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Abstract
Background The hypothalamic–pituitary–adrenal (HPA) axis is a neuroendocrine system involved in controlling stress 
responses in humans under physiological and pathological conditions; cortisol is the main hormone produced by the HPA 
axis. It is known that calorie restriction acts as a stressor and can lead to an increase in cortisol production. Renin–angio-
tensin–aldosterone system (RAAS) is a complex endocrine network regulating blood pressure and hydrosaline metabolism, 
whose final hormonal effector is aldosterone. RAAS activation is linked to cardiometabolic diseases, such as heart failure 
and obesity. Obesity has become a leading worldwide pandemic, associated with serious health outcomes. Calorie restric-
tion represents a pivotal strategy to tackle obesity. On the other hand, it is well known that an increased activity of the HPA 
may favour visceral adipose tissue expansion, which may jeopardize a successful diet-induced weight loss. Very low-calorie 
ketogenic diet (VLCKD) is a normoprotein diet with a drastic reduction of the carbohydrate content and total calorie intake. 
Thanks to its sustained protein content, VLCKD is extremely effective to reduce adipose tissue while preserving lean body 
mass and resting metabolic rate.
Purpose The purpose of this narrative review is to gain more insights on the effects of VLCKD on the HPA axis and RAAS, 
in different phases of weight loss and in different clinical settings.
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HOMA-IR  Homeostatic model assessment for insulin 
resistance

KD  Ketogenic diet
BHB  β-Hydroxybutyrate
RMR  Resting metabolic rate
VLCKD  Very low-calorie ketogenic diet
Ang  Angiotensin
Agt  Angiotensinogen
ACE  Angiotensin-converting enzyme
AT1R  Angiotensin II type 1 receptor
AT2R  Angiotensin II type 2 receptor

Introduction

The purpose of this narrative review is to gain more insights 
on the effects of very low-calorie ketogenic diet (VLCKD) 
on the hypothalamic–pituitary–adrenal (HPA) axis and 
renin–angiotensin–aldosterone-system (RAAS), in differ-
ent phases of weight loss and in different clinical settings.

The adrenal gland is a bilateral endocrine organ, located 
to the superior pool of each kidney, and is composed of two 
distinct anatomical areas: cortex and medulla [1, 2]. Accord-
ing to Kim and Choi, the adrenal cortex synthesizes steroid 
hormones from cholesterol through a series of biochemical 
metabolic pathways [1, 2]. Furthermore, the adrenal cortex 
consists of three different cortical zones: the glomerulosa 
zone, secreting mineralocorticoids such as aldosterone, the 
intermediate fasciculate zone, secreting glucocorticoids 
such as cortisol, and the innermost reticularis zone, secret-
ing androgens [3, 4], as shown in Fig. 1, while the medullary 
area produces epinephrine and norepinephrine as part of the 
sympathetic nervous system [3, 4].

The HPA axis is a critical neurohormonal system that reg-
ulates cognitive, metabolic, immunological, and circadian 
behaviours and responds to internal and external stressors 
with continuous dynamic equilibration [5, 6]. Any activity, 
stimulus or situation that causes stress can be regarded as 
a stressor. Unlike homeostasis, which represents stability 
through consistency, allostasis is a capability to maintain 
stability through dynamic change. If the allostatic response 
is prolonged, inadequate or overstimulated, the reactive 
processes may lead to maladaptation and organ damage 
[7]. Glucocorticoids, secreted by the adrenal cortex, par-
ticipate in this allostasis, control the gene expression for 
thousands of genes and exert multiple actions by binding 
to target tissues and activating mineralocorticoid (MR) and 
glucocorticoid receptors (GR) [8]. Upon reaching the sys-
temic circulation, in healthy individuals, 90% of cortisol is 
bound to cortisol binding globulin, 5% to albumin leaving 
around 5–6% in an unbound, active state. The HPA axis 
activity also depends on glucocorticoid metabolism, clear-
ance and plasma proteins. Glucocorticoids are metabolized 
irreversibly in the liver with the help of 5α and 5β reduc-
tase enzymes. Some conditions, such as obesity, alter the 
metabolic clearance rate causing an increased glucocorticoid 
secretion, while maintaining normal plasma levels [9]. Since 
overt hypercortisolism leads to metabolic manifestations 
such as visceral fat accumulation, hypertension and diabetes 
[10], the HPA axis was suggested as a contributor to meta-
bolic dysregulation in obesity. Obesity is also often associ-
ated with a broad spectrum of different stressogenic factors, 
such as infertility, since the women seeking pregnancy are 
older and heavier than what was observed before [11].

GR are ubiquitously expressed in peripheral tissues and 
have low affinity and high sensitivity for corticosterone [12]. 

Fig. 1  Adrenal gland and the 
division of the two distinct 
anatomical areas, with their 
hormone production
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Some of the many effects of glucocorticoids are to oppose 
insulin action and stimulate energy turnover between pro-
teins, triglycerides, glycogen and free fuel for mitochondrial 
oxidation [13, 14], while also having significant effects on 
cardiovascular tissues, vascular contractility, atherosclerotic 
process and angiogenesis [15].

Visceral fat represents an important target for glucocor-
ticoid action gene expression [16]. Glucocorticoids induce 
differentiation of adipocytes leading to insulin resistance and 
an increase in adiposity [17].

Cortisol action on GR is largely under control by enzyme 
expression and activity: 11β-hydroxysteroid dehydrogenase 
type 1 (11β-HSD1) that regenerates active cortisol from 
inactive cortisone and 11β-hydroxysteroid dehydroge-
nase type 2 (11β-HSD2) that converts cortisol to cortisone 
[18]. In obesity, the activity of the adipose 11β-HSD1 is 
increased. This is associated with the state of chronic inflam-
mation [19] which is a hallmark of obesity, and it was shown 
that anti-inflammatory treatment can reverse this effect to 
a certain extent [20]. In animal models, mice-overexpress-
ing adipocyte 11β HSD-1 developed all cortisol-related 
comorbidities such as diabetes, hypertension, and visceral 
obesity [21]. On the contrary to adipose tissue, the hepatic 
11β-HSD1 activity in obesity is decreased. Tissue-specific 
dysregulation of cortisol metabolism in human obesity and 
furthermore, excess liver fat increases glucocorticoid metab-
olite excretion in urine and can further decrease the hepatic 
11β-HSD1 activity [22].

It is well known that neuronal networks that regulate food 
intake are tightly connected to the HPA axis, expressing a 
significant effect on appetite-satiety centers [23]. Every 
stress response is stressor-specific and can vary significantly 
based on its effect on the organism, how one perceives the 
stress and the possibility of coping [24].

Functional assessment of the HPA axis in patients with 
obesity can be done using the usual diagnostic procedures 
for evaluating patients with suspected hypercortisolism; 
however, the sensitivity and specificity could be significantly 
reduced [25]. Despite that, dynamic studies in various set-
tings have been performed to investigate the HPA axis in 
obesity with regard to chronobiological changes, different 
types of stimulation or dexamethasone suppression [26]. 
Interestingly, in adult patients with obesity, there is a nor-
mal cortisol daily rhythm, normal adreno-cortico-tropic-
hormone (ACTH) levels and either normal or even lower 
single sample of 24-h cortisol levels [27]. Furthermore, male 
subjects with obesity with metabolic syndrome, hyperten-
sion and/or diabetes were found not to have significant dif-
ferences in urinary free cortisol, salivary cortisol and post 
dexamethasone cortisol levels in comparison to the subjects 
without these disorders [28]. Same was found when all cor-
tisol parameters and the number of features of metabolic 
syndrome were compared [28].

The modulation of GR activity is influenced by differ-
ent post-translational alterations such as phosphorylation, 
ubiquitination or gene polymorphisms [29, 30]. Many of 
these polymorphisms were investigated in relation to the 
body mass index (BMI) and other markers of metabolic syn-
drome [29, 30]. The N363S polymorphism is associated with 
an increased sensitivity to glucocorticoids, increased insulin 
response to overnight dexamethasone suppression testing 
and an increased BMI [30], while the Bcll polymorphism, 
also connected to enhanced sensitivity to glucocorticoids, 
was associated with an increased abdominal fat mass. Con-
trary to this, the ER22/23EK carriers had significantly better 
metabolic profile than noncarriers [29]. However, despite 
the vastly explored relationship between obesity and HPA 
axis, the relationship between food intake and this axis is 
bidirectional and the data on effects of various diets on HPA 
adaptation, namely hypercortisolism, and their specific dif-
ferences still do not offer a unanimous conclusion.

Renin–angiotensin–aldosterone system, 
aldosterone, and obesity‑related metabolic 
dysfunctions

Aldosterone is secreted by the glomerulosa zone, under the 
control of a complex regulatory network, namely the RAAS, 
potassium plasma concentrations, and, at least in part, the 
HPA [31].

RAAS has a pivotal role in the regulation of blood pres-
sure, fluid and electrolyte balance and is strictly linked to the 
pathophysiology of several cardiometabolic diseases, such 
as heart failure, type 2 diabetes, and obesity [32, 33]. In this 
endocrine system, angiotensinogen (Agt), mainly produced 
by liver and adipose tissue, is enzymatically cleaved by 
renin, which is released into circulation by juxtaglomerular 
epithelioid cells located in the walls of renal afferent arteri-
oles [34], to Ang I. Ang I is then converted by angiotensin 
converting enzyme (ACE) in Ang II [35]. Ang II exerts most 
of its physiological effects mainly through two G-protein-
coupled receptors, Ang II type 1 (AT1R) and type 2 (AT2R) 
receptors, causing vasoconstriction and sodium/fluid reten-
tion. Hyperactivation of this pathway can lead to deleterious 
effects such as hypertension, fibrosis, endothelial dysfunc-
tion and inflammation [35]. On the other hand, RAAS is also 
characterized by a counterregulatory arm whose effects are 
mediated by ACE2 [extensively reviewed in [28, 36], which 
converts Ang-II to Ang-1,7 and Ang-1,9. These peptides 
elicits favourable physiologic effects through AT2R and the 
Mas receptor (MasR), hence counteracting the ACE1/Ang-
II/AT1R arm of the RAAS, thereby determining vasodila-
tion, increase in insulin sensitivity, and anti-inflammatory 
effects [37]. Aldosterone is the final hormonal effector of 
the RAAS, exerting its complex biological effects in almost 
all tissues involved in metabolic homeostasis (i.e. adipose 
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tissue, skeletal muscle, liver, pancreas, etc.) through specific 
activation of MR [38].

A consistent body of evidence supports the presence of 
a local RAAS in adipose tissue [39], which is known to 
represent the major site of Agt production after liver. RAAS 
activation plays a major role in the regulation of adipocyte 
function [40]. Remarkably, adipose tissue expresses all com-
ponents of RAAS necessary to generate vasoactive mole-
cules, angiotensin peptides, and also aldosterone, although 
at very low concentrations [41].

The obesity state represents a condition characterized by 
elevated plasma aldosterone levels [42, 43] and increased 
RAAS activation. RAAS hyperactivation represents a major 
determinant of obesity complex pathophysiology [44]. Dys-
functional adipose tissue shows increased expression of MR, 
whose specific activation favours white adipogenesis, and 
inhibits the browning process, i.e. the acquisition of brown-
like characteristics by white adipocytes, a process which 
carries great promise for protection against obesity and 
metabolic disorders [38]. Administration of MR antagonists 
prevents diet-induced obesity through induction of browning 
of white adipose tissue [45, 46], at least in mice models. A 
large body of evidence suggests that classical RAAS acti-
vation in white adipose tissue displays deleterious effect on 
insulin sensitivity and inflammation and plays a major role 
in the development of obesity-related metabolic diseases 
[47]. Differently, the RAAS counter-regulatory activation 
has shown favourable effects on adipocyte and metabolic 
dysfunction: in fact the administration of Ang-1,7 to high-
fat diet fed mice improved insulin sensitivity through an 
increase in Akt phosphorylation in brown adipose tissue 
[48]. Hence, pharmacological, or nutritional interventions 
acting on the balance between the classical and counter regu-
latory arms of the RAAS could potentially display favour-
able effects in obesity-related metabolic dysfunctions.

On the other hand, weight loss and a reduction in fat mass 
is able to affect RAAS activation, probably due to a reduc-
tion in adipocyte factors (CTRP1, leptin, and other) capa-
ble to directly increase aldosterone synthesis by the adrenal 
gland, independently from renin [49]. In line with this, a 
recent report showed that bariatric-induced weight loss is 
able to lower plasma aldosterone concentration, indepen-
dently of plasma renin activity and sodium excretion [50].

Diet as a stress

There are clear individual differences in humans in food 
intake during stressful periods. Age and sex contribute to 
this diverse response [51]. Even in the absence of hunger, 
stress tends to precipitate the intake of calorie dense foods, 
fast food and food rich in sugar, especially in individuals 
with overweight or obesity. The neural responses in brain 
regions of patients with obesity associated with motivation, 

emotion-memory and taste processing are shown to correlate 
with Homeostatic Model Assessment for Insulin Resistance 
(HOMA-IR). Alterations in insulin sensitivity can modify 
and suppress neural pathways associated with stress and 
food intake [52]. Various diets are available with a wide 
array of success and different metabolic outcomes. Diet 
induced weight loss takes place in the setting of increased 
energy expenditure and a net caloric deficit. Caloric restric-
tion is one of the proven ways to reduce cardiovascular risk 
[53]. It is linked to a reduction in blood pressure, insulin 
sensitivity and leads to weight loss [53]. It is well known 
that the HPA axis is reactive to food intake. Glucocorticoid 
levels increase immediately after a meal [54]. Nevertheless, 
the long-term changes in total and tissue specific glucocor-
ticoid metabolism and their relation to weight loss appear 
to be more complex.

Caloric intake restriction poses a stressor and can lead 
to cortisol output elevation as a simple manifestation of its 
physiological role in energy expenditure [55]. Furthermore, 
Purnell et al. suggest that the increased HPA activity may 
promote visceral weight regain following a successful diet-
induced weight loss. They have shown that metabolic clear-
ance, cortisol production rate and free cortisol do not signifi-
cantly change in comparison to baseline after 24 weeks of 
dieting in men with obesity, but in the same group, with fur-
ther weight loss, cortisol production increased, and the activ-
ity of adipose, tissue specific 11β-HSD-1 decreased [56]. 
In adipose tissue of patients with obesity, the inhibition of 
11β-HSD-1 results in tissue-specific cortisol concentration 
reduction, which was suggested to improve insulin sensitiv-
ity in this group [9]. Other studies report similar findings 
of the unchanged circulating levels of cortisol, cortisone 
and urinary steroid metabolite ratios and a decreased 11β-
HSD-1 activity in adipose tissue [57]. It seems that with a 
less significant weight loss, the expression of 11β-HSD-1 is 
mostly unaltered [58], but as the weight loss becomes more 
significant, this activity decreases. In patients with obesity 
that were undergoing bariatric surgery, the omental and 
hepatic 11β-HSD-1 were found to correlate with their BMI 
and the adipose 11β-HSD-1 was also significantly reduced 
after significant post-surgical weight loss [59].

Even though BMI is still the most used tool for stratifica-
tion of obesity, obesity associated risks and the success of an 
individual weight loss, the body fat mass, the fat free mass 
and muscle gain can provide further important insight in the 
quality of the weight loss [60]. Various dietary approaches 
using low energy density, lower glycaemic index or portion 
controls have shown to improve body fat percentage and fat 
mass with no change in fat free mass [61]. In a large cohort 
of male patients, circulating cortisol levels were negatively 
associated with weight, BMI, but also waist-to-hip ratio and 
waist circumference. The longitudinal changes in cortisol 
levels were also negatively associated with these measures 
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of adiposity [62]. Hair cortisol levels are proposed as one 
of the ways to measure chronic stress levels, that differ from 
the urinary, blood or salivary cortisol [63]; however, Larsen 
et al. found no association between the hair cortisol levels 
and weight loss maintenance in patients that had achieved a 
significant weight loss [64].

Manipulation of the macronutrient content is also specu-
lated to alter glucocorticoid metabolism. In animal models, 
the hepatic 11β-HSD-1 was shown to be reduced in the set-
ting of low or moderate carbohydrate diets in comparison 
to a high fat diet [65]. The connection between a decreased 
hepatic and adipose glucocorticoid regeneration and a die-
tary fat content has not yet been elucidated. The same group 
has also shown that a low-carbohydrate diet alters cortisol 
metabolism independently of weight loss, highlighting  low-
carbohydrate ketogenic diets (LCKDs) as a possible efficient 
tool for reversing the metabolic consequences of obesity in 
male patients [66]. Obesity is also an important comorbidity 
in various endocrinological diseases. An increasing number 
of patients with obesity are diagnosed with a wide spectrum 
of hypercortisolism ranging from (possible) autonomous 
cortisol secretion to overt Cushing’s syndrome and due to a 
long list of cardio-metabolic comorbidities associated with 
these conditions, treating these patients requires a person-
alized and a tailored approach along with lifestyle inter-
ventions [67]. Low-carb diets are known to ameliorate all 
metabolic complications associated with hypercortisolism, 
including diabetes, insulin resistance, hypertension, and 
obesity. In patients with both ACTH-dependent and -inde-
pendent cortisol hypersecretion, it is often advised that the 
low-carb diet is maintained prior, during and after surgery 
or medical treatment of the primary disease [68]. So far, 
the data on the efficacy of VLCKD in treating patients with 
hypercortisolism are scarce; however, based on the benefi-
cial effects that VLCKD is showing in treating all afore-
mentioned cardio-metabolic comorbidities, Guarnotta et al. 
speculate that it could be successfully employed in treating 
these groups of patients [69].

Physical activity goes hand in hand with weight reduction 
programs and is almost always advised to patients with obe-
sity within their physical limitations. However, exercise can 
be both a stressor itself and a modifier of stress in relation 
to the HPA axis [70]. Athletes who performed intense train-
ing sessions during the day had suppressed cortisol levels 
at night. The lowest cortisol levels were found in athletes 
having the most intense daytime training [70].

In animal models, exercise led to a reduction in GR 
expression and 11β-HSD-1 in liver and muscles, with 
unchanged levels of circulating cortisol [71]. However, we 
cannot determine the full scope of the impact of exercise 
on the HPA axis and its contribution to diet because of sev-
eral key modulatory cofactors. Food intake prior exercise 
is associated with a lower postprandial cortisol elevation, 

while adversely, performing physical activity after a meal 
leads to a suppressed cortisol response [72]. Irrespective of 
the thermal stress in physical activity, hypohydration can 
significantly modify the hormonal response, manifesting 
with increased circulating cortisol levels, possibly due to 
increased internal temperature and a reduction in plasma 
volume [73]. Also, physical activity during different periods 
of a day significantly influences cortisol levels and can create 
more difficulty in interpreting results [74].

Weight loss in response to the low-calorie diet tends to be 
different in male and female patients with obesity [75, 76]. 
Energy balance and glucose metabolism are initially distinct 
between the two in part because of the effect of sex hor-
mones, including not only circulating oestrogen and andro-
gen levels, but also their adipose tissue production and their 
effect on adipose tissue distribution [77]. Postmenopausal 
women tend to lose lean body mass with the loss of oestro-
gen and show an increase in adipose tissue [78]. The number 
of women with obesity (BMI > 35 kg/m2) is almost double in 
comparison to male patients [79]. Male patients with obesity 
show a more significant weight loss and improvement in 
some cardiometabolic factors, while female patients dem-
onstrate a lower regain of weight but have less dietary inter-
vention effect on the cardiometabolic outcomes [80]. On a 
molecular level, oestrogen has a stimulatory effect on the 
HPA axis, both centrally and trough increasing cortisol bind-
ing globulin, and is opposed by progesterone depending on 
the phase of the menstrual cycle and age, while androgens 
down-regulate the stress induced and basal glucocorticoid 
levels [81]. The relationship between obesity, testosterone 
and steroidogenesis was investigated in various studies. 
Although it is well known that obesity is associated with 
hypogonadism [82] and weight loss promotes testosterone 
increase, the data on different diet regimes in relation to 
testosterone changes are still a matter of debate. Testoster-
one influences lipid, protein and carbohydrate metabolism, 
and lower testosterone levels favour pluripotent stem cell 
conversion into adipocytes while leptin itself inhibits testos-
terone secretion from the Leydig cells [83]. In a recent meta-
analysis of 7 studies authors aimed to evaluate the potential 
effect of ketogenic diets (KDs) on testosterone levels. Of 
note, the most evident testosterone increase was found in 
patients with VLCKD. The authors suggest a multifactorial 
physiological mechanism for this, including a cholesterol 
intake increase, low fiber intake and alterations in glucose 
and insulin homeostasis [84].

Individuals with obesity often have a very hard time 
maintaining the newly reduced weight, even after a suc-
cessful initial weight loss. Poor appetite control can some-
times be exacerbated by a diet with patients not being able 
to achieve the significant metabolic and psychological ben-
efits of weight loss. Various studies have shown that diet-
ing and food restriction can lead to anxiety, depression, or 
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irritability [85]. For example, individual behavioural vulner-
ability can significantly impair the success of a low-energy 
diet-based weight loss program, highlighting the importance 
of the individualized approach in obesity management [80]. 
Restrained eating, a term reflecting an individual struggle 
to control food intake and weight [86] can pose as one of 
the stressogenic factors during weight loss. Elevated sali-
vary cortisol levels were found to positively correlate with 
the level of self-reported dietary restraint in premenopausal 
women [87]. Furthermore, when taking in consideration 
other factors, individual differences in cognitive restraint 
such as body image perception, appearance beliefs and dis-
satisfaction also emerged as important parameters in the 
level of stress related to dietary restraint and cortisol levels 
[88]. In addition, monitoring calories increases perceived 
stress irrespective of calorie restriction [55]. Obesity has 
become a leading worldwide pandemic, associated with seri-
ous outcomes [89]. Despite all the variables mentioned in 
this article, the fact that cortisol levels were shown to be 
lower in patients with obesity, with some studies showing a 
U-shaped relationship with BMI across the weight spectrum 
[90] could mean that the subtle hypercortisolism shown in 
weight loss, especially VLCKD, could not only be a useful 
physiological consequence, but also a sign of the HPA axis 
reactivation or return to normal state.

Mechanisms of action of the ketogenic diet 
on energy metabolism and muscle mass

KD is a normoprotein diet with a drastic reduction of the 
carbohydrate content (approximately between 30 and 50 g/

day); depending on the calorie content, KD can be defined 
as a high fat diet (with a fat content of approximately 
60–70%), a LCKD, with a fat content > 30–40 g/day, or a 
VLCKD, with a fat content < 30–40 g/day [91, 92]. Thanks 
to their sustained protein content, KD is extremely effec-
tive to reduce adipose tissue while preserving lean mass, as 
reported in Fig. 2.

Importantly, β-hydroxybutyrate (βHB) has also been 
shown to exert anticatabolic effects on human skeletal mus-
cle [93]. In fact, as reported by Barrea et al., KDs have a 
favourable impact on lean body mass preservation [94]. As 
reported by Basolo et al. lean body mass is the main deter-
minant of resting metabolic rate, accounting for ~ 70% [95]. 
Therefore, it is extremely important, in a very low-calorie 
diet, to preserve lean mass to maintain resting metabolic 
rate. Moreover, in a recent pilot study by Camajani et al., the 
efficacy of a VLCKD on fat free mass, basal metabolic rate 
and body cell mass was evaluated: 12 patients were enrolled 
in the control group that underwent only VLCKD and 12 
patients were instead enrolled in the experimental group that 
received the same diet in combination with interval training 
[96]. At the end of the 6-weeks study, it was seen that the 
experimental group preserved fat free mass, basal metabolic 
rate and body cell mass to a greater extent [96].

In the pilot study conducted by Merra et al., it has been 
demonstrated that VLCKD was highly effective in terms of 
body weight reduction without inducing lean body mass loss 
[97]. According to Barrea et al., the preservation of muscle 
mass, which is positively associated with muscle strength, 
has been included among the benefits of VLCKD due to 
the synergistic effects exerted by the reduction in visceral 

Fig. 2  Short-term positive 
mechanisms of action of the 
ketogenic diet on energy 
metabolism and muscle mass
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adipose tissue and obesity-related pro-inflammatory status 
[98]. In fact, in their study, the authors showed that at the 
end of a 45-days VLCKD protocol, there was an increase in 
muscle strength (∆ + 17.4 ± 13.2%; p = 0.001) [98].

Activation of the HPA axis during a ketogenic diet

The HPA axis is a neuroendocrine system involved in main-
taining homeostasis in humans under physiological condi-
tions and stress, and cortisol is the major hormone of the 
HPA axis. In obesity, calorie restriction is a good strategy to 
reduce visceral adipose tissue. In this respect, however, it is 
well known that dieting is a stress factor for the individual, 
resulting in negative consequences on body composition and 
energy metabolism reducing the free fat mass, which is an 
important site for glucose uptake. Furthermore, studies from 
the last decade have shown that the KD alters the hormonal 
balance through changes in the production of metabolic reg-
ulatory hormones, such as cortisol [99]. In fact, as reported 
by Thio, during a KD there is an increasing of serum cortisol 
levels, in rats [100]. In fact, in the study by Thio and col-
leagues, rats undergoing KD for 2 weeks had tenfold higher 
mid-day serum βHB levels and 30% lower glucose levels 
than rats undergoing standard diet. The elevated βHB lev-
els indicated that KD produced ketosis. The reduction in 
glucose was expected, as low-carbohydrate diets can lower 
blood glucose in humans. Rats subjected to KD also had 
slightly increased cortisol levels (p < 0.05) [100].

In a study by Ryan et al., it was demonstrated that a nutri-
tional manipulation characterized by a relative depletion of 
dietary carbohydrates, thereby inducing nutritional ketosis, 
acutely and chronically activated the HPA axis [101]. Male 
rats and mice maintained on a KD exhibited canonical mark-
ers of chronic stress, including increased basal and stress-
evoked plasma corticosterone, increased adrenal sensitivity 
to adrenocorticotropin hormone, and thymic atrophy, an 
indicator of chronic glucocorticoid exposure.

In subjects with obesity, caloric restriction is a valid strat-
egy to reduce visceral adipose tissue. A recent study was 
carried out by Polito et al. to assess the effects of a VLCKD 
for weight loss on the sympathetic nervous system and HPA 
axis, through evaluation of salivary cortisol and galvanic 
skin response levels [102]. Thirty male subjects with obe-
sity were recruited and assessed before and after 8 weeks of 
VLCKD intervention to evaluate body composition and bio-
chemical parameters. Salivary cortisol levels and galvanic 
skin response significantly decreased after dietary treatment; 
in addition, body composition and biochemical features were 
ameliorated. They concluded that a VLCKD had a short-
term positive effect on the sympathetic nervous system and 
HPA axes regulating salivary cortisol levels, despite the 
effect observed in preclinical studies [102]. Despite VLCKD 
was associated with hyperactivation of the HPA axis as other 

nutritional protocols do and that is usually associated with 
fat-free muscle loss, they interestingly found that VLCKD 
was associated with an increase of fat free mass, probably 
due to the trophic effects of ketone bodies on muscle mass. 
Since muscle mass is important for glucose uptake in glu-
cose metabolism, VLCKD could potentially become a prom-
ising nutritional approach, mostly in subjects with obesity 
and glucose metabolism derangements.

VLCKD, thanks to the dramatic reduction of the exog-
enous carbohydrate content and calories, determines physi-
ological nutritional ketosis: the ketone bodies produced 
through lipolysis, and especially βHB, have an anti-prote-
olytic effect, preserving muscle mass.

In addition, there will be a decrease in adipose tissue, 
particularly visceral adipose tissue, with a reduction in the 
pro-inflammatory cytokines, corresponding reduction in the 
chronic low-grade inflammatory state, characteristic of sub-
jects with obesity.

The VLCKD protocol is medicalized and well stand-
ardized; the nutritional ketosis phase, and hence the con-
sequent reduction in carbohydrates, can only be prolonged 
for 12 weeks [100]. Thereafter, there will be a progressive 
increase in carbohydrate and calorie content, which will not 
activate stressogenic compensatory hormonal responses that 
would lead to the consequent increase in cortisol.

Potential effects of VLCKD on the RAAS

The valuable effects of VLCKD in the rapid reduction of 
ectopic and visceral fat displays consistent favourable effects 
on the major risk factors for cardiovascular diseases [22, 
103]. Pioneering studies by Blackburn have demonstrated 
marked effects of VLCKD in the reduction of body weight, 
together with a significant decrease in blood pressure, fasting 
glucose and triglyceride plasma levels [104]. VLCKD was 
shown to be more effective in blood pressure lowering than 
a combined intervention based on a classical hypocaloric 
diet combined with orlistat treatment [105]. Such effect is 
probably linked to the increased natriuresis associated with 
ketone bodies urinary excretion. A recent meta-analysis of 
20 studies found out a modest but significant increase in 
serum sodium in subject following a VLCKD [106], prob-
ably related to the important water loss occurring during 
the first phases of ketosis. In this context, it is important 
to keep in mind that a careful supplementation in miner-
als, including sodium, potassium, calcium, and magnesium, 
as well as a proper water intake, are mandatory in order 
to avoid potential side effects due to alteration of hydrosa-
line metabolism. It appears evident that VLCKD necessar-
ily elicits rapid RAAS responses due to a different salt and 
water handling during nutritional ketosis. In this context, 
a very recent report demonstrated that a KD, with or with-
out supplementation in ketone esters, markedly increases 
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aldosterone plasma levels without worsening cardiometa-
bolic risk factors [107]. Importantly, aldosterone plasma 
concentrations were inversely related to renin, suggesting 
a renin-independent activation of aldosterone production. 
Moreover, ketone plasma levels were positively correlated 
to aldosterone, suggesting a potential novel role of ketones 
on aldosterone production by the adrenal gland. Importantly, 
this substantial increase in aldosterone did not determine 
any adverse effect in cardiometabolic risk factors in patients 
following a KD, probably due to the well-known cardiopro-
tective effects of ketone bodies [108]. However, the effects 
of VLCKD on all components of the RAAS still need to be 
clarified.

A recent study explored the differences existing in RAAS 
regulation in murine adipose tissue under obesogenic and 
ketogenic nutritional regimens [109]. The authors tested the 
hypothesis that the favourable vascular effects of KD were 
strictly linked to an increased expression in the components 
of the counterregulatory arm of the RAS. Interestingly, they 
demonstrated that KD shifted RAAS profile to the counter-
regulatory arm, whereas an obesogenic nutritional regimen 
up-regulated the expression of ACE1/Ang-II/AT1R in adi-
pose tissue. These data suggest that VLCKD may directly 
affect RAAS regulation at different levels, in view of its 
significant impact on adipose tissue metabolism, fluid/salt 
regulation, appetite and thirst regulation, natriuresis, etc., 
potentially counteracting the adverse cardiometabolic conse-
quences of RAAS dysregulation in obesity. The mechanisms 
underlying these effects are still unclear. Ketone bodies 
could display powerful effects both on aldosterone secre-
tion by adrenal cells, both on the expression and function 
of RAAS peptides. Caloric restriction, which shares with 
RAAS blockade similar effects on longevity [45], could also 
play a substantial role in the RAAS adaptation to a com-
pletely different dietary regimen. However, this hypothesis 
needs further studies, both in preclinical models exposed 
to KD, and in patients with obesity undergoing a VLCKD.

Conclusions

There is a strong relationship between obesity, stress, 
responses to low calorie diets, weight loss, the HPA axis 
and the RAAS, which indeed play a key role in short- and 
long-term metabolic adaptation to a very low-calorie diet. 
VLCKD represents a valuable nutritional strategy to tackle 
obesity, inducing a rapid and effective loss of adipose tis-
sue. Its potential impact in the adaptation of the HPA axis 
and RAAS to a novel metabolic, hormonal, cardiovascu-
lar and psychological status, has been poorly addressed so 
far, and requires ad hoc studies, to understand the effects of 
VLCKD on adrenal function. VLCKD could display favour-
able effects against stress-induced hypercortisolism and has 

been shown to directly increase aldosterone production by 
the adrenal glands, without any detrimental effect on car-
diovascular risk. Importantly, due to a significant loss of 
visceral and subcutaneous fat, VLCKD may strongly affects 
the peripheral metabolism of steroid hormones by adipose 
tissue, with subsequent important impact on cortisol effects 
on central and peripheral tissues. More studies are deemed 
necessary in this regard, in order to better define precision 
nutrition strategies, optimally adapting to the hormonal 
changes related to weight loss, to maintain the novel meta-
bolic status and avoid weight regain.
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