bound 𝑃 , the observed fraction of nodes that we are
not able to control |(𝑚⋆)|∕𝐺WCC|, and the upper bound 𝑃 , respectively.

Network 𝑁 𝑘̄ 𝑚̂⋆ 𝑚⋆ 𝑃 ||∕|𝐺WCC| 𝑃

atmosmodl 1 489 752 0.5651 39 203 39 203 0.0523 0 0.0572
ca-IMDB 896 308 4.2200 3 3 1.49 × 10−11 7.81 × 10−6 2.23 × 10−6

flickr 2 406 556 17.3216 57 424 51 561 1.98 × 10−8 0.0325 8.31 × 10−7
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