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Hypertrophic Cardiomyopathy (HCM) presents a complex diagnostic and prognostic challenge due to its heterogeneous phenotype and clinical course. 

Artificial Intelligence (AI) and Machine Learning (ML) techniques hold promise in transforming the role of Electrocardiography (ECG) in HCM diagnosis, 

prognosis, and management. 

AI, including Deep Learning (DL), enables computers to learn patterns from data, allowing for the development of models capable of analyzing ECG 

signals. DL models, such as convolutional neural networks, have shown promise in accurately identifying HCM-related abnormalities in ECGs, surpassing 

traditional diagnostic methods. 

In diagnosing HCM, ML models have demonstrated high accuracy in distinguishing between HCM and other cardiac conditions, even in cases with 

normal ECG findings. Additionally, AI models have enhanced risk assessment by predicting arrhythmic events leading to sudden cardiac death and iden- 

tifying patients at risk for atrial fibrillation and heart failure. These models incorporate clinical and imaging data, offering a comprehensive evaluation 

of patient risk profiles. Challenges remain, including the need for larger and more diverse datasets to improve model generalizability and address imbal- 

ances inherent in rare event prediction. Nevertheless, AI-driven approaches have the potential to revolutionize HCM management by providing timely and 

accurate diagnoses, prognoses, and personalized treatment strategies based on individual patient risk profiles. 

This review explores the current landscape of AI applications in ECG analysis for HCM, focusing on advancements in AI methodologies and their 

specific implementation in HCM care. 

© 2024 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Artificial Intelligence (AI) holds immense potential in medi- 

al applications, particularly in diagnosing complex diseases like 

ypertrophic cardiomyopathy (HCM), the most common heritable 

ardiovascular disorder. Characterized by left ventricular hypertro- 

hy (LVH) and a high risk of arrhythmia, sudden cardiac death, and 

troke, HCM presents a heterogeneous phenotype with increased 

ortality compared to the general population [ 1 , 2 ]. The electro- 

ardiogram (ECG) is crucial in HCM management but insufficient 

lone for diagnosis or prognosis [ 1 , 2 ]. AI can revolutionize ECG’s 

ole in diagnosing, differentiating, assessing arrhythmic risk, and 

anaging HCM. This review explores AI’s application in HCM, fo- 

using on its use in ECG for diagnosis, prognosis, and treatment, 

hile addressing its limitations. 
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Artificial Intelligence (AI) is a technology-creating hardware and 

oftware system capable of mimicking human traits, such as im- 

ge recognition, and decision-making [ 3 ]. Machine Learning (ML), a 

ubset of AI, employs algorithms to learn from data, improving per- 

ormance over time. Deep Learning (DL), a branch of ML, uses ar- 

ificial neural networks and excels in processing extensive datasets 

o identify complex patterns [ 3 ] ( Fig. 1 ). 

With ML systems, an algorithm is learned from the data, al- 

owing the system to build a model linking input and output. In 

L projects, datasets are typically divided into training, valida- 

ion, and testing subsets to refine models. ML approaches include 

upervised, unsupervised, and reinforcement learning. Supervised 

earning uses labeled data to predict outcomes with algorithms 

uch as linear regression and decision trees, while unsupervised 

earning uncovers hidden patterns in unlabeled data through clus- 

ering techniques [ 4 , 5 ] ( Fig. 1 ). Reinforcement learning, less com-

on in medicine, adjusts actions based on feedback to maximize 

ewards [ 3 ]. 
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Fig. 1. Left panel: The ECG input could be in the form of a 12-lead ECG or 1-lead ECG as image data or raw data. Central panel: AI analyzes ECG input using DL or ML 

methods, employing supervised learning with labeled data or unsupervised learning with unlabeled data. Right panel: The output of AI-ECG models could be the diagnosis, 

prognosis, or management of diseases. 
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DL models are structured similarly to the human brain, using 

ayers of nodes or neurons with the first layer receiving input data 

nd the subsequent hidden layers acting as regression functions, 

rocessing the data until the final output layer is generated, allow- 

ng the identification of patterns within large datasets. This is es- 

ecially effective in analyzing visual data, like ECGs ( Fig. 2 )[ 3 , 6 ].

onvolutional Neural Networks (CNNs), a DL technique, excel in 

CG analysis by extracting complex patterns, aiding in diagnosis 

nd management [ 3 , 6 , 7 ]. 

ECG data are converted into matrices for DL analysis, with the 

rst dimension representing spatial data, while the second dimen- 

ion represents temporal data [ 3 , 8 , 9 ]. In most cases of applying

L to ECG, raw input data directly acquired from digital ECG stor- 

ge is used. The raw data are represented as a vector of volt- 

ges recorded in a time series for each lead, allowing for signal 

nalysis with minimal preprocessing. Challenges arise from digi- 

izing older, printed ECG records, prompting research into using 

CG images for DL applications [ 10 ]. Sangha et al. created a con-

olutional neural network to identify rhythm and conduction dis- 

rders using 2,228,236 12-lead ECG images. The model performed 

ell on a separate test set and outperformed signal-based mod- 

ls [ 11 ]. Single-lead ECG models, endorsed for detecting conditions 

ike atrial fibrillation (AF), enhance continuous patient monitoring 

ia wearable devices [ 12 , 13 ]. AI-ECG models increasingly use larger, 

rivately curated datasets to enhance accuracy and performance 

etrics like the area under the receiver operating characteristic 

urve (AUC-ROC)[ 6 ]. 

I and ECG in HCM 

For the present analysis, we included a total of 19 original re- 

earch papers exploring AI’s applications in ECG for HCM ( Table 1 ). 

he process started with a PubMed query for the terms: (elec- 

rocardiogram OR ecg OR ekg OR electrocardiograph) AND (deep 

earning) OR (machine learning OR artificial intelligence) AND (hy- 

ertrophic cardiomyopathy). 
2

iagnosis of HCM 

According to the most recent European Society of Cardiology 

ESC) and American Heart Association (AHA) guidelines, a 12-lead 

CG is recommended for the initial evaluation and periodic follow- 

p (every 1 to 2 years) of patients with HCM [ 1 , 2 ]. ECG abnormali-

ies, such as prominent Q waves, ST-T segment abnormalities, giant 

egative T waves, QTc prolongation, or signs of LVH, are common 

ut not specific to HCM and can be seen in other conditions as 

ell [ 1 , 2 ]. AI has the potential to revolutionize ECG as a diagnos-

ic tool, aiding in differential diagnosis and serving as a powerful 

creening tool, especially for young athletes. 

etection and screening tool 

In 1998, Ouyang et al. conducted one of the earliest AI-ECG 

tudies on HCM, using 40 measurements from 79 ECGs to train 

nd test supervised ML for diagnosing the hypertrophic portions of 

CM [ 14 ]. However, with the current widespread use of echocar- 

iograms, this approach is less relevant today. Recently, AI applica- 

ions in ECG have surged, particularly using DL methods like con- 

olutional neural networks (CNNs). 

Tison et al. developed an AI model combining ML and DL to an- 

lyze 36,186 raw ECG recordings, aiming to detect conditions such 

s HCM, pulmonary arterial hypertension, cardiac amyloidosis, and 

itral valve prolapse, and to estimate cardiac structure parameters 

ike LVH and left atrial volume. Their model used a multilayered 

eural network with a hidden Markov model for ECG segmenta- 

ion, followed by a gradient-boosted machine for disease detection. 

he model demonstrated strong performance, with an AUC-ROC of 

.91 for HCM detection [ 9 ] ( Fig. 3 ). 

In 2020, the Mayo Clinic developed another AI-ECG model for 

CM detection. Using raw ECG data from 3060 HCM patients and 

3,941 controls, they trained a CNN model, achieving an AUC of 

.95 [ 15 ]. This model was evaluated as a screening tool in a pe-

iatric population, achieving an AUC of 0.98 with a sensitivity of 

2 % and specificity of 95 % [ 16 ]. However, the same model showed

 high false-positive rate in subjects over 40 years old, with the ac- 
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Fig. 2. The convolutional neural network is the most commonly used DL method for analyzing ECGs. It is characterized by a lack of interpretability due to its hidden 

layers. However, the use of pixel attribution methods such as Grad-Cam or Saliency maps could reveal the portions of ECGs that contributed to generating the output, thus 

increasing interpretability. 

Fig. 3. Description of the main AI-ECG models created to detect HCM. 
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Table 1 

Summary of reviewed studies on AI applied to ECG in HCM, including their performance and characteristics. 

Model Outcome 

Cases ECG 

tested ECG Input 

Description of 

Controls AI Method AUC Reference 

Detection of the hypertrophic 

portion of HCM 

79 Measurement 

extracted from 12-lead 

ECG 

– Neural Network – Ouyang et al. 

[ 14 ] 

Detection of diseases: 

HCM, PAH, CA, MVP. 

Detection of cardiac structure 

parameters: 

LVH, LAV, medial e′ . 

36,186 12-leads ECG 

(Raw data) 

1:5 matched 

by age, sex, 

year of study, 

and race 

CNN 

Supervised ML 

(Hidden Markov Model 

Gradient Boosted 

Machine) 

0.94 (PAH) 

0.91 (HCM) 

0.86 (CA) 

0.77 (MVP) 

0.87 (LVH) 

0.84 (medial 

e′ ) 
0.62 (LAV) 

Tison et al. [ 9 ] 

Detection of HCM 3060 12-leads ECG 

(Raw data) 

63,941 sex- 

and 

age-matched 

CNN 0.96 Ko et al. [ 15 ] 

Detection of HCM in children 

and adolescents 

300 12-leads ECG 

(Raw data) 

18,439 sex- 

and 

age-matched 

CNN 0.98 Siontis et al. 

[ 16 ] 

Detection of HCM and dilated 

HCM 

140 8-leads ECG, Single 

lead, Double leads, 

Triple leads. 

(Raw data) 

19,030 CNN 0.85 (8-lead 

HCM) 

0.86 (one-lead 

HCM) 

0.92 (8-lead 

dHCM) 

0.95 (one-lead 

dHCM) 

Hirota et al. 

[ 17 ] 

Detection of HCM 20,677 

15,147 

12-leads ECG 

(Raw data) 

– CNN 

Supervised ML (logistic 

regression) 

0.81 Maanja et al. 

[ 18 ] 

Detection of HCM 3047 Single-lead ECG (L1) 

(Raw data) 

63,926 sex- 

and 

age-matched 

CNN 

Pixel attribution 

method (Saliency 

maps) 

0.90 Siontis et al. 

[ 35 ] 

Detection of HCM 12,396 12-leads ECG 

(Raw data) 

61,980 sex- 

and 

age-matched 

CNN in federated 

learning 

Pixel attribution 

method (Grad-Cam) 

0.96 Goto et al. [ 19 ] 

Detection of HCM 12,680 12-leads ECG 

(Standard Image data) 

111,873 sex- 

and 

age-matched 

CNN 

Pixel attribution 

method (Grad-Cam) 

0.96 Sangha et al. 

[ 10 ] 

Differential diagnosis of LVH 50,709 with or 

without LVH 

12-leads ECG and 

single-lead ECG 

(L1-L2) 

(Raw data) 

– CNN 0.95 (CA) 

0.92 (HCM) 

0.90 (AS) 

0.76 (HTN) 

0.69 (other 

LVH) 

Haimovich 

et al. [ 20 ] 

Differential diagnosis of LVH 15,761 with 

LVH 

12-leads ECG 

(Raw data) 

– CNN 0.87 (HCM 

using ECG) 

0.92 (HCM 

using ECG and 

Echo) 

Soto et al. [ 21 ] 

Predictive Genotypes 178 12-leads ECG 

(Raw data) 

– CNN 0.89 Chen et al. [ 25 ] 

High Arrhythmic Risk imaging 

features 

1930 12-leads ECG 

(Raw data) 

– CNN 0.72 (systolic 

dysfunction) 

0.83 (massive 

hypertrophy) 

0.93 (apical 

aneurysm) 

0.76 (extensive 

LGE) 

Carrick et al. 

[ 27 ] 

Arrhythmic Risk phenotype 85 12-leads Holter ECGs 

(Raw data) 

35 Unsupervised ML 

(Clustering) 

– Lyon et al. [ 28 ] 

Heart Failure Risk 218 12-leads ECG ECGs 

(Raw data) 

245 CNN 0.71 (mild HF) 

0.71 (moderate 

HF) 

0.80 (severe 

HF) 

Togo et al. [ 29 ] 

Heart Failure Risk 54 8-leads ECG (L1, L2, 

V1-V6). 

Single lead. 

Double leads (L1-L2). 

(Raw data) 

17,324 CNN 0.92 (8-lead) 

0.95 (Single 

lead V5) 

0.89 (Double 

lead L1-L2). 

Hirota et al. 

[ 30 ] 

( continued on next page ) 
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Table 1 ( continued ) 

Model Outcome Cases ECG 

tested 

ECG Input Description of 

Controls 

AI Method AUC Reference 

Therapeutic Response with 

Mavacamten 

216 12-leads ECG 

(Raw data) 

– CNN 0.67 vs 0.38 

(pre- vs 

post-treatment 

UCSF 

algorithm) 

0.85 vs 0.37 

(pre- vs 

post-treatment 

Mayo 

algorithm) 

Tison et al. 

[ 31 ] 

Therapeutic Response with 

Mavacamten 

216 12-leads ECG 

(Raw data) 

2600 sex- and 

age-matched 

CNN 0.70 vs 0.35 

(pre- vs 

post-treatment 

UCSF 

algorithm) 

0.80 vs 0.45 

(pre- vs 

post-treatment 

Mayo 

algorithm) 

Siontis et al. 

[ 32 ] 

Therapeutic Response with 

Mavacamten and SRT 

315 (SRT) 

36 

(Mavacamten) 

12-leads ECG 

(Standard Image data) 

– CNN 0.41 vs 0.28 

(pre-and post- 

Mavacamten) 

0.55 vs 0.59 

(pre- and 

post-SRT) 

Dhingra et al. 

[ 33 ] 

AS = aortic stenosis; CA = cardiac amyloidosis; CNN = convolutional neural network; dHCM = dilated hypertrophic cardiomyopathy; HCM = hypertrophic cardiomyopathy; 

HTN = hypertension; LAV = left atrial volume; LGE = left gadolinium enhancement; LVH: left ventricular hypertrophy; MVP = mitral valve prolapse; PAH = Pulmonary artery 

hypertension; SRT = septal reduction therapy. 
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uracy improved only when combined with other ML methods [ 17 ] 

 Fig. 3 ). Maanja et al. enhanced the Mayo Clinic model by combin-

ng it with an univariable logistic regression algorithm to analyze 

linical features. This combined approach improved HCM detection 

ith an AUC of 0.84, reducing false positives and enhancing inter- 

retability [ 18 ]. Nevertheless, the current data do not support the 

se of AI-ECG as a screening tool for detecting HCM. The high false 

ositive rate of existing models raises concerns about the potential 

osts to the healthcare system associated with identifying HCM pa- 

ients 

CG images as input 

While raw ECG data are commonly used in AI-ECG models, 

angha et al. proposed using ECG images. Their model, based on 

2-lead ECG images, distinguished HCM from other conditions us- 

ng MRI criteria, achieving an AUROC of 0.96. They used GRAD- 

AM for interpretability, identifying leads V4 and V5 as key regions 

 10 ] ( Fig. 3 ). 

ifferential diagnosis in LVH 

AI-ECG can effectively distinguish HCM from other conditions 

resenting with LVH, such as cardiac amyloidosis, aortic steno- 

is, and hypertension [ 9 , 19 ]. Haimovich et al. developed an AI-

CG model using raw ECG data from 50,709 patients with LVH, 

emonstrating high performance in detecting cardiac amyloidosis, 

CM, aortic stenosis, and hypertensive LVH [ 20 ]. Soto et al. created 

 multimodal DL model combining ECG and echocardiogram data 

rom 2728 patients, which accurately distinguished HCM from hy- 

ertension [ 21 ]. 

redictive genotype 

HCM is a heritable cardiovascular disorder with variable ex- 

ressivity and age-related penetrance. Genetic testing is essential 

or the diagnosis, prognosis, and screening of at-risk family mem- 

ers. However, the specific mutation remains unidentified in up 
5

o 50 % of HCM patients [ 1 , 22 ]. Despite advancements, variants

f unknown significance complicate clinical interpretation. Tradi- 

ional scoring systems, like the Toronto and Mayo HCM genotype 

cores, predict genetic testing outcomes [ 23 ]. Recently, AI has im- 

roved predictions [ 24 , 25 ]; a DL model using raw ECG data from

78 HCM patients achieved an AUC of 0.89, outperforming both the 

ayo and Toronto scores [ 25 ]. No AI-ECG models currently predict 

henotype development, but exploring these could enhance under- 

tanding and follow-up in mutation carriers. 

rognosis of HCM 

HCM patients are at risk of developing sudden cardiac death 

SCD), AF, stroke, and heart failure. Risk assessment is crucial to 

romptly implement specific therapeutic measures that can reduce 

orbidity and mortality. 

rrhythmia and SCD 

Current risk stratification models for arrhythmia and SCD in 

CM patients rely on multiple clinical parameters, including elec- 

rocardiographic and echocardiographic data, analyzed using tradi- 

ional statistical methods. The ESC risk assessment employs the 

014 HCM Risk-SCD calculator, which provides a quantitative 5- 

ear SCD risk score, incorporating new risk factors such as apical 

neurysm, extensive late gadolinium enhancement (LGE) > 15 %, 

nd ejection fraction < 50 % in the 2023 guidelines [ 1 ]. The 2020

CC/AHA guidelines and the most recent 2024 update, include ad- 

itional risk factors like family history of SCD, unexplained syn- 

ope, maximal wall thickness of 30 mm, and left ventricular (LV) 

nd-stage remodeling [ 2 ]. The 2020 ACC/AHA guidelines showed a 

ensitivity of 95 % and a specificity of 78 %, while the 2014 ESC 

riteria had a sensitivity of 58 % and a specificity of 81 % [ 26 ]. Car-

ick et al. developed a DL ECG model to identify high arrhythmic 

isk features per the 2020 ACC/AHA guidelines. This model, trained 

n ECG data from 1930 HCM patients, demonstrated a sensitivity 

f 97 % when combined with echocardiography, reducing the need 
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Fig. 4. Description of the main AI-ECG models created to assess arrhythmic risk, heart failure risk, and the management of HCM patients. 
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or cardiac magnetic resonance imaging (CMR) by 61 % [ 27 ] ( Fig. 4 ).

I models can also enhance risk assessment by analyzing exten- 

ive datasets to determine primary prevention ICD implantation. 

yon et al. used an unsupervised ML model to identify four HCM 

ubgroups based on QRS and T wave biomarkers, finding that pri- 

ary T-wave inversion correlated with higher arrhythmic risk [ 28 ] 

 Fig. 4 ). 

trial fibrillation 

AF occurs in about 20 % of HCM patients, leading to worsened 

uality of life and a high risk of embolic stroke, requiring anticoag- 

lation therapy regardless of the CHA2DS2-VASc score. Early iden- 

ification of AF is crucial as it is often asymptomatic, and stroke 

an be its first manifestation [ 1 , 2 ]. However, to date there are no

tudies addressing the prediction of AF by using AI-ECG. 

eart failure 

Aside from arrhythmia and SCD, advanced heart failure (HF) af- 

ects 35–50 % of HCM patients, with left ventricular outflow tract 

bstruction (LVOTO) (gradient > 30 mmHg) linked to a higher risk 

 1 , 2 ]. DL methods can also identify HF severity by extracting spe-

ific ECG features, providing additional tools alongside the New 

ork Heart Association (NYHA) classification or the Kansas City 

ardiomyopathy Questionnaire (KCCQ). Togo et al. developed a DL 

CG model associating QRS complex features with mild to mod- 

rate HF and ST-T wave features with severe cases [ 29 ] ( Fig. 4 ).

L models also showed good diagnostic performance in identify- 

ng the dilated phase of HCM using various ECG leads, despite data 

mbalance leading to higher false positives [ 30 ] ( Fig. 4 ). 

valuation of therapeutic response 

Managing HCM involves addressing complications like arrhyth- 

ic sudden death, AF, and progressive heart failure. AI has the po- 
6

ential to identify ECG features associated with disease progression 

nd therapeutic response; however, there are no valid studies to 

ate indicating that the tool can help physicians in this field. Two 

apers analyzed 216 ECGs from the phase 2 PIONEER-OLE trial of 

avacamten. The ECG changes during treatment, did not make the 

odel more capable of identifying HCM [ 31 , 32 ] ( Fig. 4 ). The ECG

hanges observed in these studies probably were linked to the re- 

uction of LVOTO; however, in another study analyzing patients 

ith invasive reduction of LVOTO, these phenomena were not ob- 

erved, probably suggesting that invasive reduction, eliciting local 

eaction, like inflammation and fibrosis, does not change ECG even 

n presence of LVOTO reduction [ 33 ] ( Fig. 4 ). 

imitations and challenges of AI-ECG 

The adoption of AI-ECG technologies presents several limita- 

ions and challenges that must be addressed to transition these 

odels from hypothesis-generating research projects to tools with 

linical utility. 

ack of transparency and explainability 

One major limitation of CNN models is their “black box” nature, 

here the decision-making process is not transparent. This lack 

f transparency makes it difficult for clinicians to trust and un- 

erstand AI-driven diagnostics fully. Explainability methods, such 

s saliency maps and gradient-weighted class activation mapping 

Grad-CAM), have been developed to address this issue. These 

ethods improve the interpretability of AI models by highlight- 

ng parts of the input important for the model’s decision, providing 

nsights into how the model makes predictions [ 34 , 35 ] ( Fig. 2 ). For

nstance, Siontis et al. used saliency maps to identify ECG segments 

nfluencing CNN detection of HCM, revealing the ST-T segment as 

undamental for detection [ 35 ] ( Fig. 3 ). These techniques are cru- 
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Fig. 5. Left panel: Deep learning models often show low generalizability and poor performance when faced with new and unseen data, particularly when trained in a single 

center, resulting in overfitting. Right panel: To improve generalizability, federated learning can be utilized to create a model based on data from multiple centers without 

sharing private data. 
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ial for building trust and ensuring that the models are not only 

ccurate but also understandable. 

verfitting and data limitations 

Another significant challenge is overfitting, where models per- 

orm well on training data but poorly on unseen data. This issue is 

articularly relevant in ECG analysis due to the variability in data 

uality and patient demographics. Overfitting can lead to models 

hat are not generalizable, reducing their effectiveness in clinical 

ractice. Additionally, the lack of large, digitized clinical datasets is 

 barrier for AI development in ECG analysis. The variability in ECG 

ata, influenced by factors such as patient age, comorbidities, and 

he equipment used for ECG recording, makes it challenging to cre- 

te robust models that perform well across different populations. 

ata privacy and federated learning 

The scarcity of large-scale datasets is compounded by concerns 

bout patient privacy, which limits data sharing between institu- 

ions. Federated learning is a promising approach to address this 

ssue. It allows institutions to collaboratively train models on their 

rivate data without sharing the data itself, thus preserving pa- 

ient privacy [ 19 ] ( Fig. 5 ). For example, Goto et al. used multina-

ional federated learning to develop an AI-ECG model with data 

rom four medical centers. This approach improved model perfor- 

ance across different datasets [ 19 ] ( Fig. 3 ). Federated learning en-

bles the use of distributed data while maintaining patient privacy, 

hich is crucial for developing more accurate and generalizable AI 

odels. 

However, the current environment of AI model development is 

ften fragmented, with limited sharing of models and data be- 

ween researchers. This lack of transparency and availability pro- 

ibits investigators from building off each other’s work and limits 

he ability to compare the performance of different models in var- 

ous HCM cohorts. The inability to validate and improve upon ex- 
7

sting models prevents the advancement of the field. Greater trans- 

arency and collaboration are essential to overcome these barriers. 

y sharing models, datasets, and methodologies, researchers can 

alidate findings, replicate studies, and refine algorithms, leading 

o more robust and clinically useful AI-ECG tools. 

egulatory challenges 

The regulatory landscape for AI in healthcare is still evolving. 

he absence of clear regulations for AI use in healthcare poses a 

ignificant challenge. Regulatory bodies need to establish guide- 

ines that ensure the safety, reliability, and accountability of AI- 

riven tools. This includes defining standards for model valida- 

ion, performance benchmarks, and protocols for managing digi- 

al errors. Establishing guidelines for accountability in case of dig- 

tal errors will increase confidence in AI tools among healthcare 

roviders and patients. Clear regulations will also facilitate the in- 

egration of AI models into clinical workflows, ensuring they meet 

he necessary safety and efficacy standards [ 4 , 6 , 8 , 13 ]. 

all for transparency and collaboration 

To move AI-ECG models from research to clinical practice, the 

eld must prioritize transparency and collaboration. Researchers 

hould be encouraged to share their models and data openly, fa- 

oring an environment of innovation and continuous improvement. 

ollaborative efforts can lead to the development of standardized 

enchmarks and datasets, enabling balanced comparisons between 

ifferent AI models. This collective approach is critical for ad- 

ancing the field and ensuring that AI-ECG models can be effec- 

ively integrated into clinical practice, ultimately improving patient 

utcomes. Despite these challenges, AI and ML continue reshap- 

ng healthcare by enhancing diagnostic precision and personalized 

edicine through improved ECG analysis [ 3 , 13 ]. It is imperative 

or the community to advocate for more transparency, collabora- 



L. Ordine, G. Canciello, F. Borrelli et al. Trends in Cardiovascular Medicine xxx (xxxx) xxx

ARTICLE IN PRESS
JID: TCM [m5G;August 31, 2024;9:52]

t

i

C

i

c

e

A

i

e

c

t

m

F

-

d

C

A

D

C

t

C

o

S

v

N

c

I

R

s

L

c

q

o

t

M

v

s

R

 

 

 

[

 

 

 

[  

[

[  

[  

[

[

[

[  

[

[  

[  

[

[  
ion, and regulatory clarity to fully realize the potential of AI-ECG 

n clinical practice. 

onclusion 

AI is transforming the use of ECG in diagnosing and manag- 

ng HCM, showing high accuracy and potential for clinical appli- 

ation, and enabling more precise and personalized care. How- 

ver, it is necessary to improve research to develop an accurate 

I-ECG model that also considers interpretability and generalizabil- 

ty. Additionally, clinical trials will be necessary to use these mod- 

ls widely. Continued development and integration of AI in clini- 

al practice promise to revolutionize cardiovascular diagnostics and 

reatment, improving risk assessment and reducing morbidity and 

ortality in HCM patients . 
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