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Abstract
The crack front evolution in brittle solids is commonly modelled by defining some crack increment 

criterion, which can be derived from considerations on the stress singularity, from the definition of a 
dissipative potential, from the introduction of phenomenological concepts such as the crack mobility, and 
so on. In this work, the problem is faced with no allowance of any crack increment criterion, but using only 
the elastic properties, the fracture energy, and a stationarity principle. We will show that these ingredients 
are enough for determining the equilibrium and the quasi-static evolution of generally shaped three-
dimensional brittle plane cracks. In doing this, we pointed out some new insight on the crack front motion, 
a set of new, generalised, domain integrals for measuring the pointwise crack ‘tension’, and a rigorous 
calculation of the intersection angle between the crack front and the free surface.

1 - Introduction
The thermodynamic framework, as introduced more than a century ago by Alan A. Griffith (Griffith, 

1921), is yet extensively used to model the crack propagation in brittle materials. Since then, the underlying 
concepts have been clarified, organized, and made useful for the engineering practise through several 
analytical or numerical approaches. Among the ones relevant for the present article, the variational 
approach (Francfort et al. 2008), the material or configurational force concept (Gurtin and Podio-Guidugli, 
1996; Maugin, 2013), the domain integrals (Steinmann et al. 2001) are worth to be mentioned.

More recently, the regularized variational formulations of the crack surface have becoming popular, 
like the phase field approach, which can numerically solve, in principle, the general problem of the three-
dimensional crack evolution without remeshing needs (see, e.g., Miehe et al., 2010). Nevertheless, models 
with perfectly bidimensional (sharp) crack in three-dimensional domain are also widely used. In fact, 
despite the remeshing inconvenience, they still have many worths: only a relatively small number of 
elements are required, no convergence problems, they do not involve any scale length purely related to the 
regularization. Further, since the sharp crack model represents the limit behaviour for the regularized 
models, the first ones are important for benchmarking the second ones.

In this work, the sharp crack front evolution in a three-dimensional domain is faced. To this aim, 
only the elastic material properties, the fracture energy and a stationarity principle are used. Besides the 
theoretical aspects, many applications are possible of our results: composites delamination, interface 
cracks, symmetrical (opening) crack advance, etc. Although the problem may appear well understood, 
many different methods are used in literature to calculate the crack front evolution, and not all of them 
converge to the same result. For instance, Ševčík et al., 2012 or Oplt et al., 2019, evaluated the crack front 
shape by imposing that, at any point of the front, the stress singularity must be constant. In their work, 
Jiang et al., 2019, defined the crack front at equilibrium as the line along which the strain energy release 
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rate, calculated via the virtual crack closure technique, is uniform. Further, Vu et al., 2015, utilized to this 
aim the domain integrals (Destuynder and Djaoua, 1981) plus an independent crack increment criterion. 
Instead, we will show that, if the stationarity principle is rigorously applied, it is possible to determine the 
crack front evolution with no allowance of any crack increment criterion.

In section 2, the static equilibrium of a three-dimensional elastic domain with a generic plane crack 
is formulated as a free energy stationarity problem, which is constrained by the irreversibility. In this way, 
the equilibrium conditions turn out to be a generalization of the Griffith criterion, applied to each point of 
the crack front (see, e.g., Moran and Shih, 1987). More precisely, these conditions dictate that the crack 
increment results to be at equilibrium with the incremented boundary conditions if, at any point of the 
crack front, the mechanical free energy virtually released for an unitary local crack increment (here named 
fracture potential) is not higher than the unitary fracture energy. 

In section 3, the fracture potential is calculated exploiting the method proposed by De Lorenzi 
(1982). It turns out to be expressed as the sum of some line and area integrals, to be calculated along the 
crack front. This result represents a generalization of other well-established ones, obtained using the 
energy domain integrals (Moran and Shih, 1987), the configurational forces (Gürses and Miehe, 2009) or 
the Theta method (Destuynder and Djaoua, 1981). Differently from these literature results, the fracture 
potential can be calculated through integrals not necessarily lying on domains orthogonal to the crack 
front. For this reason, we can rigorously and accurately calculate the fracture potential also in those points 
in which the crack front emerges from the external surface of the volume domain, regardless of the 
intersection angle.

In section 4, the crack propagation problem is faced. The quasi-static propagation can be, in 
principle, calculated by imposing the static equilibrium at each finite increment of the crack. Hence, it does 
not need any crack increment criterion based on the physics of the propagation but, instead, an efficient 
numerical predictor of such increment is sufficient. To this aim, we proposed two different calculation 
algorithms of the crack front shape. They have been applied to a double cantilever beam (DCB) model 
subject to opening load and verified to be both efficient. Coherently with the relevant literature, the crack 
front shape results to be approximately parabolic, being the crack deeper at the inner zones than at the 
edges. In those points, the intersecting angle of the crack front with the external surfaces turns out to be 
not constant, but instead increasing with the increasing average crack length. 

To the aim verifying the results accuracy, in section 5 the crack front evolution is simulated by 
modelling the putative crack surface through cohesive elements. We tuned the cohesive law parameters to 
minimize the process zone length, in order to reproduce as accurately as possible a sharp crack model 
outcome. The comparison between the resulting crack front shapes calculated through the two different 
methodologies shows a very sound accordance.

2 – Crack front shape at equilibrium
Let’s consider a three-dimensional elastic domain  in which a propagating plane crack exists. In 

fig. 1 the domain is represented with its main descriptive notations. This domain, at a given crack 
configuration 𝓕𝟎 and given boundary conditions, is associated with a certain mechanical free energy. 
Adding to the problem description the degree of freedom 𝛥𝓕, i.e., the crack increment, the mechanical 
free energy results enriched, becoming as follows:

𝜙(𝒖,𝜆,𝓕0,𝛥𝓕) = ∫Ω 𝑤(𝒖\𝒖,𝜆𝒖,𝓕0,𝛥𝓕)𝑑𝑣 ― ∫∂Ω 𝜆𝑸𝒖𝑑𝑠 (1)
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where w is the elastic energy density, 𝒖 the constrained subset of the displacement field 𝒖, 𝒖\𝒖 
the unconstrained displacement field, 𝜆𝑸 the total external load, and 𝜆 the load parameter, possibly 
applied also to a subset of 𝒖. For simplicity, neither volume forces, nor forces on the crack surfaces are 
considered in the following.

Figure 1 – Crack description. {𝑆0} is the set of points belonging to the initial crack surface; {∆𝑆} is the set of 
points belonging to the crack increment surface; 𝓕𝟎(𝜁) is a vector pointing the initial crack front, whose 
points are ordered following the normalized curvilinear abscissa [0, 1]; ∆𝓕(𝜁) is a vector pointing the 
incremented crack front, starting from the initial configuration.

The general solution of the elastic problem with a propagating three-dimensional crack does not 
depend on the crack front shape only, but also on the whole crack surface shape; hence, it depends on the 
load history. For this reason, one cannot impose the equilibrium via a global minimum principle, but can 
use instead a local minimum one, consisting of the minimization of the free energy related to the increment 
of the state variables (see e.g., Francfort et al. 2008). Hence, starting from a given equilibrium condition 
(𝒖0, 𝜆0, 𝓕0), we will seek for the equilibrium depending on the set of the state variables increments 
(Δ𝒖, ∆𝜆, ∆𝓕). For a general crack shape, these increments must be considered infinitesimal; In case of 
plane crack (or when the realizable, smooth, crack surface is known in advance) they can be considered 
finite, unless complicated load histories, not considered here.

Let ℰ be the fracture energy (or adhesion energy) corresponding to the crack increment ∆𝓕. It can 
be interpreted as a configurational free energy and added to the mechanical free energy (1). Hence, the 
following total free energy functional is obtained:

Π(𝒖𝟎,𝜆0,𝓕0, Δ𝒖,𝛥𝜆,𝛥𝓕) = 𝜙(𝒖𝟎 + Δ𝒖,𝜆0 + 𝛥𝜆,𝓕0 + 𝛥𝓕) +ℰ(𝓕0,𝛥𝓕) (2)

where (𝒖0, 𝜆0, 𝓕0) is the initial equilibrium state. The energy Π is naturally interpreted as the free 
energy of a mechanical system where, compared to the scheme without the crack, the additional energies 
related to the configurational variables 𝓕0,𝛥𝓕 and to the fracture energy ℰ have been made free, that is, 
made them able to participate to the energies redistribution to attain the incremented equilibrium state. If 
the propagation was reversible, like for the adhesion problems, the minimum Π would define the (stable) 
equilibrium state as a function of Δ𝒖, ∆𝜆, ∆𝓕. It is possible using this concept without further limitations for 
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modelling the reversible adhesions, as exposed, e.g., by Maugis (2000). It is also possible to exploit this 
simple concept in case of fracture, by adding to the above minimization problem the irreversibility 
condition as a unilateral constraint applied on 𝛥𝓕. This technique has been adopted, for instance, by 
Kaczmarczyk et al., 2017. Notice that, differently from the classical variational approach adopted in 
Francfort et al. 2008, it isn’t explicitly required any dissipative potential.

The static equilibrium can be calculated via a minimum principle only if the crack evolves at stable 
condition. In turn, the stability also depends on the boundary conditions. Actually, in many engineering 
applications, the stable crack propagation is realized by imposing the displacements of the loaded points 
via hard devices. However, even if the problem cannot be modelled as a stable one, it is possible, using the 
concept of arc-length (Riks, 1979), to evaluate the crack front at unstable equilibrium making stable the 
calculation algorithm. In essence, one introduces a fictious (not related to the physics) constraint among 
the degrees of freedom of the numerical model, and makes instead unknown the load parameter, be it 
related to the forces or the displacements. Dealing with the propagation problems, it is convenient to apply 
this fictious constraint to the area of the crack increment. In this way one will constraint directly the non-
convex part of the problem, and this turns out to be the more efficient choice. We will apply such 
technique for the calculations presented in section 4. 

In this section, the propagation will be considered stable for sake of simplicity. Hence, the load 
parameter  is given, and the displacement field, as well as the crack front shape, represent the structure 
response in pursuing the minimum total free energy. More in detail, to get the unknowns Δ𝒖, 𝛥𝓕 at 
equilibrium, one must solve for any given  the following constrained minimization problem:

{ min
𝛥𝒖,𝛥𝓕

Π(𝒖𝟎,𝜆0,𝓕0, Δ𝒖,𝛥𝜆,𝛥𝓕)
{𝑺𝟎\𝓕𝟎} ∩ {∆𝑺} = ∅

 (3)

The constraint present in the above formulation establishes that no points of the crack surface 
increment, but the ones belonging to the crack front, can coincide with any point of the initial crack 
surface. This condition is equivalent to the irreversibility of the crack increment.

Assuming convex the elastic problem at fixed crack, the minimization (3) can be solved in two steps. 
First, calculate the minimum of Π for a varying Δ𝒖 at each fixed 𝛥𝓕; second, minimize the result of the first 
operation respect to the variable 𝛥𝓕. Hence, as a first step, let’s define the new free energy functional , 
corresponding to the minimum mechanical free energy at each fixed 𝛥𝓕.

min
𝛥𝒖

𝜙(𝒖𝟎 + Δ𝒖,𝜆0 + 𝛥𝜆,𝓕0 + 𝛥𝓕) = 𝜑(𝜆0 + 𝛥𝜆,𝓕0 + 𝛥𝓕)  (4)

Notice that the functional (4) is uniquely defined also for nonlinear elastic problems. Thinking of the 
original Griffith model, the energy  represents the share of elastic energy available for a generic crack 
increment. From now on, without loss of generality, the current crack front 𝓕0, and the increment 𝛥𝓕 will 
be defined through a mapping in cylindrical coordinates. As depicted in figure 2, the polar axis is orthogonal 
to the crack plane, and the pole O location is the intersection between the two radial directions defining 
the emerging crack front points being parallel to the external surfaces, i.e.,

𝓕0 ― 𝑶 = 𝑎0(𝜃)𝒊𝜌 (5)
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Using this mapping, one can indicate the crack front points with a simple scalar equation:  = a0(). 
Also the crack increment is easily indicated by the equation  = a(). Of course, as suggested in fig. 2, 
many different analytical representations of the crack front are equally licit. Indeed, the representation in 
cylindrical coordinates makes uniformly distributed the angular difference between the external surfaces, 
and this occurrence provides some interesting computational benefits, as will be shown in section 3.

Figure 2 – Mapping of the initial crack front, the crack increment under testing and the virtual crack 
increment, in cylindrical coordinates or with generically oriented vectors.

Using the definition (4) and the above mapping, one can express the minimization problem (3) in 
the following simpler form:

{ min
𝛥𝑎

{𝜑(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃)) + ℰ(𝑎0(𝜃),∆𝑎(𝜃))}
∆𝑎(𝜃) ≥ 0  ∀𝜃 ∈ [𝜃𝑎,𝜃𝑏]                                                     

 (6)

To solve the problem (6), the following functional ℒ is defined, where 𝜂(𝜃) is a Lagrange multiplier 
and 𝑦2(𝜃) is an auxiliary nonnegative function allowing to impose the unilateral constraint (62):

ℒ = 𝜑(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃)) +ℰ(𝑎0(𝜃),∆𝑎(𝜃)) + 𝜂(𝜃)[∆𝑎(𝜃) ― 𝑦2(𝜃)] (7)

The necessary condition to the minimization (6) with the unknown function ∆𝑎(𝜃) states that the 
variations of the Lagrangian functional ℒ with respect to the unknown functions ∆𝑎, 𝜂, 𝑦 must be zero. 
Formally:

lim
𝜀→0

1
𝜀

[ℒ(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃) + 𝜀ℎ(𝜃),𝜂(𝜃),𝑦(𝜃)) ― ℒ(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),𝜂(𝜃),𝑦(𝜃))] =

lim
𝜀→0

1
𝜀

[𝜑(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃) + 𝜀ℎ(𝜃)) ― 𝜑(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃))] +

lim
𝜀→0

1
𝜀

[ℰ(𝑎0(𝜃),∆𝑎(𝜃) + 𝜀ℎ(𝜃)) ― ℰ(𝑎0(𝜃),∆𝑎(𝜃))] + 𝜂(𝜃)ℎ(𝜃) = 0       ∀ℎ(𝜃)        

(8a)
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lim
𝜀→0

1
𝜀

[ℒ(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),𝜂(𝜃) + 𝜀𝑞(𝜃),𝑦(𝜃)) ― ℒ(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),𝜂(𝜃),𝑦(𝜃))] = 𝑞(𝜃)

[∆𝑎(𝜃) ― 𝑦2(𝜃)] = 0         ∀𝑞(𝜃) (8b)

lim
𝜀→0

1
𝜀

[ℒ(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),𝜂(𝜃),𝑦(𝜃) + 𝜀𝑝(𝜃)) ― ℒ(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),𝜂(𝜃),𝑦(𝜃))] = ―2𝜂(𝜃)𝑦

(𝜃)𝑝(𝜃) = 0           ∀𝑝(𝜃) (8c)

In equation (8a) is present the variation of the functional 𝜑, representing the opposite of the 
mechanical free energy released for a virtual crack increment ℎ(𝜃), calculated at first order. From now on, 
it will be indicated with 𝒢:

𝒢(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),ℎ(𝜃)) = ―
lim
𝜀→0

1
𝜀

[𝜑(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃) + 𝜀ℎ(𝜃)) ― 𝜑(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃))] 

(9)

Notice that the functional 𝒢 has the dimension of an energy. Hence, it is not to be confused with 
the energy release rate, which instead has the dimension of an energy to area ratio. In section 3 it will be 
shown in detail that 𝒢 can be represented in the following form: 

𝒢(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),ℎ(𝜃)) = ∫𝜃𝑏

𝜃𝑎
𝒞(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),𝜗)ℎ(𝜗)𝑎(𝜗)𝑑𝜗  (10)

The functional 𝒞 present in equation (10) has the dimension of an energy to area ratio and is 
defined at each point of the crack front (which, due to the mapping (5) are individuated by their coordinate 
𝜗). It depends on the crack front shape ∆𝑎(𝜃) and on the load parameter .

In equation (8a) is also present the variation of the fracture energy ℰ. If one assumes that it be 
proportional to the area of the crack increment and be independent on the crack front location within the 
volume domain, the unitary fracture energy will be a material property, and can be expressed with a 
unique scalar parameter 𝐽𝑐. Hence, the fracture energy variation is given by:

ℰ(𝑎0(𝜃),∆𝑎(𝜃)) = 𝐽𝑐∫𝜃𝑏

𝜃𝑎
∫𝑎(𝜗)

𝑎0(𝜗) 𝜌𝑑𝜌𝑑𝜗⇒lim
𝜀→0

1
𝜀

[ℰ(𝑎0(𝜃),∆𝑎(𝜃) + 𝜀ℎ(𝜃)) ― ℰ(𝑎0(𝜃),∆𝑎(𝜃))] =  𝐽𝑐

∫𝜃𝑏

𝜃𝑎
𝑑𝜗 lim

𝜀→0

1
𝜀

∫𝑎(𝜗)+𝜀ℎ(𝜗)
𝑎(𝜗) 𝜌𝑑𝜌 = 𝐽𝑐∫𝜃𝑏

𝜃𝑎
ℎ(𝜗)𝑎(𝜗)𝑑𝜗   (11)

Then, the necessary minimization condition (8a) is simplified as follows:

∫𝜃𝑏

𝜃𝑎
𝒞(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),𝜗)ℎ(𝜗)𝑎(𝜗)𝑑𝜗 ― 𝐽𝑐∫𝜃𝑏

𝜃𝑎
ℎ(𝜗)𝑎(𝜗)𝑑𝜗 ― 𝜂(𝜃)ℎ(𝜃) = 0       ∀ℎ (12)

It is possible to put under the integral also the third term of equation (12). To this aim, one can take 
advantage from the Dirac distribution 𝛿(𝜗,𝜃) and rewriting the equation in weak form:

∫𝜃𝑏

𝜃𝑎
[𝒞(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),𝜗)𝑎(𝜗) ― 𝐽𝑐𝑎(𝜗) ― 𝛿(𝜗,𝜃)𝜂(𝜃)]ℎ(𝜗)𝑑𝜗 = 0       ∀ℎ (13)
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Then, the test function h can be eliminated from equation (13) and the following pointwise 
condition is derived:

𝒞(𝜆0 + 𝛥𝜆,𝑎0(𝜗) + ∆𝑎(𝜗),𝜃)𝑎(𝜃) ― 𝐽𝑐𝑎(𝜃) ― 𝜂(𝜃) = 0         ∀𝜃 (14)

On the other hand, combining the minimization conditions (8b), (8c) allows eliminating from the 
problem the auxiliary function 𝑦2(𝜃). By this manipulation, one can derive a condition involving only the 
two functions ∆𝑎(𝜃), 𝜂(𝜃), that is:

{∆𝑎(𝜃) ― 𝑦2(𝜃) = 0
𝜂(𝜃)𝑦(𝜃) = 0            ⇒  { ∆𝑎(𝜃)𝜂(𝜃) = 0

∆𝑎(𝜃) ≥ 0           (15)

Next, the Lagrange multiplier 𝜂(𝜃) can also be eliminated by combining the equations (14), (15). 
This further manipulation transforms the minimization (necessary) condition (3) into a straightforward 
system of equations involving the functional 𝒞 and the unknown crack front shape ∆𝑎, that is: 

{[𝒞(𝜆0 + 𝛥𝜆,𝑎0(𝜗) + ∆𝑎(𝜗),𝜃) ― 𝐽𝑐]∆𝑎(𝜃) = 0
𝒞(𝜆0 + 𝛥𝜆,𝑎0(𝜗) + ∆𝑎(𝜗),𝜃) ≤ 𝐽𝑐                      
∆𝑎(𝜃) ≥ 0                                                                  

(16)

Clearly, the conditions (16) are the functional version of the well-known Kuhn-Tucker algebraic 
conditions (Kuhn and Tucker, 1951). Finally, formulas (16) can be further simplified, to get the following:

{𝒞(𝜆0 + 𝛥𝜆,𝑎0(𝜗) + ∆𝑎(𝜗),𝜃) = 𝐽𝑐    𝑖𝑓  ∆𝑎(𝜃) > 0
𝒞(𝜆0 + 𝛥𝜆,𝑎0(𝜗) + ∆𝑎(𝜗),𝜃) ≤ 𝐽𝑐    𝑖𝑓  ∆𝑎(𝜃) = 0 (17)

The equations (17) represent the equilibrium condition of the crack front for a given load multiplier. 
In particular, the two equations state that the crack increment ∆𝑎(𝜃) is at equilibrium with  if the 
functional 𝒞(𝜃) equates the fracture energy 𝐽𝑐 at the crack front points where ∆𝑎(𝜃) > 0, whereas, at the 
crack front points where ∆𝑎(𝜃) = 0, 𝒞(𝜃) is not higher than the fracture energy. It is worth recalling that 
the condition (17) doesn’t imply the minimum of the functional Π, but represents only a necessary 
condition for it. Hence, such condition doesn’t imply the stability of the equilibrium.

Apparently, the functional 𝒞(𝜃) is like the pointwise energy release rate (see e.g., Li et al, 1985) or 
to the distributed configurational force (Gurtin and Podio-Guidugli, 1996). Hence, the condition (17) can 
also be interpreted as a three-dimensional extension of the Griffith criterion. More precisely, since the 
definition of the functional 𝒞(𝜃) is not related to a virtual crack increment necessarily orthogonal to the 
front, it is more general of the pointwise energy release rate as usually defined in literature (see, e.g., 
Moran and Shih, 1987). 

Also notice that the term ‘configurational force’ implicitly remands to a ‘pushing direction’ of the 
crack front and this idea is, in this author opinion, misleading. For this reason, in this work the functional 𝒞 
is named ‘(unitary) fracture potential’; the comparison with the (unitary) fracture energy Jc follows 
naturally. This point of view will be discussed in detail in section 3. 

3 – Energy release and fracture potential evaluations
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In this section, the first order energy 𝒢(𝜆,𝑎(𝜃),ℎ(𝜃)), released due to a virtual crack front 
increment ℎ(𝜃), will be evaluated. Further, it will be shown to be eventually expressed as a function of the 
fracture potential 𝒞(𝜃), as stated in formula (10).

The energy release, as defined in equation (9), is the first order increment of the mechanical free 
energy when the crack is incremented by ℎ(𝜃) preserving the static equilibrium. Its evaluation for a general 
three-dimensional crack increment is a well-established literature topic. Many methodologies are known to 
this aim, e.g., the virtual crack extension (Li et al., 1985), the energy domain integrals (Moran and Shih, 
1987), or the Theta method (Destuynder and Djaoua, 1981). The common concepts to all of them were 
introduced by John D. Eshelby (Eshelby, 1975); he found an efficient methodology for calculating the 
mechanical free energy increment as depending on the ‘displacement’ of a defect within the elastic 
domain. Such increment is expressed as a function of the energy-momentum tensor 𝑷 = 𝑤𝑰 ― ∇𝒖𝑇𝝈, 
introduced by the author itself.

Taking advantage of the original formulation by De Lorenzi (1982) or the better formalized one by 
Suo and Combescure (1992), and neglecting, for simplicity, the volume forces, and the surface forces acting 
on the crack plane, one can calculate the energy release as follows:

𝒢(𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃),ℎ(𝜃)) = ― ∫Ω 𝑷𝑇:(∇𝑯)𝑇𝑑𝑣 = ∫Ω
(𝝈𝑇∇𝒖 ― 𝑤𝑰):(∇𝑯)𝑇𝑑𝑣 (18)

In the above equation, , u and w represent the solution of the elastic problem at fixed crack front, 
i.e., in (𝜆0 + 𝛥𝜆,𝑎0(𝜃) + ∆𝑎(𝜃)); H is a vector field on , whose value on the crack front is ℎ(𝜃)𝒊𝜌, and 
whose normal to the external surface component is zero. With reference to fig. 2, the vector field ℎ(𝜃)𝒊𝜌 on 
𝓕 represents a general virtual increment of the crack front, expressed in cylindrical coordinates.

It is worth emphasizing that the vector ℎ(𝜃)𝒊𝜌 doesn’t indicates the virtual displacement of the 
crack front single points. Instead, it only defines one among the infinite possible representations of the 
virtual deformation of the cracked domain in the configurational (or material) space (see, e.g., Casal, 1978). 
Hence, to calculate the crack propagation, assuming a biunivocal mapping between the initial crack front 
points {𝓕0} and the incremented crack front points {𝓕0 + 𝛥𝓕} is totally unnecessary (see fig. 2).

In the current literature, this misconception is often underlying, if not explicitly assumed. Probably, 
it originated the interpretation of the crack propagation as the displacement of the crack front points. This 
point of view brings thinking that the crack front points be ‘pushed’ by a ‘driving force’ having a direction 
orthogonal to the crack front line. For instance, Moran and Shih (1987) or Li et al. (1985) uphold that the 
energy domain integral methodology is like the virtual crack extension technique, and both are related to 
the orthogonal to the front crack extension. In their works the authors explicitly refer to a crack front 
‘transported’ to the incremented state, and in fact use some transport theorems relative to the physical 
space. Switching to the configurational mechanics, Gürses and Miehe (2009), or Kaczmarczyk et al., 2014, 
for maximizing the dissipative power, seems having ‘carried’ the configurational force into the physical 
space and coupled its direction with the crack increment ‘direction’.

In contrast, rigorously following the stationarity concept, the crack increment at a given point 
haven’t any directions. Instead, the crack increment is to be viewed as an omni-directional expansion of the 
crack surface starting from each point of the crack front, which is caused by the fracture potential 𝒞(𝜃) 
overcoming the fracture energy Jc.
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With these premises at hand, to properly exploit the definition (18), it is convenient to divide the 
volume  into three separated volumes , , , as depicted in fig. 3. Further, let’s define the vector 
field H as follows: 

 𝑯 = ℎ(𝜃)𝒊𝜌                                                               𝑖𝑛 Ω𝐼                                                              

𝑯 = 𝑓(𝜌,𝜃,𝑧)ℎ(𝜃)𝒊𝜌                                              𝑖𝑛 Ω𝐼𝐼, 𝑓(𝜌,𝜃,𝑧) = { 1 𝑖𝑛 ∂Ω𝐼𝐼⋂∂Ω𝐼
  0 𝑖𝑛 ∂Ω𝐼𝐼⋂∂Ω𝐼𝐼𝐼

𝑯 = 𝟎                                                                          𝑖𝑛 Ω𝐼𝐼𝐼                                                           

(19)

Figure 3 – Partition of the cracked domain into three sub-domains.  is the volume surrounding the crack 
front; , the one surrounding ;  is the residual volume \(  U ). 

Applying the third of the conditions (19), formula (18) trivially provides:

𝒢Ω𝐼𝐼𝐼 = 0 (20)

The energy release share due to the volume  contribution can be evaluated using the integration 
by parts technique in formula (18). Since everywhere in  the stress field is smooth, it follows 𝑑𝑖𝑣(𝑷𝑇) =
𝟎 (see Eshelby, 1975). Hence, it results:

∫Ω𝐼𝐼
𝑷𝑇:(∇𝑯)𝑇𝑑𝑣 = ∫Ω𝐼𝐼

𝑑𝑖𝑣(𝑷𝑇𝑯)𝑑𝑣 ― ∫Ω𝐼𝐼
𝑑𝑖𝑣(𝑷𝑇)𝑯𝑑𝑣 = ∫Ω𝐼𝐼

𝑑𝑖𝑣(𝑷𝑇𝑯)𝑑𝑣 (21)

The divergence theorem, applied to formula (21), provides, being N the outgoing normal to the  
boundary, the following result:

𝒢Ω𝐼𝐼 = ― ∫Ω𝐼𝐼
𝑷𝑇:(∇𝑯)𝑇𝑑𝑣 = ― ∫∂Ω𝐼𝐼

𝑵𝑇𝑷𝑇𝑯𝑑𝑠      (22)

With reference to fig. 4, the boundary of volume  is made by six surfaces Sk, i.e., 

∂Ω𝐼𝐼 = ⋃𝑘=6
𝑘=1 𝑆𝑘 (23)
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For these six surfaces, it results:

𝑯 = ℎ(𝜃)𝒊𝜌                       𝑜𝑛 𝑆1
𝑯 = 𝟎                                  𝑜𝑛 𝑆2

𝝈𝑵 = 𝟎  
𝑵𝑇𝑯 = 0}        𝑜𝑛 𝑆3,𝑆4,𝑆5,𝑆6

    (24)

Hence, the integrand function in eq. (22) gives zero on the surface S2 because H=0, whereas on the 
surfaces S3, S4, S5, S6, the integrand function is null since it results:

                𝑵𝑇𝑷𝑇𝑯 = 𝑤𝑵𝑇𝑯 ― (𝝈𝑵)𝑇∇𝒖𝑯 = 𝟎  (25)

Figure 4. Representation of volume  with its boundary surfaces. 

Therefore, the only nonzero contribution to the integral (22) is the one calculated on the surface S1. 
Let’s name n=-N the normal unitary vector outgoing to the volume ; finally, the energy release share due 
to the volume , results the following:

𝒢Ω𝐼𝐼 = ∫𝑆1
𝒏𝑇𝑷𝑇𝒊𝜌ℎ(𝜃)𝑑𝑠 (26)

Further, considering again equations (18), (19), the energy release share due to the volume , is 
given by:

𝒢𝛺𝐼 = ― ∫𝛺𝐼
𝑷𝑇:(∇(ℎ(𝜃)𝒊𝜌))𝑇𝑑𝑣 (27)

The equation (27) contains the gradient of the vector ℎ(𝜃)𝒊𝜌. In cylindrical coordinates, it gives:

∇(ℎ(𝜃)𝒊𝜌) = [0 ℎ,𝜃(𝜃) 𝜌 0
0 ℎ(𝜃) 𝜌 0
0 0 0]

(𝜌,𝜃,𝑧)

(28)
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The subscript comma in the above matrix indicates the derivative with respect to the variable which 
follows it. Hence, the integrand function in equation (27) becomes:

― 𝑷𝑇:(∇(ℎ(𝜃)𝒊𝜌))𝑇 =
1
𝜌[𝒕𝑇

𝜃
∂𝒖
∂𝜌

ℎ,𝜃(𝜃) + (𝒕𝑇
𝜃

1
𝜌

∂𝒖
∂𝜃

― 𝑤)ℎ(𝜃)] (29)

where:  

𝒕𝜃 = 𝝈𝒊𝜃 = [𝜎𝜌𝜃,𝜎𝜃𝜃,𝜎𝑧𝜃]𝑇 (30)

Finally, by assembling the contributions (20), (26), (27), and accounting for equation (29), one gets 
the energy release 𝒢:

𝒢 = ∫𝑆1
𝒏𝑇𝑷𝑇𝒊𝜌ℎ(𝜃)𝑑𝑠 + ∫𝛺𝐼

[𝒕𝑇
𝜃

∂𝒖
∂𝜌

ℎ,𝜃(𝜃) + (𝒕𝑇
𝜃

1
𝜌

∂𝒖
∂𝜃

― 𝑤)ℎ(𝜃)] 1
𝜌

𝑑𝑣  (31)

To the aim expressing the energy release as in equation (10), the virtual increment h() must be 
evidenced. To do this, we are going to define an opportune mapping of the volume  and of the surface S1. 
With reference to fig. 5, let consider a flat area D, lying in the plane (, z), intersecting the crack front at the 
coordinate . Imagine translating this area D from the external surface (  a) to the opposite one (  b), 
by holding two conditions: first, D remains in the local plane (, z) (i.e., remains orthogonal to i); secondly, 
D intersects the crack front at a fixed point. With these rules, the volume , the surface S1 and their 
mapping are fully defined.

Figure 5 – Volume  with its cylindrical mapping.

Let consider the infinitesimal oriented element db of the line 𝛤 = ∂𝐷\𝑆, which is the part of the D 
boundary not belonging to the crack surface. Let also consider the infinitesimal line element dc, belonging 
to the surface S1 and parallel to the crack front, as represented in fig. 5. These two infinitesimal vectors, 
together, define the infinitesimal area ds belonging to S1 and its oriented normal unit vector n. In details:
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𝑑𝒃 = (𝑏𝜌𝒊𝜌 + 𝑏𝑧𝒊𝑧)𝑑𝑙 (32)

𝑑𝒄 = (𝑎,𝜃(𝜃)
𝑎(𝜃)

𝒊𝜌 + 𝒊𝜃)𝜌𝑑𝜃 (33)

𝒏𝑑𝑠 = 𝑑𝒃 × 𝑑𝒄 = (𝑏𝜌𝒊𝜌 + 𝑏𝑧𝒊𝑧) × (𝑎,𝜃(𝜃)
𝑎(𝜃)

𝒊𝜌 + 𝒊𝜃)𝜌𝑑𝑙𝑑𝜃 = ( ― 𝑏𝑧𝒊𝜌 + 𝑏𝜌𝒊𝑧 + 𝑎,𝜃(𝜃)
𝑎(𝜃)

𝑏𝑧𝒊𝜃)𝜌𝑑𝑙𝑑𝜃 =

(𝒏(𝐷) ― 𝑎,𝜃(𝜃)
𝑎(𝜃)

𝑛(𝐷)
𝜌 𝒊𝜃)𝜌𝑑𝑙𝑑𝜃 (34)

In equation (34) the oriented elementary surface nds is split into two contributions. The first one, 
with direction n(D), is parallel to the area D and orthogonal to its boundary ; the other one, is orthogonal to 
D or, equivalently, parallel to i. Substituting the result (34) into the surface integral of equation (31), it 
gives:

∫𝑆1
𝒏𝑇𝑷𝑇𝒊𝜌ℎ(𝜃)𝑑𝑠 = ∫𝜃𝑏

𝜃𝑎
∫Γ(𝜃) 𝒊𝑇

𝜌𝑷(𝒏(𝐷) ― 𝑎,𝜃(𝜃)
𝑎(𝜃)

𝑛(𝐷)
𝜌 𝒊𝜃)ℎ(𝜃)𝜌𝑑𝑙𝑑𝜃 =  

∫𝜃𝑏

𝜃𝑎
ℎ(𝜃){∫Γ(𝜃) (𝑤𝑛(𝐷)

𝜌 ― 𝒕𝑇
𝒏(𝐷)

∂𝒖
∂𝜌)𝜌𝑑𝑙 ― ∫Γ(𝜃)

𝑎,𝜃(𝜃)
𝑎(𝜃)

𝑛(𝐷)
𝜌 𝒕𝑇

𝜃
∂𝒖
∂𝜌

𝜌𝑑𝑙}𝑑𝜃 (35)

Let define the line integrals 𝐼𝐿1, 𝐼𝐿2 as follows:

𝐼𝐿1(𝜃) = ∫Γ(𝜃) (𝑤𝑛(𝐷)
𝜌 ― 𝒕𝑇

𝒏(𝐷)
∂𝒖
∂𝜌)𝜌𝑑𝑙;   𝐼𝐿2(𝜃) = ―

𝑎,𝜃(𝜃)
𝑎(𝜃) ∫Γ(𝜃) 𝑛(𝐷)

𝜌 𝒕𝑇
𝜃

∂𝒖
∂𝜌

𝜌𝑑𝑙 (36)

Formula (35) can now be written in the following, more compact, form:

∫𝑆1
𝒏𝑇𝑷𝑇𝒊𝜌ℎ(𝜃)𝑑𝑠 = ∫𝜃𝑏

𝜃𝑎
[𝐼𝐿1(𝜃) + 𝐼𝐿2(𝜃)]ℎ(𝜃)𝑑𝜃 (37)

Then, let consider the volume integral of equation (31). Referring again to the notations reported in 
fig. 5, it results:

∫𝛺𝐼
[𝒕𝑇

𝜃
∂𝒖
∂𝜌

ℎ,𝜃(𝜃) + (𝒕𝑇
𝜃

∂𝒖
∂𝜃

1
𝜌

― 𝑤)ℎ(𝜃)] 1
𝜌

𝑑𝑣 =  

∫𝜃𝑏

𝜃𝑎
ℎ,𝜃(𝜃){∫𝐷(𝜃) 𝒕𝑇

𝜃
∂𝒖
∂𝜌

𝑑𝑠}𝑑𝜃 + ∫𝜃𝑏

𝜃𝑎
ℎ(𝜃){∫𝐷(𝜃) (𝒕𝑇

𝜃
∂𝒖
∂𝜃

1
𝜌

― 𝑤)𝑑𝑠}𝑑𝜃 (38)

Before operating on equation (38), it’s useful defining the area integrals 𝐼𝑆𝑂, 𝐼𝑆1 as follows:

𝐼𝑆𝑂(𝜃) = ∫𝐷(𝜃) 𝒕𝑇
𝜃

∂𝒖
∂𝜌

𝑑𝑠;  𝐼𝑆1(𝜃) = ∫𝐷(𝜃) (𝒕𝑇
𝜃

∂𝒖
∂𝜃

1
𝜌

― 𝑤)𝑑𝑠   (39)

To evidence the virtual crack increment h() in the first integral of equation (38), one can apply to it 
the integration by parts. 

∫𝜃𝑏

𝜃𝑎
ℎ,𝜃(𝜃)𝐼𝑆𝑂(𝜃)𝑑𝜃 = [ℎ(𝜃)𝐼𝑆𝑂(𝜃)]𝜃𝑏

𝜃𝑎
― ∫𝜃𝑏

𝜃𝑎
ℎ(𝜃)𝐼𝑆𝑂,𝜃(𝜃)𝑑𝜃 (40)

Since we assumed t = 0 on the surfaces where the crack front emerges, it results:
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[ℎ(𝜃)𝐼𝑆𝑂(𝜃)]𝜃𝑏
𝜃𝑎

= 0  (41)

It is worth noting that if the crack front line makes a loop within the volume domain, equation (41) 
is yet valid, since it results 𝜃𝑏 = 𝜃𝑎. 

In equation (40), the -derivative of the integral 𝐼𝑆𝑂 is present. Of course, the -derivative operates 
both on the integrand function and on its domain D(). Nevertheless, since D, as a function of , is simply 
translated without any deformation, it is possible to operate the derivative inside the integral sign, by left 
unchanged D(). This is attained by operating a directional derivative of the integrand function in the 
translation direction of each point of D(). Actually, the translation corresponding to d of each point of D 
when it changes from D() to D(d) was already defined in formula (33) and depicted in fig. 5; it 
corresponds to the vector 𝑑𝒄 = 𝑑𝑐𝜌𝒊𝜌 + 𝑑𝑐𝜃𝒊𝜃. Hence, it results: 

𝐼𝑆𝑂,𝜃(𝜃) = 𝑑
𝑑𝜃∫𝐷(𝜃) 𝒕𝑇

𝜃
∂𝒖
∂𝜌

𝑑𝑠 = ∫𝐷(𝜃)
𝑑𝒄
𝑑𝜃

∙ ∇(𝒕𝑇
𝜃

∂𝒖
∂𝜌)𝑑𝑠 = ∫𝐷(𝜃) [𝑑𝑐𝜌

𝑑𝜃
∂

∂𝜌
+ 𝑑𝑐𝜃

𝑑𝜃
1
𝜌

∂
∂𝜃](𝒕𝑇

𝜃
∂𝒖
∂𝜌)𝑑𝑠 (42)

The c derivative to  is easily recovered from equation (33); substituting it in equation (42), one 
gets 𝐼𝑆𝑂,𝜃 as a sum of two area integrals 𝐼𝑆2, 𝐼𝑆3, defined in the following expression:

𝐼𝑆𝑂,𝜃(𝜃) = ∫𝐷(𝜃)
∂

∂𝜃 (𝒕𝑇
𝜃

∂𝒖
∂𝜌)𝑑𝑠 +

𝑎,𝜃(𝜃)
𝑎(𝜃) ∫𝐷(𝜃)

∂
∂𝜌 (𝒕𝑇

𝜃
∂𝒖
∂𝜌)𝜌𝑑𝑠 = ― 𝐼𝑆2(𝜃) ― 𝐼𝑆3(𝜃) (43)

Finally, assembling the results (37) to (43), the energy release (31) becomes:

𝒢 = ∫𝜃𝑏

𝜃𝑎
[𝐼𝐿1(𝜃) + 𝐼𝐿2(𝜃) + 𝐼𝑆1(𝜃) + 𝐼𝑆2(𝜃) + 𝐼𝑆3(𝜃)]ℎ(𝜃)𝑑𝜃 (44)

The comparison of equation (10) with the above one (44), confirms that the energy release can be 
calculated by integrating the fracture potential 𝒞(𝜃) with the corresponding virtual crack increment 𝑑𝐴 = ℎ
(𝜃)𝑎(𝜃)𝑑𝜃, as assumed in section 2, being the fracture potential defined by:

𝒞(𝜃) =
1

𝑎(𝜃)[𝐼𝐿1(𝜃) + 𝐼𝐿2(𝜃) + 𝐼𝑆1(𝜃) + 𝐼𝑆2(𝜃) + 𝐼𝑆3(𝜃)] (45)

For the sake of simplicity, from now on, we will assume the static problem at fixed crack to be 
linear elastic; hence, the fracture potential turns out to be proportional to the square of the load parameter 
. Therefore, it is convenient to calculate it at a reference load level , so that the load parameter 
increment can be considered separately from 𝒞:

𝒞(𝜆0 + 𝛥𝜆,𝑎0(𝜗) + ∆𝑎(𝜗),𝜃) = (1 + 𝛥𝜆
𝜆0

)2
𝒞(𝜆0,𝑎0(𝜗) + ∆𝑎(𝜗),𝜃) (46)

To sum up, the equation (17), which establishes the equilibrium condition between the load 
increment 𝛥𝜆 and the crack front increment 𝛥𝑎, becomes:
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{(1 + 𝛥𝜆
𝜆0

)2
𝒞(𝜆0,𝑎0(𝜗) + ∆𝑎(𝜗),𝜃) = 𝐽𝑐    𝑖𝑓  ∆𝑎(𝜃) > 0

(1 + 𝛥𝜆
𝜆0

)2
𝒞(𝜆0,𝑎0(𝜗) + ∆𝑎(𝜗),𝜃) ≤ 𝐽𝑐    𝑖𝑓  ∆𝑎(𝜃) = 0

(47)

where the fracture potential is given by the following sum:

𝒞(𝜆0,𝑎(𝜗),𝜃) = 𝐽𝑐𝑦𝑙
𝐿1 (𝜃) + 𝐽𝑐𝑦𝑙

𝐿2 (𝜃) + 𝐽𝑐𝑦𝑙
𝑆1 (𝜃) + 𝐽𝑐𝑦𝑙

𝑆2 (𝜃) + 𝐽𝑐𝑦𝑙
𝑆3 (𝜃) (48)

whose terms are given by the following expressions:

𝐽𝑐𝑦𝑙
𝐿1 (𝜃) =

1
𝑎(𝜃)∫𝛤(𝜃) (𝑤𝑛(𝐷)

𝜌 ― 𝒕𝑇
𝒏(𝐷)

∂𝒖
∂𝜌)𝜌𝑑𝑙 (49a)

𝐽𝑐𝑦𝑙
𝐿2 (𝜃) = ―

𝑎,𝜃(𝜃)

𝑎2(𝜃)∫𝛤(𝜃) 𝑛(𝐷)
𝜌 𝒕𝑇

𝜃
∂𝒖
∂𝜌

𝜌𝑑𝑙 (49b)

𝐽𝑐𝑦𝑙
𝑆1 (𝜃) = ―

1
𝑎(𝜃)∫𝐷(𝜃) (𝑤 ― 𝒕𝑇

𝜃
∂𝒖
∂𝜃

1
𝜌)𝑑𝑠 (49c)

𝐽𝑐𝑦𝑙
𝑆2 (𝜃) = ―

1
𝑎(𝜃)∫𝐷(𝜃)

∂
∂𝜃 (𝒕𝑇

𝜃
∂𝒖
∂𝜌)𝑑𝑠 (49d)

𝐽𝑐𝑦𝑙
𝑆3 (𝜃) = ―

𝑎,𝜃(𝜃)

𝑎2(𝜃)∫𝐷(𝜃)
∂

∂𝜌 (𝒕𝑇
𝜃

∂𝒖
∂𝜌)𝜌𝑑𝑠 (49e)

In equations (49), the terms u, w and t represent the static solution calculated at  = o, 𝑎(𝜃) = 𝑎0

(𝜃) +∆𝑎(𝜃). The fracture potential (48) describes the pointwise ‘tension’ acting on the crack front. It is 
composed by the sum of two line integrals and three surface integrals, respectively calculated on the 
domains 𝛤(𝜃), 𝐷(𝜃), which are located and oriented following the global cylindrical reference frame of fig. 
5.

Using different calculation techniques, like the virtual crack extension method (Moran and Shih, 
1987) or the Theta method (Destuynder and Djaoua, 1981), similar, but less general, results can be also 
achieved. Compared to these well-established methodologies, the innovative aspect of the result (47 ÷ 49) 
consists of the possibility to calculate the integrals (49) on domains non orthogonal to the crack front. By 
this property, calculating the fracture potential (which, in this context, is the equivalent of the pointwise 
energy release rate) in the neighbourhood of the external surfaces turns out to be easy and accurate like in 
any other point of the crack front.   

Discussion and particularizations
The fracture potential is evaluated, at each point  of the crack front, by using displacements, 

stresses, and their derivatives of the corresponding two-dimensional domain 𝐷(𝜃). Since 𝐷(𝜃) can be 
chosen arbitrarily small, 𝒞(𝜃) actually depends on quantities arbitrarily close to ; this makes it, in fact, a 
local parameter. Therefore, it is also licit to map the volume I, in the neighbourhood of , using some local 
coordinate system, defined for merely computational convenience. In fig. 6, four different local 
mappings/reference frames of the volume I are depicted. Them generate as many particularizations of 
the integrals composing the fracture potential.

The mapping (a) is the one utilized so far, which gives, of course, the five integrals (49a ÷ 49e). It is 
also the unique mapping suitably describing the whole volume with a unique reference frame.
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The mapping (b) can be obtained by degenerating the cylindrical reference frame (, , z) into a 
cartesian one (x, y, z), whose x direction is arbitrarily rotated about z. The corresponding integrals can be 
obtained by assuming in the formulas (49) 𝜌→ + ∞, 𝜌𝑑𝜃→𝑑𝑦. It’s easy to verify that this position implies 
𝐽𝑐𝑎𝑟

𝑆1 (𝑦) = 0; the remaining four integrals become:

𝐽𝑐𝑎𝑟
𝐿1 (𝑦) = ∫Γ(𝑦) (𝑤𝑛(𝐷)

𝑥 ― 𝒕𝑇
𝒏(𝐷)

∂𝒖
∂𝑥

)𝑑𝑙 (50a)

𝐽𝑐𝑎𝑟
𝐿2 (𝑦) = ― 𝑎,𝑦(𝑦)∫Γ(𝑦) 𝑛(𝐷)

𝑥 𝒕𝑇
𝑦

∂𝒖
∂𝑥

𝑑𝑙 (50b)

𝐽𝑐𝑎𝑟
𝑆2 (𝑦) = ― ∫𝐷(𝑦)

∂
∂𝑦

(𝒕𝑇
𝑦

∂𝒖
∂𝑥

)𝑑𝑠 (50c)

𝐽𝑐𝑎𝑟
𝑆3 (𝑦) = ― 𝑎,𝑦(𝑦)∫𝐷(𝑦)

∂
∂𝑥

(𝒕𝑇
𝑦

∂𝒖
∂𝑥

)𝑑𝑠 (50d)

It is worth noting that the line integral (50a) corresponds to the Rice J-integral calculated on the (x, 
z) plane, which is in general non orthogonal to the crack front. Further, the surface integral (50c) 
corresponds to the contribution pointed out, e.g., by Amestoy et al., 1981. The remaining integrals (50b) 
and (50d) depend on the angle between the crack front and the domain D(y); in our best knowledge, they 
have been introduced for the first time in this work.

Figure 6 – Mapping of . (a): global cylindrical, which is the only one generally valid at the whole crack 
front. (b): global cartesian with arbitrary x, y orientation. (c): local orthogonal cylindrical. (d): local 

orthogonal cartesian.

The mapping (c) corresponds to a local curvilinear reference frame, whose radial axis is orthogonal 
to the crack front and whose radius of curvature Rc() corresponds to its local curvature. In this case, the 
derivatives 𝑎,𝜃 are null; hence, it results 𝐽𝑐𝑦𝑙, 𝑜𝑟𝑡

𝐿2 = 𝐽𝑐𝑦𝑙, 𝑜𝑟𝑡
𝑆3 = 0. The remaining three integrals become:

𝐽𝑐𝑦𝑙, 𝑜𝑟𝑡
𝐿1 (𝜃) =

1
𝑅𝑐(𝜃)∫𝛤(𝜃) (𝑤𝑛(𝐷)

𝜌 ― 𝒕𝑇
𝒏(𝐷)

∂𝒖
∂𝜌)𝜌𝑑𝑙 (51a)

𝐽𝑐𝑦𝑙, 𝑜𝑟𝑡
𝑆1 (𝜃) = ―

1
𝑅𝑐(𝜃)∫𝐷(𝜃) (𝑤 ― 𝒕𝑇

𝜃
∂𝒖
∂𝜃

1
𝜌)𝑑𝑠 (51b)

𝐽𝑐𝑦𝑙, 𝑜𝑟𝑡
𝑆2 (𝜃) = ―

1
𝑅𝑐(𝜃)∫𝐷(𝜃)

∂
∂𝜃 (𝒕𝑇

𝜃
∂𝒖
∂𝜌)𝑑𝑠 (51c)
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This evaluation of the fracture potential coincides with the result obtained e.g., by Eriksonn, 2002. 
Finally, the mapping (d) corresponds to the more common local cartesian reference frame, whose x 

axis is orthogonal to the crack front, as reported, e.g., by Amestoy et al (1981) or Giner et al. (2010). In this 
case, it results 𝐽𝑐𝑎𝑟, 𝑜𝑟𝑡

𝐿2 = 𝐽𝑐𝑎𝑟, 𝑜𝑟𝑡
𝑆2 = 𝐽𝑐𝑎𝑟, 𝑜𝑟𝑡

𝑆3 = 0. The remaining two integrals provide the following well-
known fracture potential:

𝒞(𝜆0,𝑎(𝜈),𝑦) = ∫Γ(𝑦) (𝑤𝑛(𝐷)
𝑥 ― 𝒕𝑇

𝒏(𝐷)
∂𝒖
∂𝑥

)𝑑𝑙 ― ∫𝐷(𝑦)
∂

∂𝑦
(𝒕𝑇

𝑦
∂𝒖
∂𝑥

)𝑑𝑠 (52)

It’s easily verified that, since the singularity of the integrand functions is weaker than -2, when the 
area of the domain D approaches to zero, the area integrals 𝐽𝑆𝑖 tend to vanish. In these conditions, it also 
results 𝜌(𝜃)→𝑎(𝜃); hence, the integrals (49) can be, in principle, evaluated as follows:

𝐽𝜀
𝐿1(𝜃) = 𝑙𝑖𝑚

𝛤→0
∫𝛤(𝜃) (𝑤𝑛(𝐷)

𝜌 ― 𝒕𝑇
𝒏(𝐷)

∂𝒖
∂𝜌)𝑑𝑙  (53a)

𝐽𝜀
𝐿2(𝜃) = ―

𝑎,𝜃(𝜃)
𝑎(𝜃) 𝑙𝑖𝑚

𝛤→0
∫𝛤(𝜃) 𝑛(𝐷)

𝜌 𝒕𝑇
𝜃

∂𝒖
∂𝜌

𝑑𝑙  (53b)

𝐽𝜀
𝑆1 = 𝐽𝜀

𝑆3 = 𝐽𝜀
𝑆3 = 0 (53c)

Further, if equation (47) is calculated in a reference frame orthogonal to the crack front, let it be 
curvilinear or cartesian, it also results 𝐽𝜀

𝐿2 = 0, and the fracture potential is given by the following 
expression:

𝒞(𝜆0,𝑎(𝜗),𝜃) = lim
Γ→0

∫Γ𝑜𝑟𝑡(𝜃) (𝑤𝑛(𝐷)
𝜌 ― 𝒕𝑇

𝒏(𝐷)
∂𝒖
∂𝜌)𝑑𝑙 (54)

The expression (54) of the fracture potential coincides with the pointwise J-integral as defined, e.g., 
in Blackburn (1972). The major drawbacks of this formulation are well-known: first, due to the stress field 
singularity, the precision of the numerical evaluations is generally poor; second, it fails in the 
neighbourhood of the external surfaces, since in general it is 𝑎,𝜃(𝜃) ≠ 0. The more general formulation (53) 
fixes the latter problem, but not the former. On the other hand, using the formulations (49) ÷ (52), fixes the 
first problem. As previously highlighted, since the domain D is by construction parallel to the external 
surfaces, the expression (49) of the fracture potential naturally fixes both problems. In conclusion, it is 
confirmed that the fracture potential 𝒞 is independent on any direction of the virtual configurational 
displacement H.

From the analytical point of view, formulas (49) ÷ (54), where appliable, are all equivalent; from the 
computational point of view, they are not. For instance, using the boundary elements method, makes 
equally difficult calculating the fracture potential with anyone of the formulas (49) ÷ (52), since the volume 
mesh is not a priori fixed. In contrast, using the FE method, it is convenient to make the volume mesh so 
that the domains D(), even if they were different each other, coincide with a meshed surface. In this case, 
using the general expressions (49), (50) allows for a notably more regular volume mesh.

Further, notice that the surface integrals 𝐽𝑆2 and 𝐽𝑆3 contain stress derivatives, whose suitable and 
accurate evaluation isn’t easy to attain by numerical calculations. By arranging the volume mesh so that all 
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the domains D() have the same shape, dimension and surface mesh, one can exploit the relation (43), 
which implies:

𝐽𝑐𝑦𝑙
𝑆2 (𝜃) + 𝐽𝑐𝑦𝑙

𝑆3 (𝜃) = ―
1

𝑎(𝜃)
𝑑

𝑑𝜃∫𝐷(𝜃) 𝒕𝑇
𝜃

∂𝒖
∂𝜌

𝑑𝑠 (55a) 𝐽𝑐𝑎𝑟
𝑆2

(𝑦) + 𝐽𝑐𝑎𝑟
𝑆3 (𝑦) = ―

𝑑
𝑑𝑦∫𝐷(𝑦) 𝒕𝑇

𝑦
∂𝒖
∂𝑥

𝑑𝑠 (55b)

Contrarily to the expressions (49), (50), the integrand functions in the above equations (55) do not 
contain any second derivatives of displacements; In this form, the sum 𝐽𝑆2 + 𝐽𝑆3 results much easier to 
calculate accurately. In fact, it can be directly performed by finite differences on the variables  or y of the 
integrals in formulas (55), previously calculated. 

It's worth highlighting that these results have been obtained taking advantage of the total free 
energy stationarity condition, without any further assumption. This general result is also valid for the mixed 
mode fracture, as long as the fracture energy Jc be mode-independent (as it should be, if the physics of 
fracture is accurately described as a creation of new surfaces, without irreversible volume changes). 
Further, it holds valid also if the material is nonlinear elastic, anisotropic, or in case of interface fracture.

4 – Evaluation of the crack front evolution 
In the most part of the relevant literature, the quasi-static crack propagation is dealt by introducing 

some ad hoc crack increment criterion. For instance, Galdos (1997) calculated the local crack increment as 
the -th power of the pointwise energy release rate, where the parameter  was considered a material 
property. Further, Kuhn and Müller (2010) faced the problem using a phase field model based on the 
configurational mechanics. These authors calculated the local crack increment via introducing a new 
material property (the so-called ‘crack mobility’), which was defined to impose the maximum dissipation 
power. Gürses and Miehe (2009) also introduced a ‘constitutive law’ ruling the increment, which is 
conceptually like introducing the crack mobility. In particular, they defined the crack increment as 
proportional to the difference between the configurational force module and the energy fracture. Gurtin 
and Podio-Guidugli (1996) also adopted a similar approach.

In contrast to the aforecited works, in the present one the quasi-static crack propagation problem is 
solved without introducing any ‘propagation criterion’. In fact, the crack increment is nothing more than 
the solution of the nonlinear functional equation (47), whose unknown is precisely a.

By means of equations (48), one can derive the fracture potential along the crack front at a fixed 
a. As for any nonlinear numerical problem, one must define a trial value for a to be iteratively 
substituted in the main equation until the convergence conditions are fulfilled; hence, some predictor for 
the trial value is also necessary. In this section, two different predictors will be introduced to this aim. 

As an exemplification case, we calculated via FEM the crack front shape evolution of a symmetric 
isotropic double cantilever beam (DCB) specimen loaded in opening mode, as depicted in fig. 7. The volume 
 mesh was realized by translating along the crack front line, without rotations, a plane circular meshed 
area D parallel to the xz plane, holding the centre of D coincident with the crack front points. Since the 
external surfaces where the crack emerges are parallel each other, the general formulation (49) of the 
fracture potential degenerates into the integrals (50).
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Further, we exploited the equation (55b), which is valid when the shape and the position relatively 
to the front of the domain D(y) are constant. Therefore, the fracture potential turns out to be the sum of 
three integrals 𝐽𝐿1,𝐽𝐿2, 𝐽′𝑆𝑂, as specified in the following formula:

𝒞(𝑦) = 𝑅∫𝜋
―π (𝑤𝑐𝑜𝑠𝛼 ― 𝒕𝑇

𝒏(𝐷)
∂𝒖
∂𝑥

)𝑑𝛼 ― 𝑎,𝑦(𝑦)𝑅∫π
―π 𝒕𝑇

𝑦
∂𝒖
∂𝑥

𝑐𝑜𝑠𝛼𝑑𝛼 ―
𝑑

𝑑𝑦∫π
―π 𝑑𝛼 ∫𝑅

0 (𝒕𝑇
𝑦

∂𝒖
∂𝑥

)𝑟𝑑𝑟 (56)

As shown in fig. 7, the volume  was meshed very accurately, having 50 layers of elements along 
the width B and about 16000 esaedric elements in total. Since we exploited the double symmetry, the 
volume really processed was only a quarter of  (25 layers and about 4000 elements). The fracture 
potential was calculated at each of the n = 26 surfaces D(yi).

Figure 7. DCB model used for calculating the crack front evolution. The relevant dimensions are B=20; h=10; 
R=2; Material properties: E=72000; =0.35.

The opening displacement  was applied to this model. As well known, these boundary conditions 
on the DCB geometry make the crack propagation stable. However, for the sake of computational 
efficiency, it is convenient imposing the crack surface increment A and leaving unknown the load 
parameter increment , which is applied here to the opening displacement  (see discussion on the Riks’ 
algorithm in sec. 2). Further, we assumed for simplicity that at the first equilibrium step the crack front was 
already fully developed, so that only the first of the two equations (47) was actually involved in the 
calculations of the crack front evolution.

At each iteration, an updated crack front and a new mesh were automatically realized by means of 
a APDL script, running with the commercial FE software ANSYS. Once the current elastic problem has run, in 
the postprocessing phase another APDL script allows calculating the current fracture potentials (56). Then, 
by means of a predictor algorithm, the new trial crack front model is realized, and the cycle goes on until 
the convergence criterion is fulfilled.

It is worth emphasizing that, thanks to the formulation (56), one can realize a quite regular mesh, 
unrelated to the orthogonality to the crack front, particularly near the external surfaces. In contrast, in 
most of the relevant literature, the unnecessary condition of the orthogonal to the front crack propagation, 
forces defining there a very poor mesh (see, e.g., Oplt et al., 2019). As a result, a spurious boundary effect 
on the crack front shape has been occasionally reported. 
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We calculated the crack front evolution using two different numerical techniques: the former, is 
based on the direct application of equation (47) in discretized form; the latter, is a variational technique, 
based on the weak form of the same equation.

Strong form solution 
The strong form numerical solution was pointed out by applying the first of equations (47) in all the 

n points yi of the meshed crack front, corresponding to the plane domains D(yj) on which the integrals (56) 
are calculated. Let it be ai = a(yi) and let A be the imposed area increment of the crack surface; further, let 
qi be opportune weight factors for the surface numerical integration. The set of equations arising from the 
previous definitions is the following:

(1 + 𝛥𝜆
𝜆0

)2
𝒞(𝜆0,{𝑎𝑖},𝑦1) = 𝐽𝑐  (57a)

𝒞(𝜆0,{𝑎𝑖},𝑦𝑗) = 𝒞(𝜆0,{𝑎𝑖},𝑦1),          𝑗 = 2,…, 𝑛 (57b)

∫𝑦𝑏

𝑦𝑎
∆𝑎(𝑦)𝑑𝑦 = ∆𝐴→∑𝑛

𝑖=1 (𝑎𝑖 ― 𝑎0𝑖)𝑞𝑖 = ∆𝐴 (57c)

 In details, the equation (57c) defines the total area of the crack increment; the equation (57b) 
requires the fracture potential to be constant along the crack front; the equation (57a) imposes the 
equilibrium condition between the fracture energy Jc and the load increment . 

The system of equations (57b), which is independent on , must be solved iteratively. The first 
trial value of the unknown ai is calculated as the uniform increment of the crack front which area is A; it is 
easily provided by equation (57c):

𝑎1
𝑖 = 𝑎0𝑖 +

∆𝐴
∑𝑛

𝑗=1 𝑞𝑗
 (58)

The next trials are provided by an ad hoc predictor for the equation (57b); it gives trial increments 
of ai approximatively proportional to the current residual 𝒞(𝑦𝑖) ― 𝐽𝑐 and corresponding to a null area 
increment, so that the total area of the crack increment remains unaltered over the iterations. The 
predictor is the following:

𝑎𝑘
𝑗 = 𝑎𝑘―1

𝑗 + 𝛾∑𝑛
ℎ=1 (𝛿𝑗ℎ ― 𝑞ℎ

∑𝑛
𝑟=1 𝑞𝑟

)[𝒞(𝜆0,{𝑎𝑘―1
𝑖 },𝑦ℎ) ― 𝒞𝑘―1]  (59)

𝒞𝑘―1 =  1𝑛∑𝑛
ℎ=1 𝒞(𝜆0,{𝑎𝑘―1

𝑖 },𝑦ℎ) 

In the above formula, jh is the Kroneker Delta, and  is a tuning parameter for stabilizing the 
algorithm. Once calculated the convergent solution of equations (57b), that is the crack front {𝑎𝑖}, the 
equation (57a) finally provides the load parameter  as follows:

 𝛥𝜆 = 𝜆0( 𝐽𝑐

𝒞(𝜆0,{𝑎𝑖},𝑦1) ― 1) (60)
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After few iterations, the trial crack front assumes a shape nearly convergent but, particularly near 
the external surfaces, the convergence becomes more and more slower. Actually, to obtain the requested 
convergence level, that was set as 𝑚𝑎𝑥(𝒞(𝑦𝑖) ― 𝐽𝑐) ≤ 0.001𝐽𝑐, it needed about 200 iterations.  

Weak form solution 
To improve the computational efficiency, we also used a different strategy, which is based on 

imposing the equation (47) in weak form. The variational equation to be solved is the following: 

∫𝑦𝑏

𝑦𝑎
[(1 + 𝛥𝜆

𝜆0
)2

𝒞(𝜆0,𝑎(𝜐),𝑦) ― 𝐽𝑐]𝑡(𝑦)𝑑𝑦 = 0         ∀𝑡 (61)

Using the standard Galerkin solution technique, one seeks for an approximate value of the 
unknown a(y) by exploring a subspace defined through some shape functions 𝛽𝑖(𝑦), which also describe 
the test function t(y); in detail:

𝑎(𝑦) = 𝑎0(𝑦) + 𝑝𝑖𝛽𝑖(𝑦)        𝑖 = 1…𝑚 (62a)
𝑡(𝑦) = 𝑞𝑖𝛽𝑖(𝑦)                          𝑖 = 1…𝑚     (62b)

Further, without any loss of generality, the shape functions are required to respect the following 
conditions: 

𝛽1(𝑦) = 1;   ∫𝑦𝑏

𝑦𝑎
𝛽𝑖(𝑦)𝑑𝑦 = 0,          𝑖 = 2,…, 𝑚 (63)

Substituting the approximate forms (62) into the variational equation (61), a discrete nonlinear 
system of equations results, with the unknowns 𝑝𝑖, 𝛥𝜆. Taking advantage of the condition (63), also in this 
case it results: a single equation, imposing the equilibrium condition between the fracture energy and the 
load increment, plus a separate system of equations, imposing the fracture potential to be constant along 
the crack front. The condition defining the total area of the crack increment has been added to these 
equations. In the end, the numerical problem consists of the following three separate equations: 

(1 + 𝛥𝜆
𝜆0

)2
∫𝑦𝑏

𝑦𝑎
𝒞(𝜆0,𝑎0(𝜐) + 𝑝𝑖𝛽𝑖(𝜐),𝑦)𝑑𝑦 = 𝐽𝑐(𝑦𝑏 ― 𝑦𝑎) (64a)

∫𝑦𝑏

𝑦𝑎
𝒞(𝜆0,𝑎0(𝜐) + 𝑝𝑗𝛽𝑗(𝜐),𝑦)𝛽𝑖(𝑦)𝑑𝑦 = 0              𝑖 = 2,…, 𝑚 (64b)

∫𝑦𝑏

𝑦𝑎
[𝑎(𝑦) ― 𝑎0(𝑦)]𝑑𝑦 = 𝛥𝐴   (64c)

Thanks to the conditions (63), the equation (64c) straightforwardly provides the first unknown p1:

𝛥𝐴 = ∫𝑦𝑏

𝑦𝑎
𝑝𝑖𝛽𝑖(𝑦)𝑑𝑦 = 𝑝1(𝑦𝑏 ― 𝑦𝑎)⟹𝑝1 =

𝛥𝐴
(𝑦𝑏 ― 𝑦𝑎)  (65)

Then, the system of m-1 equations in the m-1 unknowns p2,…, pm (64b) has to be solved iteratively. 
Finally, the equation (64a) provides the load parameter  by the following formula:
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 𝛥𝜆 = 𝜆0( 𝐽𝑐(𝑦𝑏 ― 𝑦𝑎)
∫𝑦𝑏

𝑦𝑎
𝒞(𝜆0,𝑎0(𝜐) + 𝑝𝑖𝛽𝑖(𝜐),𝑦)𝑑𝑦 ― 1) (66)

To solve the DCB problem, we chose as shape functions the even polynomials and m=3. Therefore, 
the general approximate form of the crack front turns out to be the following: 

𝑎(𝑦) = 𝑎0(𝑦) +
𝛥𝐴

(𝑦𝑏 ― 𝑦𝑎) + 𝑝2[( 𝑦
𝑦𝑏 ― 𝑦𝑎

)2
― 1

3] + 𝑝3[( 𝑦
𝑦𝑏 ― 𝑦𝑎

)4
― 1

5]    (67)

Using the approximation (67), the equation (64b) generates the following nonlinear system of two 
equations with the unknown variables p2, p3.

{∫𝑦𝑏

𝑦𝑎
𝒞(𝜆0,𝑎(𝜐;𝑝2,𝑝3),𝑦)[( 𝑦

𝑦𝑏 ― 𝑦𝑎
)2

― 1
3]𝑑𝑦 = 0

∫𝑦𝑏

𝑦𝑎
𝒞(𝜆0,𝑎(𝜐;𝑝2,𝑝3),𝑦)[( 𝑦

𝑦𝑏 ― 𝑦𝑎
)4

― 1
5]𝑑𝑦 = 0

  (68)

The numerical integration required for calculating the terms of equation (68) was realized using the 
pointwise fracture potentials 𝒞(𝑦𝑖) previously evaluated with the same mesh and at the same n = 26 points 
yi as for the strong form solution (see eq. 57). As a predictor, the inverse of the gradient of equation (68) 
was used, approximately evaluated, at each iteration, by finite differences with respect to the variables 𝑝2,
𝑝3. More in detail, let (𝑝𝑘

2,𝑝𝑘
3) be the current value of the unknown variables; let also define:

𝑓𝑖(𝑝𝑘
2,𝑝𝑘

3) = ∫𝑦𝑏

𝑦𝑎
𝒞(𝜆0,𝑎0(𝜐) + 𝑝𝑘

𝑗 𝛽𝑗(𝜐),𝑦)𝛽𝑖(𝑦)𝑑𝑦 (69)

The next approximation is given by the following formula:

 [𝑝𝑘+1
2

𝑝𝑘+1
3 ] = [𝑝𝑘

2
𝑝𝑘

3] ― 𝜀[𝑓2(𝑝𝑘
2 + 𝜀,𝑝𝑘

3) ― 𝑓2(𝑝𝑘
2,𝑝𝑘

3) 𝑓2(𝑝𝑘
2,𝑝𝑘

3 + 𝜀) ― 𝑓2(𝑝𝑘
2,𝑝𝑘

3)
𝑓3(𝑝𝑘

2 + 𝜀,𝑝𝑘
3) ― 𝑓3(𝑝𝑘

2,𝑝𝑘
3) 𝑓3(𝑝𝑘

2,𝑝𝑘
3 + 𝜀) ― 𝑓3(𝑝𝑘

2,𝑝𝑘
3)]―1[𝑓2(𝑝𝑘

2,𝑝𝑘
3)

𝑓3(𝑝𝑘
2,𝑝𝑘

3)] (70)

Of course, this technique makes the convergence much faster. In fact, only 8 iterations (which 
require the stress field at fixed crack to be evaluated 16 times) are sufficient to attain the same accuracy 
provided by 200 iterations of the strong form algorithm. Such a difference is due both to the higher 
numerical stability of the second algorithm and to the different accuracy of the respective predictors.   

Results of the simulations
In figs. 8 and 9 some results for a given load step are reported, corresponding to the opening 

displacement /h = 0.244 and to the load F/BJc=19.9. With these boundary conditions, the pointwise crack 
length a(y) (see fig. 7) is a/h = 6.43 at the external surfaces and a/h = 6.61 on the symmetry plane xz. 

In fig. 8 the converged crack front shape is reported, and the results provided by the two 
calculation techniques described above are compared. It can be noted a small oscillation of the strong 
solution involving few points closer to the external surface. In contrast, as expected, the weak solution 
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provides a very smooth behaviour everywhere on the crack front. However, the two results are practically 
indistinguishable.

In fig. 9, the dimensionless convergent values of the integrals JL1, JL2, J’SO and their sum, which is the 
fracture potential 𝒞(𝜆,𝑎(𝜐),𝑦), are reported. As expected, the fracture potential turns out to be constant 
along the crack front within a precision range smaller than 1/1000. The line integral JL1 gives the main 
contribution to the fracture potential; it corresponds to the J-integral, calculated on planes parallel to the 
external surfaces. The second more large contribution turns out to be the derivative J’SO, which is notable 
near the external boundary. Finally, the integral JL2 contributes, at its maximum (which is located at about 
B/10 from the external boundary), with about 1.5% of the total.

     
          Figure 8 – DCB crack front shape. Figure 9 – Dimesionless components of the fracture  

potential.

             
Figure 10 – Crack front curvature vs average      Figure 11 – Emerging crack angle vs average 

crack length. crack length.                                                                                 

In figs. 10 and 11, the trend of two of the most significative crack front shape parameters are 
reported at increasing opening displacement: the vertex curvature B/RC, and the intersection angle  
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between the crack front and the external surfaces. Both parameters increase with the increasing of average 
crack length a/h. This is probably due to the combination of the following occurrences: the shorter cracks 
are influenced by the detail of the boundary conditions more than the longer ones; further, the average 
crack length influences the ratio between the bending moment and the shear near to the crack front.

Many authors, mentioning among the others Pook (1994), Heyder and Kuhn (2006), Ševčík et al. 
(2012), by analysing the stress singularity trend along the crack front, supported the existence of a 
characteristic intersection angle between the crack front and the external surfaces, only depending on the 
Poisson’s ratio of the material. The results reported in fig. 11 do not support this hypothesis. Even within 
the same DCB model, the intersection angle results different at different crack lengths: in fact, it varies 
within the range  ≈ 16° ÷  ≈ 23° when the average crack varies in the range a/h ≈ 1 ÷ a/h ≈ 10.

Actually, Zakavi et al. (2021) have highlighted that this problem has not yet a common solution; in 
fact, one can find in literature a very wide range of experimental outcomes for the intersection angle (the 
authors have reported  ≈ 10° ÷ 40°). A database of rigorous numerical results for this angle for different 
geometries, crack configurations and boundary conditions could be provided by a systematic application of 
the present methodology.

5 – Crack front shape verification by comparison with a cohesive elements model 
Within the variational framework, the hypothetical convergence of cohesive type models to 

Griffith-like models can be easily framed in the language of -convergence (Francfort et al., 2008). Taking 
advance of this property, in this section we have realized a comparison between the crack front shape 
calculated in the previous section 4 and the one obtained by modelling the crack surface with interface 
cohesive elements (cohesive zone model, CZM). 

As well known, such a model cannot exactly define a crack front where a stress singularity arises; 
instead, it defines a process zone, with a finite area, without singularities. The main parameters of a CZM 
are the fracture energy and the process zone characteristic length. At any fixed value of the fracture energy 
JC, the smaller the process zone length, the higher the maximum cohesive stress. When the process zone 
length approaches to zero, the stress field tends to reproduce the singularity present in the sharp crack 
model. For the present verification, the following exponential cohesive model, due to Xu and Needleman 
(1994) was utilized:

𝜎𝑐𝑜(𝑥,𝑦) =  𝐽𝑐
𝑣(𝑥,𝑦)

𝑣2
𝑟

exp ( ―
𝑣(𝑥,𝑦)

𝑣𝑟
)   (71)

In equation (71), 𝜎𝑐𝑜 is the normal cohesive stress, v is the relative displacement between the two 
crack surfaces, and vr a scale parameter, related to the characteristic length of the process zone, which is 
inversely proportional to the maximum 𝜎𝑐𝑜 value. Once the crack propagation calculation has run, at each 
load step a map 𝑣(𝑥,𝑦) of the surfaces’ relative displacements is provided as output. As already said, the 
crack front line isn’t uniquely defined; therefore, the equivalent pointwise crack length was defined here as 
the length corresponding to the same total damage level  calculated with the CZM, that is: 

𝑎(𝑦) = 𝑎𝑖𝑛 + ∫𝐿
𝑎𝑖𝑛

𝜒(𝑣(𝑥,𝑦))𝑑𝑥;   𝜒(𝑣(𝑥,𝑦)) =  1 ― exp ( ―
𝑣(𝑥,𝑦)

𝑣𝑟
)   (72)
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To the aim approaching the sharp crack solutions, the scale parameter vr must be as small as 
possible. Unfortunately, the lower vr, the higher the cohesive elements minimum number, and more 
difficulty the convergence. The minimum value of the scale parameter we were able to reach, before 
running into convergence problems, was vr/B = 0.0001. The interface mesh was made with square cohesive 
elements, having the side length B/100. Actually, this mesh is more detailed and regular than the one 
utilized in section 4 for the surface integrals calculations. For comparison, our FE model with the sharp 
crack has about 100000 nodes, whereas our FE model with the CZM has about 400000 nodes.  

In fig. 12 is qualitatively depicted the interface normal stress y resulting from the two calculation 
methodologies under consideration; of course, due to the singularity, at the crack front nodal points the 
sharp crack stress field cannot be convergent. However, even this qualitative comparison highlights that at 
the same load the crack lengths and shapes are very similar.

Figure 12 – Qualitative comparison of the interface normal stress resulting from the cohesive zone model 
and minimum free energy methodology

In figs. 13 and 14 a quantitative comparison of the crack front shape is reported. In particular, the 
two pictures report two comparisons, for a small and a long crack, represented at the same lengths scaling, 
whose shapes result to be significantly different. The comparison shows that the new results presented in 
the section 4 of this work are very close to the ones obtainable using a very detailed cohesive interface 
model, even in the neighbourhood of the external surfaces. Since the two results have been obtained using 
two completely different methodologies, this comparison corroborates the correctness of the numerical 
outcomes presented in section 4 and the underlying theory. 

    
        Figure 13. Crack front shape at /h=0.023                           Figure 14. Crack front shape at /h=0.241
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6 - Conclusions
In this work, the crack front quasi-static evolution in a three-dimensional brittle domain was faced, 

using only the elastic properties, the fracture energy, and a stationarity principle. In the first part, we 
showed that, introducing the variable ‘crack front shape’ and the fracture energy in the total free energy 
computation, the equilibrium of an elastic domain with a brittle crack can be mathematically considered as 
a constrained stationarity problem. In particular, the solution of this problem provides the exact crack front 
shape at equilibrium with a given load. It states that, at each point of the crack front, the (unitary) fracture 
potential – which is a quantity generalising the pointwise energy release rate – is not higher than the 
(unitary) fracture energy. Eventually, this condition has a form very similar to the pointwise Griffith 
criterion, but its interpretation is subtly different from the one most adopted in literature. In fact, as usually 
interpreted, the Griffith criterion establishes a propagation condition (i.e., ‘the crack propagates if…’); 
instead, the way we attained the result suggest a static condition (i.e., ‘the crack is at equilibrium if…’). In 
our opinion, this interpretation also deserves to be closely considered.

Next, we calculated the fracture potential taking advantage of the De Lorenzi’s formulation of the 
energy released due to a general virtual crack increment. As a result, we found that, at each point of the 
crack front, the fracture potential can be calculated by summing some line and surface integrals. The 
individual values of these integrals depend on the single integration domain shape, area, and orientation, 
but their sum depends only on the position of the integration domain along the crack front. If the 
integration domains were chosen orthogonal to the crack front, we would obtain as degenerated cases 
various domain integrals well known in literature. On the other hand, exploiting the opportunity to use 
integration domains non orthogonal to the crack front, one can use a very regular FE mesh, and obtain, in 
turn, very accurate evaluations of the fracture potentials. Further, contrarily to the traditional techniques, 
they can be rigorously calculated even in the neighbourhood of the external surfaces.

Then, we presented a calculation technique for the quasi-static crack evolution, consisting of 
stepping from an equilibrium condition to the next one using only the general equilibrium conditions 
previously pointed out. Hence, no propagation criterion needs to be introduced, like the maximum 
dissipation power or the maximum energy release rate, since the crack front shape at equilibrium is totally 
determined by the static conditions. In particular, with this methodology, one doesn’t need introducing a 
propagation constitutive law. However, in this context, any external propagation criteria provided by the 
literature can be used as predictor of the unknown crack front in the iterative calculation algorithm. 

As a benchmark, we applied this scheme for calculating the crack front shape of a DCB specimen FE 
model, and the results we obtained are fully compliant with the experimental outcomes reported in 
literature. Finally, we verified these results by comparing them with the outcomes of a completely different 
methodology, that is the cohesive interface model. The crack front shapes resulting by the two 
methodologies matches each other very soundly.

The methodology presented in this work provides a rigorous framework for calculating the 
evolution of the plane brittle cracks in elastic three-dimensional domains. It can also be used with 
interfacial fractures between different materials, nonlinear elastic materials and anisotropic materials. In 
principle, once added opportune modifications, this methodology could be also used for calculating the 
evolution of generally non-plane brittle cracks.
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