W) Check for updates

Received: 30 April 2024 Accepted: 5 July 2024

DOI: 10.1111/imb.12945

Insect Molecular @% "
RESEARCH ARTICLE Biology o5

Recent Insights into RNAi in Insect Biology and Pest Management

The salivary gland transcriptome of Varroa destructor reveals
suitable targets for RNAi-based mite control

Andrea Becchimanzi’?® | Alfonso Cacace® | Martina Parziale?® |

Giovanna De Leva® | Sergio lacopino® | GiovanniJesu® | llaria Di Lelio '
Virgilio Stillittano*> | Emilio Caprio®® | Francesco Pennacchio?

*Department of Agricultural Sciences, Abstract

University of Naples ‘Federico II’, Naples, Italy

N o The mite Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) has a dra-

BAT Center—Interuniversity Center for

Studies on Bioinspired Agro-Environmental matic impact on beekeeping and is one of the main causes of honey bee colony losses.

LGCT”OIE&WI" University of Naples ‘Federico Il', | Thiq actoparasite feeds on honey bees’ liquid tissues, through a wound created on the
aples, Italy

3Arterra Bioscience, Naples, Italy host integument, determining weight loss and a reduction of lifespan, as well as the

4Istituto Zooprofilattico Sperimentale del Lazio | transmission of viral pathogens. However, despite its importance, the mite feeding strat-

e della Toscana, Rome, Italy egy and the host regulation role by the salivary secretions have been poorly explored.
5School of Specialization in Food Science, . . . . P .
University of Rome Tor Vergata, Rome, Italy Here, we contribute to fill this gap by identifying the salivary components of

V. destructor, to study their functional importance for mite feeding and survival. The dif-

Correspondence ferential expression analysis identified 30 salivary gland genes encoding putatively
Andrea Becchimanzi and Francesco . . .
Pennacchio, Piazza Carlo di Borbone (ex via secreted proteins, among which only 15 were found to be functionally annotated. These

Universita, 100), 80055 Portici (NA) Italy.

Email: andrea.becchimanzi@unina.it and . . . . . .
f pennacchio@unina.it immunosuppressive function. The three most highly transcribed genes, coding for a

latter include proteins with putative anti-bacterial, anti-fungal, cytolytic, digestive and

chitin-binding domain protein, a Kazal domain serine protease inhibitor and a papain-like
Funding information

European Union Next-Generation EU,
Grant/Award Number: CNO0000022 ics. Knockdown (90%-99%) by RNA interference (RNAI) of the transcript of a chitin-

binding domain protein, likely interfering with the immune reaction to facilitate mite

cysteine protease were selected to study their functional importance by reverse genet-

Associate Editor: Umut Toprak
feeding, was associated with a 40%-50% decrease of mite survival. This work expands

our knowledge of the host regulation and nutritional exploitation strategies adopted by
ectoparasites of arthropods and allows the identification of potential targets for RNAI,

paving the way towards the development of new strategies for Varroa mite control.

KEYWORDS
arthropod saliva, chitin-binding, gene silencing, honey bee, RNA sequencing

INTRODUCTION (Steinhauer et al., 2018; Stokstad, 2007), which are frequently associ-

ated with heavy infestations by Varroa destructor Anderson and True-
Parasites and pathogens strongly contribute to honey bee (Apis melli- man and high loads of vectored viral pathogens (Kielmanowicz
fera) colony losses, widely reported in different regions of the world et al., 2015). V. destructor is an obligate ectoparasite of honey bees,

which feeds on liquid tissues through a wound made on the integu-
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has a direct negative impact on the host, both at colony and individual
level (Noél et al., 2020; Rosenkranz et al., 2010), reducing its life span
(De Jong et al., 1983) and weight at emergence (Bowen-Walker &
Gunn, 2001). However, indirect damages are even more dramatic.
Indeed, V. destructor acts as a vector of several viral pathogens
(Grozinger & Flenniken, 2019), including the widespread deformed
wing virus (DWV), a mutualistic symbiont of the mite (di Prisco
et al.,, 2016). The reproductive phase of the mite occurs inside capped
cells, where adult females make a hole on the integument of honey
bee pupae, through which they feed along with their offspring
(Donzé & Guerin, 1994). The feeding strategy, likely interfering with
or evading the immune reaction of the host (Yang & Cox-
Foster, 2005), also preventing the infection of the open wound by
opportunistic pathogens (Kanbar & Engels, 2003), is still poorly under-
stood, even though the available evidence indicates that the saliva
can play an important role (Becchimanzi, Tatg, et al., 2020; Zhang &
Han, 2018). However, despite the importance of the saliva in the
modulation of host-parasite interactions (Kotal et al.,, 2015; Rodri-
guez & Hernandez-Hernandez, 2004; Shi et al., 2022; Villarroel
et al.,, 2016), only few studies investigated, so far, the composition
and function of Varroa salivary secretions. To date, only one omics
study has been published on the subject, a proteomic analysis of the
mite saliva, collected with an in vitro feeding system, which allowed
the identification of components likely acting as virulence factors,
anti-microbials or performing anti-oxidant and detoxification func-
tions (Zhang & Han, 2019).

One of the first functional studies on V. destructor saliva reported
that it can interfere with the cellular immune response of Lacanobia
oleracea larvae (Richards et al., 2011). Furthermore, a recombinant sal-
ivary protein of V. destructor resulted toxic for Apis cerana and pro-
moted DWV replication in A. mellifera (Zhang & Han, 2018). More
recently, it was shown a negative impact on metabolic activity of
honey bees for a salivary cystatin-L2-like of V. destructor, associated
with an abnormal pupal development (Zhou et al., 2023).

Through literature mining and a homology-based approach, we
recently identified secreted proteins of V. destructor with a putative role
in parasite-host interaction, focusing our attention on a chitinase
(Vd-CHlsal) specifically expressed in the salivary glands (Sg) of the mite
(Becchimanzi, Tate, et al., 2020). The ~97% knockdown of Vd-CHlsal,
obtained by soaking the mites in a saline solution of dsRNA, was associ-
ated with a 60% reduction of their survival, highlighting the importance
of this salivary protein for Varroa feeding success (Becchimanzi, Tate,
et al., 2020). This result corroborated the hypothesis that the study of
molecular interactions between Varroa mite and honey bees can pro-
vide the background knowledge on which to develop new strategies
for mite control mimicking natural suppression mechanisms (Garbian
et al., 2012; Leonard et al., 2020; Muntaabski et al., 2022). Indeed, bio-
pesticides based on RNA interference (RNAI) for mite control have
been already proved to be effective in field trials (McGruddy
et al, 2024), and the identification of new targets and formulations,
such as nano-encapsulation, is urgently needed (Ma et al., 2024).

Here, to further contribute to this research area, we characterised

the salivary gland transcriptome of V. destructor, revealing that mite
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saliva is a quite complex cocktail which includes several proteins with
putative anti-bacterial, anti-fungal, cytolytic, digestive and immuno-
suppressive function. This provides a molecular atlas of host regula-
tion factors that can be selectively targeted to disrupt the host-
parasite interaction. To exploit this potential, we selected the three
most abundant transcripts in the mite Sg and assessed the impact of
single and multiple dsRNA treatments on gene knockdown and mite

survival.

RESULTS

To obtain the transcriptome of V. destructor Sg (Figure 1a,b), we car-
ried out a differential expression analysis between Sg and the rest of
the mite’s body (Rb). The Principal component analysis (PCA) showed
a clear separation of Sg from Rb samples (Figure 1c), supporting an
obvious transcriptional specificity. Indeed, comparing the Sg with Rb
samples, 142 differentially expressed genes (FDR <0.05) were
detected, of which 54 were overexpressed (FC >1.5) and 88 underex-
pressed (FC <1.5) in the Sg. To characterise the salivary gland tran-
scripts, we focused on the overexpressed genes, highlighting that, of
the 54 identified, 44 encode proteins and 10 are classified as long
non-coding RNAs (Figure 1d).

Of the 44 predicted proteins, 30 are putatively secreted proteins
(i.e., showing a signal peptide), among which only 15 were found to be
functionally annotated in GenBank (Table 1). The predicted salivary
components have several putative functions such as, anti-bacterial,
anti-fungal, cytolytic, digestive and immunosuppressive function
(Table 1).

Among the genes having a functional annotation, we selected the
three most highly transcribed in Sg, based on their fold-change
(FC) values (Table 1), excluding the endochitinase Vd-CHIsal we
already studied (Becchimanzi, Taté, et al., 2020). The selected target
genes encode a chitin-binding domain protein (chitin-binding), a Kazal
domain serine protease inhibitor (kazal) and a papain-like cysteine pro-
tease (papain).

To assess the gene silencing efficacy of the concatenated dsRNA
molecule (1389 bp), as a strategy to target the three genes simulta-
neously (dsCONC), and to characterise their transcriptional profile, we
carried out a time course analysis at 48, 72 and 96 h after mite soak-
ing in dsCONC and dsGFP (negative controls). Two-way analysis of
variance (ANOVA) showed a significant effect of treatment factor on
gene transcription (chitin-binding: F1 24y = 19.47, p = 0.0002; kazal:
F1,24) = 56.47, p < 0.0001; papain: F(4 24y = 38.70; p < 0.0001), with a
significantly reduced level of the three targets for mites soaked in
dsCONC, at 96 h from the treatment (Tukey's post hoc, Table S1). A
significant knockdown was also observed at 48 and 72 h for papain
and kazal, respectively (Figure 2). Although not statistically significant
(Table S1), we observed a marked transcription reduction of the tar-
geted genes at the other time points considered. Moreover, two-way
ANOVA revealed a significant effect of time factor on gene transcrip-
tion (chitin-binding: Fi224) = 11.34, p = 0.0003; kazal: F324) = 3.511,
p = 0.0460; papain: F 24 = 6.637, p = 0.0051). The chitin-binding
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FIGURE 1 Transcriptome of Varroa destructor salivary glands (Sg). (a) The Sg are paired, oval and closely connected to the gnathosoma,
composed of hypostoma, chelicerae (c) and pedipalps (P). (b) The glands are in contact with each other and are sheathed (g). Scale bar: 50 um.

(c) Principal component analysis (PCA) of normalised RNAseq data. FPKM (fragments per kilobase per million mapped fragments) values were
used to perform a PCA. Each coloured dot represents a pool of 45 individuals. Salivary glands and carcass (rest of the body after dissection) are
indicated by blue and red circles, respectively. (d) Classification of the transcripts overexpressed in salivary glands. Of the 54 overexpressed
transcripts, 30 encode putatively secreted proteins with a signal peptide, 14 encode proteins without signal peptide and 10 are annotated as long

non-coding RNAs.

and kazal transcription in dsGFP soaked mites was significantly higher
at 96 h compared with 48 h (Figure 2). The general trend observed is
a transcriptional increase over time of the selected salivary genes dur-
ing mite feeding on honey bee pupae.

To score the effect of salivary genes knockdown on Varroa mites’
survival, we performed an artificial infestation of honey bee pupae
after soaking the mites in a solution of dsRNA targeting a single sali-
vary gene or all the selected targets simultaneously. The multi-target
silencing was achieved by using an equimolar mix of the three dsRNAs
(dsMIX) or dsCONC, to compare the efficacy of two different delivery
strategies. To check for target knockdown in treatment groups, mites
were sampled at 72 h after soaking and processed for RNA extraction
and gRT-PCR. One-way ANOVA showed a statistically significant
impact of the treatments on the transcription, except for kazal (chitin-
binding: Fgg = 23.50, p = 0,0003; kazal: Fzg = 3.321, p =0.08;
papain: Fi3 g = 8.33; p = 0.0076).

Mite soaking in single dsRNA solution induced a statistically sig-
nificant gene knockdown (98%-99% reduction) 72 h after the treat-
ment for chitin-binding and papain, while kazal expression was

reduced but not significantly (Figure 3a and Table S2). A similar effect

(95%-93% reduction) was obtained by soaking the mites in dsMIX.
Mite soaking in dsCONC induced a statistically significant reduction
of chitin-binding and papain transcription only, with 99.9% and 95%
mean reduction, respectively. The transcription of kazal was reduced
by soaking in dsCONC, but not significantly, showing a slightly less
average reduction (80%-90% reduction) compared to the other target
genes (Figure 3a).

A significantly lower survival rate was observed for mites soaked
in saline solution supplemented with dsMIX and dsCONC (log rank
test: x2 = 6.90; p = 0.0136) compared with mites soaked in control
GFP dsRNA (Figure 3b). A similar effect (50%-60% survival at 5 days
after treatment) was obtained by targeting chitin-binding protein
alone. The specific knockdown of the other single targets (dsKAZAL
and dsPAPA) did not significantly reduce mite survival compared with
controls (Table S3).

This result prompted us to analyse chitin-binding aminoacidic
sequence and to perform a phylogeny reconstruction, to obtain more
information on its putative function. The chitin-binding gene encodes
a short protein (111 AA) with a type-2 chitin-binding domain
(Vd-CHIBIN), characterised by a six-cysteine motif and several
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TABLE 1 List of transcripts overexpressed in salivary glands encoding putatively secreted proteins.

Adjusted p Fold- Transcript accession Protein accession
Annotation (GenBank, Interpro) Putative function value change (GenBank) (GenBank)
No match 3.20E-04 28.82 XM_022814795.1 XP_022670530.1
Cystein protease papain-like (zingipain-2-like)® Protein digestion/ 3.74E-04 22.50 XM_022802192.1 XP_022657927.1
Immunosuppression
IncRNA 1.33E-02 21.74 XR_002671133.1
IncRNA 2.12E-02 20.73 XR_002673565.1
No match 1.99E-44 20.60 XM_022792435.1 XP_022648170.1
Endochitinase (Vd-CHlsal)® Chitin digestion 1.43E-38 15.68 XM_022817406.1 XP_022673141.1
No match 2.56E-36 15.39 XM_022797839.1 XP_022653574.1
Chitin-binding (peritrophin-A)* Chitin-binding 4.23E-34 14.90 XM_022792159.1 XP_022647894.1
No match 5.41E-32 13.95 XM_022816118.1 XP_022671853.1
Kazal domain serine protease inhibitor® Anti-clotting 8.51E-38 13.69 XM_022798157.1 XP_022653892.1
IncRNA 3.19E-13 13.44 XR_002674195.1
No match 3.11E-04 13.08 XM_022797923.1 XP_022653658.1
No match 1.33E-12 12.78 XM_022788266.1 XP_022644001.1
No match 1.73E-08 12.65 XM_022789934.1 XP_022645669.1
IncRNA 1.84E-05 12.38 XR_002675009.1
Neuropeptide-like Anti-bacterial 2.41E-31 10.61 XM_022817089.1 XP_022672824.1
Chalycin. lipocalin Anti-clotting 1.05E-05 10.39 XM_022797609.1 XP_022653344.1
Deoxyribonucleasell DNA digestion 4.93E-06 9.85 XM_022807242.1 XP_022662977.1
No match 4.36E-48 9.62 XM_022797558.1 XP_022653293.1
Epididymal secretory protein E1-like Chemoreception/Lipid 2.22E-03 9.49 XM_022798861.1 XP_022654596.1
(sterol transport NPC2-like) binding
No match 4.51E-07 9.42 XM_022810311.1 XP_022666046.1
No match 5.74E-03 8.62 XM_022797512.1 XP_022653247.1
IncRNA 7.89E-48 8.30 XR_002673627.1
Apolipoprotein D-like Immunomodulation/Lipids 6.04E-20 7.98 XM_022808251.1 XP_022663986.1
transfer
No match 2.27E-08 7.92 XM_022793746.1 XP_022649481.1
No match 5.10E-17 776 XM_022809579.1 XP_022665314.1
IncRNA 1.23E-03 7.29 XR_002675351.1
IncRNA 5.58E-20 7.14 XR_002673421.1
Adult-specific rigid cuticular protein 15.7-like 4.50E-14 6.91 XM_022794578.1 XP_022650313.1
No match 5.58E-07 6.77 XM_022815881.1 XP_022671616.1
IncRNA 8.86E-03 6.73 XR_002672221.1
IncRNA 1.12E-02 5.62 XR_002674023.1
No match 2.81E-05 4.83 XM_022811069.1 XP_022666804.1
Lysozyme-like protein 1/2 Anti-bacterial/Chitin digestion  1.18E-05 4.63 XM_022797535.1 XP_022653270.1
Cuticle protein-like (NCBI) 2.24E-08 3.43 XM_022815110.1 XP_022670845.1
Insect cuticle protein 1.74E-09 3.31 XM_022798156.1 XP_022653891.1
MCFD2 homologue Anti-clotting 5.30E-04 3.15 XM_022792139.1 XP_022647874.1
Phospholipase-A2 Fatty acids release/ 2.61E-10 2.98 XM_022796000.1 XP_022651735.1
Immunosuppression
No match 4.04E-03 291 XM_022809177.1 XP_022664912.1
IncRNA 1.90E-02 2.45 XR_002670881.1

Note: The 12 proteins with a possible role in host-parasite interaction are bold.
Abbreviations: IncRNA, long non-coding RNA; NCBI, National Center for Biotechnology Information; MCFD, Multiple Coagulation Factor Deficiency;
NPC, Niemann-Pick intracellular cholesterol transporter.

Target selected for functional characterisation.
bAlready studied by Becchimanzi, Tate, et al., 2020.
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FIGURE 2 Time course analysis of salivary transcripts expression after soaking in dsRNA. Relative expression of chitin-binding, kazal and
papain genes in treated groups of V. destructor adult females. Mites were soaked in saline solution supplemented with mock dsRNA (dsGFP) or
concatenated dsRNA targeting all three selected genes (dsCONC). After soaking, mites were maintained on artificially infested honey bee pupae.
gRT-PCR data are presented as mean fold-changes of five independent biological replicates, each consisting in a pool of three mites. Time and
treatment effects on gene expression were analysed through two-way ANOVA followed by Tukey’s post hoc test using ACt data. Each target
gene was separately analysed. Relative expression (fold-change) was calculated by AACt method using controls at 48 h as calibrators. For each
gene, mean values denoted with different letters are significantly different. Error bars represent standard error of the mean (SEM). Values on
y-axis are reported in Log10 scale.
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FIGURE 3 Survival of Varroa destructor as affected by RNAi-mediated knockdown of genes encoding salivary factors. (a) Relative expression
of chitin-binding, kazal and papain genes in treated groups of V. destructor. Mites were soaked in saline solution supplemented with mock dsRNA
(dsGFP), a single dsRNA targeting one of the three selected genes (single dsRNA), a mix of the dsRNAs (dsMIX) or a concatenated dsRNA
(dsCONC) targeting all of them. After soaking, mites were maintained on artificially infested honey bee pupae. qRT-PCR data are presented as
mean fold-changes of three independent biological replicates, each consisting in a pool of three mites. Time and treatment effects on gene
expression were analysed through one-way ANOVA followed by Tukey’s post hoc test using ACt data. Each target gene was separately analysed.
Relative expression (fold-change) was calculated by AACt method using controls (dsGFP) as calibrators. For each gene, mean values denoted with
different letters are significantly different. Error bars represent standard error of the mean (SEM). Values on y-axis are reported in Log10 scale.
(b) Kaplan-Meier survival curves of mites soaked in a solution of dsRNA targeting genes highly expressed in salivary glands of V. destructor.
dsRNA-soaked mites were individually maintained on the same host pupa throughout the whole duration of the assay. Soaking mites in saline
solutions supplemented with dsRNA targeting the three selected genes simultaneously (dsMIX and dsCONC) or chitin-binding protein alone
(dsCHIBIN) reduced significantly their survival compared to controls (dsGFP). The statistical details of comparison between dsGFP and other
survival curves are reported in Table S3. Number of individuals per treatment were 33, 13, 11, 15, 15 and 27 for dsGFP, dsMIX, dsCHIBIN,
dsKAZAL, dsPAPA and dsCONC, respectively. Log rank test significance compared to dsGFP: *p < 0.05, **p < 0.01.

aromatic residues (Figure 4a). Sequences retrieved through Blast
searches and those used in a phylogenetic reconstruction of cuticle
proteins analogous to perithrophin 1 (CPAP1) (Tetreau et al., 2015)
were aligned to infer Vd-CHIBIN phylogeny. Unexpectedly, BlastP
search against non-redundant (nr) National Center for Biotechnology
Information (NCBI) database returned only eight similar sequences
(above the E-value threshold of 1e-3), belonging to distantly related
taxa, including Coleoptera, Lepidoptera and bivalves. Maximum-
likelihood analysis revealed a strong divergence between proteins

containing a single chitin-binding domain identified in Varroa species
(purple) and those classified as CPAP1s (blue), which have a putative
role in cuticle formation (Figure 4b).

DISCUSSION

Parasites use several strategies to deliver molecules inside the host, to
evade immune response and to allow its nutritional exploitation
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FIGURE 4 Sequence alignment and phylogenetic reconstruction of proteins with a single chitin-binding domain. (a) The protein encoded by
chitin binding gene of V. destructor (Vd-CHIBIN) was aligned with putative homologues identified by BlastP and cuticle proteins analogous to
peritrophin 1 (CPAP1). Vd-CHIBIN (XP_022647894.1) has a single type-2 chitin-binding domain, which is characterised by the six cysteine
residues highlighted in pink. (b) Phylogenetic tree based on maximum likelihood analysis of chitin-binding domains showed a clear divergence of
proteins identified in Varroa species (purple), those identified in Hymenoptera species (pink) and those classified as CPAP1s (light blue). Bootstrap
support values are indicated at each node. The scale bar indicates the number of amino acid substitutions per site.
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(Pennacchio & Strand, 2006; Schmid-Hempel, 2009; Zhang
et al, 2024). Studying the natural processes modelled by the co-
evolutionary history of host-parasite interaction can pave the way
towards the development of new strategies of pest control
(Pennacchio et al., 2012; Pennacchio & Strand, 2006). Here, we ana-
lysed the transcriptome of V. destructor Sg to identify the major host
regulation factors, which represent potential targets for developing
RNAi-based strategies of mite control, aiming to disrupt its feeding
efficiency. Of the 54 transcripts differentially expressed in Sg, 10 are
annotated as long non-coding RNA (IncRNA). It has been suggested
that, in ticks’ saliva, IncRNAs act as ‘sponge’ molecules that inhibit
miRNA-mRNA interactions in the host, thus affecting host responses
to tick feeding (Aounallah et al., 2020). Considering the emerging role
of IncRNAs in the vector-host-pathogen triad (Ahmad et al., 2021;
Arunima et al., 2023), their involvement in Varroa-honey bee interac-
tion is worth of further studies.

Among the 30 salivary gland genes encoding putatively secreted
proteins (i.e., showing a signal peptide), only 15 were found to be
functionally annotated in GenBank. However, even though the unan-
notated proteins are not easy to characterise from a functional point
of view, they likely include bioactive salivary components very spe-
cific, which reveal poor similarities even between phylogenetically
related species (Becchimanzi, Avolio, et al, 2020; Jonckheere
et al,, 2016; Villarroel et al., 2016).

Among annotated salivary components with a signal peptide,
which suggests extracellular secretion, we identified proteins with
anti-bacterial, anti-fungal, cytolytic, digestive and immunosuppressive
functions. The major protein families encoded by salivary gland genes
are hydrolytic enzymes, such as cysteine protease, serine protease,
endochitinase and phospholipase (PLA2), which are frequently found
as components of the glandular secretion of parasites and parasitoids
(Fry et al., 2009; Kim et al., 2014; Laurino et al., 2016; Vincent
et al., 2010). Notably, some of the protein families identified, such as
PLA2 and lysozyme, were also found in a proteomic study of
V. destructor saliva (Zhang & Han, 2019). Moreover, our data further
corroborate the high expression in the Sg of Vd-CHIsal we previously
reported along with its effect on honey bee immunity and mite sur-
vival (Becchimanzi, Tatg, et al., 2020).

Among all the other highly transcribed genes, we selected a chitin-
binding domain protein (Vd-CHIBIN), a Kazal domain serine protease
inhibitor and a papain-like cysteine protease, based both on differential
expression analysis, and on their occurrence and putative functions in
other sialomes of parasitic arthropods. For example, proteins containing
chitin-binding domains expressed in Sg of ticks participate in mucus for-
mation (mucins), being involved in mouthpart lubrication and entrap-
ment of bacteria (Korayem et al, 2004) and as components of the
cement cone structure (Hollmann et al., 2018). Kazal domain serine pro-
tease inhibitors are serine protease inhibitors, identified in salivary
secretions of mosquitoes (Watanabe et al., 2010) and in triatomine
bugs (Friedrich et al., 1993), which function as anti-coagulants. Cysteine
proteases have important roles in physiological events that are crucial
to the ectoparasitic lifestyle, including digestion of host blood, embryo-

genesis and vector transmission (Sojka et al., 2011).
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To score the impact of salivary factors knockdown on mite sur-
vival, we used an RNAI approach (Campbell et al., 2010), targeting sin-
gle and multiple salivary genes. In a first experiment, we tested the
efficacy of a 1389 bp long dsRNA designed by concatenating
the three selected sequences (dsCONC). Soaking the mites in
dsCONC resulted in a significant multiple knockdowns of the three
genes at 4 days after treatment, indicating that this dsRNA delivery
strategy can be suitably used for targeting multiple genes. This knock-
down was associated with an increase of target gene expression over
time in controls, which suggested that the selected salivary factors are
involved in the feeding process on honey bee pupae. Indeed, positive
modulation of salivary components over time also occurs in ixodid
ticks, where salivary gene expression is temporally regulated along
feeding, resulting in several changes in saliva composition. It has been
suggested that this ‘saliva switching’ is associated with the evasion of
the host immune response (de Castro et al, 2017; Ribeiro &
Mans, 2020).

In a second experiment, we used different strategies to target sal-
ivary genes by RNAI and scored the impact of gene knockdown on
mite survival by performing artificial infestations. As expected, single
and mixed (dsMIX) dsRNA administration by soaking reduced the
expression of the three salivary genes by 98%-99% and 93%-95%,
respectively, at 72 h after treatment, compared with controls. A simi-
lar effect was observed after soaking in dsCONC solution, except for
kazal expression, which was reduced by 80%-90%. Since the dsCONC
and dsMIX, used at the same concentration of the other treatments,
provide a lower number of a specific dsRNA, this may partly account
for different levels of silencing efficiency observed. Overall, the levels
of gene knockdown observed are comparable to those previously
reported for other salivary genes at 72 h after soaking (Becchimanzi,
Taté, et al., 2020; Zhang & Han, 2018).

Survival decreased to 50%-60% when mites were soaked in
dsCONC, dsMIX and dsCHIBIN (i.e. dsRNA targeting chitin-binding
protein transcripts) solutions, compared to dsGFP-treated controls.
This suggests that most of the impact of multiple knockdowns is due
to knockdown of Vd-CHIBIN, highlighting the important role of the
encoded salivary factor in mite feeding. The targeted transcript
encodes for a short protein (111 AA) with a single type-2 chitin-
binding domain (CBD2), which is mainly found in metazoans, fungi
and baculovirus proteins (Chang & Stergiopoulos, 2015) and is charac-
terised by having a six-cysteine motif and several aromatic residues
(Gaines et al., 2003). Proteins with a single CBD2 are considered
structural components of cuticle and, indeed, have been denominated
‘cuticular proteins analogous to peritophins 1° (CPAP1) (Jasrapuria
et al., 2010). Our phylogenetic analysis showed that proteins with a
single CBD2 form highly divergent clades, with CHIBIN only distantly
related to CPAP1s. Indeed, the complex evolutionary history of this
domain is characterised by convergent evolution (Shen & Jacobs-
Lorena, 1999) and horizontal gene transfer, which driven episodic
lineage-specific expansions and contractions that probably reflect
adaptations to specific lifestyles (Chang & Stergiopoulos, 2015). In
Varroa species, Vd-CHIBIN may interact with chitin of the host integ-
ument, which is likely processed by the salivary chitinase Vd-CHlsal
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(Becchimanzi, Taté, et al., 2020). The chitooligosaccharides produced
by chitin degradation may have an immunostimulatory effect on the
parasitized honey bee (Frevert et al., 2018; Saltykova et al., 2003),
which can be prevented if the elicitor is bound by parasite effectors,
as reported for several pathogenic fungi (de Jonge et al., 2010; Li
et al., 2024; Liu et al., 2020). This interesting hypothesis is worth of
further studies aiming to elucidate if Vd-CHIBIN can prevent the
wound induced activation of the honey bee immune system.

In conclusion, our work sheds light on the complex cocktail of sal-
ivary effectors adopted by Varroa mites to feed on honey bees and
provides experimental evidence supporting their functional impor-
tance for successful parasitism. Studying the molecular interactions at
the interface between V. destructor and A. mellifera is a key-step for
understanding parasite-host co-evolution and for developing novel

RNAi-based strategies of mite control.

EXPERIMENTAL PROCEDURES
Biological material

For the transcriptomic analysis, V. destructor mites and honey bees
were collected from brood combs of A. mellifera colonies maintained
in the experimental apiary located in Portici (Naples, Italy). Brood
frames were collected between June and August and then stored in a
dark room for 24-48 h, at 34°C + 1°C, 70% * 5% RH. Mites were col-
lected by uncapping the brood combs and then using tweezers and a

paintbrush to remove them from the honey bee pupae.

Sg dissection

The adult V. destructor females, stored in microcentrifuge tubes at
—80°C, were ventrally stuck on double-sided tape placed on a micros-
copy slide to proceed with the dissection. Using a stereomicroscope,
each mite was incised in the posterior and lateral region, making a
total of three incisions with a razor blade (Chrome Platinum, BIC).
Then each mite was soaked in 30 pL of phosphate buffered saline
(PBS: 137 mM NaCl, 2.7 mM KCI, 10 mM phosphate buffer, pH 7.4)
solution on another microscope slide and kept on ice. Using fine twee-
zers and dissecting needles, the carapace of the mite was gently lifted,
uncovering the internal organs; then, the Sg were isolated from the
other tissues and pooled. Three pools of 45 mites were processed as
above to separate the Sg from the Rb and to store both samples in
200 uL of TRIzol Reagent (Thermo Fisher Scientific, Waltham, MA,
USA) at —80°C.

Isolation of RNA

RNA extraction was performed, after freeze-thawing the samples,
using TRIzol Reagent (Thermo Fisher Scientific), according to the man-
ufacturer’s instructions. The final pellet was re-suspended in 16 uL of
nuclease-free H,O, and the quality and quantity of total RNA isolated
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were assessed by measuring absorbance with Varioskan Flash
(Thermo Fisher Scientific). For mite tissues, extraction methods
resulted in the retention of significant amounts of contaminating
DNA; therefore, RNA samples were treated with DNase RQ1
(Promega, Madison, WI, USA), following the manufacturer's
instructions.

RNAseq analysis

RNAseq analysis was performed by the company Genomix4Life
(Baronissi, Italy). A total of six RNA samples were processed, three of
them obtained from Sg and three from the Rb (carcass). Approxi-
mately 1 ug of total RNA was used to construct the cDNA libraries,
using the TruSeq stranded kit (lllumina, San Diego, CA, USA), and the
75-bp paired-end sequencing run was performed on the lllumina
NextSeq 550 platform (lllumina). Approximately 10 million reads per
sample were generated and then subjected to quality control, using
the FastQC tool, while trimming and mapping to the V. destructor
genome (GCF_002443255.1) was carried out using STAR software
(version 2.7.3a) (Dobin et al., 2013), with standard parameters for
paired reads.

Using the FeatureCounts (version 2.0.1) algorithm, quantification
of expressed transcripts was performed for each sequenced sample.
The DESeq2 software package (Bioconductor) was used to normalise
the data and perform the analysis of differentially expressed genes
(Love et al., 2014), to produce a table showing the expression values
in terms of FC and statistical significance values expressed in terms of
false discovery rate-adjusted p value (FDR) for each gene. Genes with
FDR <0.05 were considered as differentially expressed genes, those
with FC 21.5 as overexpressed in Sg, while those with FC <1.5 as
underexpressed. To assess the overall similarity among samples, a
principal component analysis (PCA) was performed among all samples,

for each condition considered.

Target selection and cloning

Candidate targets in the salivary gland transcriptome were selected
for functional studies based on their FC values and their putative
function inferred through NCBI annotation, InterproScan and SignalP
5.0, which predicts the presence of the signal peptide as a marker of
secretion.

The amplified regions of the three genes were used as query in
BLASTn searches, to assess the potential risk of dsRNA off-target
effects towards A. mellifera. BLASTn analyses showed no significant
similarity between the targeted sequences and honey bee transcripts.

The DNA sequences, serving as templates for dsRNA production,
were generated through PCR amplification and subsequent cloning.
The RNA extracted from the Sg was retrotranscribed with High-
Capacity cDNA RT Kit according to manufacturer’s instructions
(Thermo Fisher Scientific). The resulting cDNA was used as template
for PCR reactions containing 25 uL of 2x DreamTaq Green PCR Mas-
ter Mix (Thermo Fisher Scientific), the two primers at 500 nM final
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concentration, 2 uL of cDNA template and nuclease-free water, to a
total volume of 50 uL. The cycle conditions used were based on manu-
facturer’s instructions (Phusion Flash High-Fidelity PCR Master Mix,
Thermo Fisher Scientific). Primers and annealing temperatures are listed
in Table S4. The eGFP sequence used as control was amplified from
p2GW?7 (Karimi et al., 2002). Subsequently, the amplified sequences
were incorporated into the L4440 plasmid (Duan & Wang, 2024) using
Kpnl and Sacl restriction sites. This was achieved by including Kpnl and
Sacl restriction sites in the primer sequences.

For the construction of a plasmid housing all three target
sequences consecutively (concatenated), the L4440_XM_022802192
plasmid underwent Sacl digestion. In parallel, the XM_022792159 and
XM_022798157 sequences were re-amplified using primer pairs
5 and 6, respectively (Table S4). The digested plasmids and the
re-amplified sequences were gel purified and assembled using
the NEBuilder HiFi DNA assembling mix (New England Biolabs).

Following transformation of OneShot TOP10 chemically compe-
tent Escherichia coli cells (Thermo Fisher Scientific), positive clones
were selected by PCR reactions performed on plasmid DNA purified
using the Pure Link HQ Mini Plasmid kit (Thermo Fisher Scientific). A
comprehensive list of the generated plasmids in this study is provided
in Table S5. In all instances, the integrity of the DNA plasmids was
confirmed through enzymatic digestion and Sanger sequencing.

dsRNA production

The purified plasmids were used as template (10 ng) in PCR reactions
using T7 primer (5 TAATACGACTCACTATAGGG3'), according to the
same protocol described above and an annealing temperature of 48°C.
Finally, several reactions were assembled to obtain at least 1 pg of the
amplicon, the minimum required for subsequent dsRNA synthesis. Five
uL of the amplified products were run on a 1% agarose gel to verify
that the PCR reaction produced a single band of the expected size. The
amplified products were then purified by adding one volume of phenol/
chloroform/isoamyl alcohol (25:24:1), centrifuging at 10,000g for
15 min. Precipitation of the supernatant with 2.5 volumes of ethanol
(100%) and 1/10 volumes of sodium acetate (pH 5.3) was performed at
—20° overnight. After centrifugation at 14,0009 for 30 min, pelleted
DNA was resuspended in nuclease-free water and quantified measuring
the absorbance with Varioskan Flash (Thermo Fisher Scientific). Follow-
ing the manufacturer’s instructions (MEGAscript RNAi kit, Thermo
Fisher Scientific), the transcription reactions were assembled using
1.2 ug of purified PCR product. After DNA and ssRNA digestion, the
dsRNA was purified and eluted in 50 uL of a 0.9% NaCl solution. The
dsRNA concentration was determined spectrophotometrically, and the

quality was checked on a 1% agarose gel.

dsRNA administration

The dsRNA administration was performed by introducing groups
of 10 mites in separate 1.5 mL Eppendorf tubes containing 20 L of
dsRNA solution (1 pg/uL in 0.9% NaCl) or 20 uL of saline solution for
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controls (Campbell et al., 2010). The tube was gently shaken, to drop
the mites into the solution and kept at room temperature for approxi-
mately 6 h. Every 30 min, mites were checked to be sure that they
were all submerged in the solution, where they usually remained stuck
at the bottom of the tube. At the end of the treatment, mites were
recovered using a fine paintbrush and dried on filter paper. Varroa
mites were soaked in six different dsRNA solutions: separate dsRNAs
targeting genes encoding Papain-like cysteine protease (dsPAPA), a
Kazal domain serine protease inhibitor (dsKAZAL) and a Chitin-binding
domain protein (dsCHIBIN), respectively; an equimolar mix of
the three dsRNAs above (dsMIX); the concatenated dsRNA targeting
the three selected genes (dsCONC) and the dsGFP as a control.

Artificial infestation

Each mite was individually introduced in a transparent gelatin capsule
(6.5 mm) containing a single honey bee worker pupa. The capsules
were perforated using a syringe needle, to allow gas exchange and to
prevent moisture accumulation, and fixed to the bottom of a petri dish
using double-sided sticky tape so that pupae were laying on their dor-
sum (Nazzi & Milani, 1994). Artificial infestation was performed at
32° + 1°C, 80 + 2% relative humidity and in the dark to simulate the
hive environment. Mite survival was daily checked. The mites found
dead 24 h after soaking were excluded from the assay (1%-10% of
each treated group) because they were considered as negatively
affected by soaking, rather than by gene knockdown. After 72 h, six
survived mites for each treatment were stored in —80° and then pro-
cessed for RNA extraction to check gene expression, as described
below.

Knockdown assessment by gRT-PCR

Differential relative expression of targeted genes was evaluated by
one-step qRT-PCR, using the Power SYBR Green RNA-to-Ct 1-Step
Kit (Applied Biosystems, Carlsbad, CA, USA), according to the manu-
facturer’s instructions. Each sample was prepared in 20 pL total vol-
ume containing 10 uL of gRT-PCR 2x reaction mix, forward and
reverse primers at 100 nM final concentration, 0.16 pL of 125x RT
enzyme mix, DEPC-treated water and 50 ng of DNase-treated total
RNA. For the experimental run, the following thermal profile was
used: 48°C for 30 min (RT); 95°C for 10 min; 40 cycles at 95°C for
15 s and 1 min at 58°C; a last cycle consisting of 15 s at 95°C, 60s at
58°C and 15s at 95°C was added for carrying out a dissociation
curve. Each sample was analysed in triplicate on a Step One Real Time
PCR System (Applied Biosystems). The 18S gene of V. destructor
(Accession Number: XM_022831401.1) was used as endogenous con-
trol for RNA loading (Campbell et al., 2016). Relative gene expression
data were analysed using the AACt method (Livak &
Schmittgen, 2001). For validation of the AACt method, the difference
between the Ct values of the target and the 18S transcripts [ACt = Ct
(target)-Ct (18S)] was plotted versus the log of five-fold serial dilutions
(100, 20, 4, 0.8 and 0.16 ng) of the purified RNA samples. The plot of
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log total RNA input versus ACt displayed a slope less than 0.1, indicat-
ing that the efficiencies of the two amplicons were approximately
equal. The results are presented as mean FC of three independent
biological replicates. Primers (Table S6) were designed with Primer
Express version 1.0 software (Applied Biosystems) to amplify outside
the dsRNA fragment used in knockdown experiments.

Sequence analysis and phylogeny reconstruction

Putative homologous protein sequences of Vd-CHIBIN were identi-
fied by sequence similarity searches through a BlastP analysis versus
the nr NCBI (Bethesda, MD, USA) database. Most representative hits
selected below the E-value threshold of 1e-3 were aligned, along with
CPAP1 (Tetreau et al., 2015), using Muscle v.3.8 (Edgar, 2004) with
default settings. Protein alignment was plotted using Jalview v.2
(Waterhouse et al., 2009), and sequences were analysed with Scan-
Prosite (de Castro et al., 2006) and visually inspected, to identify con-
served patterns.

To reconstruct phylogeny, alignments were manually trimmed to
avoid comparisons of non-conserved regions present only in a subset
of the taxa. Best-fit model of amino acid substitution and phyloge-
netic reconstruction was performed using RAxXxML v.8.2.12
(Stamatakis, 2006). The maximum-likelihood tree was run for 1000
bootstrap replicates and the tree figure was plotted using Fig-
Tree v.1.4.3.

Statistical analysis

To perform time course analysis and to validate knockdown in Varroa
mites during artificial infestation experiments, we used two- and one-
way ANOVA, respectively. Multiple comparison was based on Tukey'’s
test. In all cases statistical significance was set at p < 0.05. The log
rank (Mantel-Cox test) was used to compare the survival distributions
of the observed groups of Varroa mites and statistical significance was
set at 0.05. All statistical analyses were performed using the software
GraphPad Prism 7.
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