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Abstract—1In recent years, there has been a growing interest
in deep learning-based pansharpening. Thus far, research has
mainly focused on architectures. Nonetheless, model training
is an equally important issue. A first problem is the absence
of ground truths, unavoidable in pansharpening. This is often
addressed by training networks in a reduced-resolution domain
and using the original data as ground truth, relying on an implicit
scale invariance assumption. However, on full-resolution images,
results are often disappointing, suggesting such invariance not
to hold. A further problem is the scarcity of training data,
which causes a limited generalization ability and a poor per-
formance on off-training-test images. In this article, we propose
a full-resolution training framework for deep learning-based
pansharpening. The framework is fully general and can be
used for any deep learning-based pansharpening model. Training
takes place in the high-resolution domain, relying only on the
original data, thus avoiding any loss of information. To ensure
spectral and spatial fidelity, a suitable two-component loss is
defined. The spectral component enforces consistency between
the pansharpened output and the low-resolution multispectral
input. The spatial component, computed at high resolution,
maximizes the local correlation between each pansharpened band
and the panchromatic input. At testing time, the target-adaptive
operating modality is adopted, achieving good generalization
with a limited computational overhead. Experiments carried out
on WorldView-3, WorldView-2, and GeoEye-1 images show that
methods trained with the proposed framework guarantee a pretty
good performance in terms of both full-resolution numerical
indexes and visual quality.

Index Terms— Convolutional neural network (CNN), data
fusion, deep learning, image enhancement, multiresolution analy-
sis (MRA), spectral distortion, structural consistency, super
resolution, unsupervised learning.

I. INTRODUCTION

IVEN the ever-increasing number of satellites acquiring
images of the Earth, data fusion is becoming a key
asset in remote sensing, enabling cross-sensor [1], [2], cross-
resolution [3], or cross-temporal [4] analysis and informa-
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tion extraction. Due to technological constraints, many Earth
observation systems, such as GeoEye, Plaiades, or WorldView,
acquire a single full-resolution panchromatic band (PAN),
responsible for the preservation of geometric information,
along with a multispectral (MS) image at lower spatial resolu-
tion, with rich spectral information. A multiresolution fusion
process, called pansharpening, is then employed to estimate
a full-resolution MS image from the original PAN and MS
components [3], [5].

Pansharpening is a challenging task, object of intense
research for three decades but still far from being solved, also
because of the continuously increasing resolutions at which
new generation satellites operate. Several approaches and a
large number of methods have been proposed over the years.

In the component substitution (CS) approach [6], the
MS image is transformed in a suitable domain, one of its
components is replaced by the spatially rich PAN, and the
image is transformed back in the original domain. If only
three bands are concerned, the intensity—hue—saturation (IHS)
transform can be used, with the intensity component replaced
by the panchromatic band [7]. The method is generalized
in [8] (GIHS) to handle a larger number of bands. Many
other transforms have been considered for CS, including
principal component analysis [9], Brovey transform [10],
and Gram-Schmidt (GS) decomposition [11]. More recently,
adaptive CS methods have also been introduced, such as
the advanced versions of GIHS and GS [12], the par-
tial replacement CS (PRACS) method [13], or the band-
dependent spatial detail (BDSD) injection method and its
variants [14]-[16].

With the multiresolution analysis (MRA) approach [17],
instead, pansharpening is addressed from the spatial perspec-
tive. These methods extract the high-frequency spatial details
through a multiresolution decomposition, such as decimated
or undecimated wavelet transforms [17]-[20], Laplacian pyra-
mids [5], [21]-[24], or other nonseparable transforms, e.g.,
contourlet [25]. Extracted details are then properly injected
into the resized MS component.

A further set of methods address the pansharpening prob-
lem through the variational optimization (VO) of suitable
acquisition or representation models. In [26], the optimization
functional involves the degradation filters mapping high-
resolution to low-resolution images, whereas work [27]
focuses on the sparse representations of injected details.
Palsson et al. [28]-[30] proposed several methods of
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this class, using a total variation regularized least square
formulation, defining a maximum a posteriori problem, and,
very recently, looking for low-rank representations of the
joint PAN-MS pair organized in a suitable matrix, respec-
tively. Other methods do not fit the above categories and
can be roughly classified as statistical [31]-[35], dictionary-
based [36]-[41], or matrix factorization approaches [42]-[44].
The reader is referred to [3] for a more comprehensive review.

In recent years, a paradigm shift from model-based to
data-driven approaches has revolutionized all fields of image
processing, from computer vision [45]-[49] to remote sens-
ing [50]-[53]. In pansharpening, the first method based
on convolutional neural networks (CNN) was proposed by
Masi et al. [54], after which many more followed in a
few years’ span [50], [55]-[66]. It seems safe to say that
deep learning is currently the most popular approach for
pansharpening. Nonetheless, it suffers from a major prob-
lem: the lack of ground-truth data for supervised train-
ing. In fact, multiresolution sensors can only provide the
original MS-PAN data, downgraded in space or spectrum,
never their high-resolution versions, which remain to be
estimated.

A widespread solution to this problem is to perform a
resolution shift. The PAN-MS data undergo a downsampling
process, after which they are used as input samples to train a
network where the original MS data play the role of ground
truth. By doing so, the network is trained in a fully supervised
manner, although in a low-resolution domain. Eventually,
it will be used for pansharpening the original data. Therefore,
this solution relies on a sort of scale-invariance assumption: a
network trained at low resolution is expected to work equally
well at high resolution that this hypothesis holds up, however,
is by no means obvious.

In the literature, this problem is well known [67] and, in fact,
great attention is devoted to mimic the sensor modulation
transfer functions (MTFs) to ensure correct downgrading of
data. Even with an ideal scaling process, however, an inherent
information gap exists between scales. For example, objects
whose typical size amounts to a few pixels at the original
resolution will necessarily lose their shape when brought at
low resolution. There is no hope that a network trained at
reduced resolution will “experience” such tiny geometries. Not
surprisingly, networks trained with this approach work very
well on reduced-resolution data but show significant quality
losses on full-resolution target data [50], [54], [55], [68].
Interestingly, these problems have often been overlooked
precisely because, in the absence of ground truth, it is not
possible to objectively measure the performance at target
resolution.

A further limit of deep learning-based pansharpening is the
endemic scarcity of remote sensing training data. Due to the
high cost of multiresolution data, networks are usually trained
on just a few images, which, however large, cannot ensure an
adequate diversity in terms of geographical position, territorial
conformation, atmospheric conditions, acquisition geometry,
direction and intensity of light, and so on. As a consequence,
such networks will hardly generalize to images acquired by
sensors not seen in training or even just to different-looking
images.
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Motivated by these considerations, in this article, we pro-
pose a new framework for training pansharpening models in
the high-resolution domain. Networks are trained using the
original PAN-MS pairs as input, at their native resolution, with
no downgrading and hence no loss of information. To obviate
the lack of a ground truth, a new ad hoc loss is defined, which
weights suitably defined indicators of spatial and spectral
consistency. These indicators are computed by comparing the
pansharpened output with the original PAN and MS compo-
nents in their respective domains. In addition, to ensure correct
operations on images with the most diverse characteristics,
notwithstanding the limited datasets available for training, we
use the target-adaptive modality proposed originally in [68],
which fine-tunes the network on the fly to the target image.
Finally, it is worth underlining that the proposed learning
framework is fully general and can be used for any deep
learning-based pansharpening model. Experiments with three
state-of-the-art CNN-based pansharpening models on images
acquired by different multiresolution sensors demonstrate the
broad and seamless applicability of this framework, as well
as the significant quality improvements ensured by high-
resolution training.

In summary, the main innovative contribution of this work
is the proposal of a new fully unsupervised framework, which
allows training deep learning-based pansharpening models at
high resolution. To validate the proposal, we retrain several
state-of-the-art methods in the new framework and carry
out a wide range of experiments on images acquired by
several sensors. Moreover, to ensure research reproducibility,
we publish online a user-friendly software package for high-
resolution training and testing of pansharpening networks,
together with several trained models.'

The rest of this article is organized as follows. In Section II,
we account for related work. Section III describes the proposed
full-resolution training framework. Section IV presents the
experimental result, and finally, Section V draws conclusions.

II. RELATED WORK

In recent years, there has been a growing awareness that the
resolution-shift approach to training pansharpening networks
has inherent weaknesses and may cause a performance cap.
Starting in 2020, several papers have begun to address this
issue and to propose new solutions that carry out training,
at least partially, in the high-resolution domain.

The first of these papers [69], to the best of our knowledge,
has been proposed by some of the authors of the present work.
Training is carried out in fully supervised modality with a loss
that includes both reduced- and full-resolution terms. At low
resolution, the resolution-shift approach is used, with the
original MS acting as ground truth. At high resolution, instead,
the output of the MTF-GLP-HPM model-based algorithm [22]
takes the role of ground truth. Indeed, this algorithm is
known to ensure a very good preservation of high-resolution
details, which justifies using it as a proxy of the unknown
ground truth for the only purpose of improving spatial quality.
Needless to say, spatial accuracy cannot be better than that of
the auxiliary algorithm, certainly nonoptimal. An enhanced

1GitHub repository: https://github.com/matciotola/Z-PNN
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version of the method was later proposed in [70], with spatial
loss terms relying also on the preservation of spatial gradients.
Eventually, both versions provide only minor improvements
with respect to methods relying on reduced-resolution learning
schemes. A further development [71] concerns the fusion of
high- and low-resolution spectral bands in Sentinel-2 images,
a closely related task.

In [72], a rather complex residual network is proposed,
trained at high resolution. Features extracted from the PAN
are used in a sequence of fusion units to refine the high-
pass details extracted from the upsampled MS. The loss
includes spatial and spectral terms, compounding both Euclid-
ean norm and structural similarity (SSIM), together with a
term depending on a no-reference quality index. Despite the
stated goal of overcoming the resolution-shift approach, these
loss terms depend heavily on cross-scale consistency indexes,
thereby reintroducing a sort of scale invariance assumption.
In addition, an MS-to-PAN operator is used (called it G,
in Section IIT) which combines linearly the MS bands through
coefficients estimated, again, at low resolution. Experimental
results seem promising, but training and test data come from
the same scene and do not allow to test generalization ability.

A deep CNN, called UPSNet, comprising 28 residual blocks
plus two adaptation blocks, is proposed in [73]. Loss terms
are computed exclusively on high-resolution data, with spatial
accuracy pursued by working on the PAN gradients. However,
they depend again on some ill-defined pieces of information,
such as “grayed” or upsampled versions of the MS. To make
up for errors originated by such grayed MS, a further loss
is introduced, which, however, involves also nondifferentiable
functions. Despite these shortcomings, good quality pansharp-
ened images are obtained, although a bit oversmoothed.

A group of recent papers on this topic rely on genera-
tive adversarial networks (GANs). Indeed, GANs seem to
fit very well the pansharpening task. The generator may
be charged with the task of producing the high-resolution
output starting from the available PAN and MS, while
two dedicated discriminators validate the quality of results
by comparing the panchromatic and low-resolution projec-
tions of the output with the original counterparts. None of
these processes require a resolution shift. PanGAN [74],
PercepPAN [75], and PGMAN [76] all follow this approach,
with minor variations. However, despite the elegant formu-
lation, results turn out to be much below expectations, with
visible spectral aberrations (PanGAN and PercepPAN) or
spatial blurring (PGMAN). Arguably, such poor results may be
due to seemingly minor inaccuracies that disrupt the delicate
training process of GANs. Such inaccuracies include the
use of arbitrary MS-to-PAN linear projections with coeffi-
cients estimated on unrepresentative data and imperfect MS
interpolation.

Despite their obvious value, these contributions present
some common limits and flaws.

1) They concern individual pansharpening methods trained

at high resolution, not a general training framework.

2) They rely heavily on potentially detrimental cross-scale

processing steps, such as arbitrary forms of interpolation
or decimation, or MS-to-PAN conversions.
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Fig. 1. Images and scales involved in the pansharpening process. The only
available pieces of information are the full-resolution panchromatic image, Py,
and the low-resolution MS image, M, from which the target high-resolution
MS image, My, is estimated. Deterministic (only partially known) operators,
D and G, relate images with their spatially or spectrally downgraded versions.

3) They generalize poorly to images with characteristic not
seen in training, especially if acquired by sensors not
represented in the dataset.

4) Methods and results are hardly reproducible due to the
lack of software code online.

On the contrary, we propose a high-resolution training
framework, applicable to any deep learning-based network,
even if designed originally for reduced-resolution training.
We minimize cross-scale processing, limited to a single
downsizing step for loss computation. Correct operations on
the most diverse images are ensured by the target-adaptive
modality. Finally, we make all our software available online
to allow easy reproduction of results and easy development of
further improvements.

III. PROPOSED FULL-RESOLUTION
TRAINING FRAMEWORK

In the following, we will use M and P, respectively,
to denote MS and panchromatic images. A subscript will
indicate their spatial scale, with O associated with the highest
resolution, and a fixed resolution ratio R between scales n and
n + 1, for each n. The relationship between these images is
shown in Fig. 1 where it is also assumed that low-resolution
images can be obtained from their higher resolution versions
through a deterministic operator, D, and panchromatic images
from the corresponding MS ones through another operator, G.
This assumption holds with good approximation for the down-
scaling operator, D, while MS-to-PAN operators, though often
used in applications, are necessarily far from ideal because of
the sensors’ physical characteristics. Of course, such operators
imply a loss of information and hence are not invertible.

In multiresolution remote sensing, M; and P, are the only
available pieces of information (the MS-PAN pair), and in fact,
the goal of pansharpening is to estimate the unknown high-
resolution MS image M, from these spatially and spectrally
degraded images

Moy = ¢o(M,, Py). (1)

In deep learning-based pansharpening, the estimator ¢, is
learned from a suitable collection of training data. This would
be a standard task if complete training data were available,
that is, for each training input pair (M!, P(), the corresponding
desired output M|, was also provided. However, this is not the
case that no full-resolution MS images are available to be used
as ground truth.
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(Left) Wald-like and (Right) proposed training frameworks. In the first case, training takes place in the reduced-resolution domain, MS and PAN are

immediately downgraded, and the latter is not used to compute the loss. In the proposed framework, only the original high-resolution PAN and MS are used

for training, and they are both used to compute the loss.

Most deep learning-based pansharpening methods proposed
thus far [50], [54], [56], [68] have circumvented this problem
by means of a domain shift approach, known as Wald’s
protocol [67], which allows to assess their synthesis ability.
All available images in the dataset are downscaled to the next
lower resolution level

My =D(M;), P =D(F). @
For these pairs, the original MS images, M!, represent the per-
fectly known ground truth. Therefore, a conventional training
procedure can be used to estimate the network weights, that
is, the pansharpening function ¢;. This function is eventually
used to perform pansharpening at the original scale. A block
diagram of this training procedure is shown in the left of Fig. 2.

Of course, underlying this approach is the assumption that
the same network can operate equally well at low resolution
and high resolution, that is, ¢; >~ ¢y. This is a convenient
approximation, but experimental evidence accumulated over
the years proves it to be largely inaccurate. Networks trained
under Wald’s resolution downgrading protocol work very well
on the low-resolution images they have been trained for, but
only fairly well [77] on the full-resolution images. In practice,
there is a significant domain mismatch between low- and high-
resolution pansharpening.

Before proposing our alternative training framework, let us
justify intuitively the unsatisfactory behavior of the resolution-
shift solution. The fundamental observation is that the network,
during the entire training process, never sees the full-resolution
data. In particular, the panchromatic images, the only data
available at full resolution, are immediately resized, causing
an irrecoverable loss of information. To fully realize the
importance of this loss, one should also keep in mind that
these images are acquired at a fixed resolution. For example,
all panchromatic images provided by the WorldView-3 sensor
have a spatial resolution of 0.31 m. At this resolution,
a number of small urban objects, such as cars and traffic signs,
are fully characterized with well-defined geometric shapes.
With the help of low-resolution spectral information, they
can be accurately recovered. However, with the resolution-
shift approach, the network sees only images of much lower
resolution, 1.24 m (with 4.96-m MS) where these tiny objects
loose completely their shape, reducing to a very few pixels or
even subpixels. Contrary to what happens in super-resolution,

there is no 8-cm resolution WorldView-3 image available to
make up for this loss of information.

An additional problem is that resized images are much
smaller than the original ones, providing much less data
for training. Sticking to the WorldView-3 example, at low
resolution, there are 16 times less pixels than at full reso-
lution. Considering the scarcity of training data, due to the
restrictive policies of most data providers, this turns out to be
a nonnegligible drawback.

These considerations, together with experimental results
much below expectations, motivate our proposal of a full-
resolution training framework. We will train pansharpening
networks using the original data, thereby including full-
resolution panchromatic images. Clearly, we must do without
the ground-truth images, which do not exist. Therefore, the
cornerstone of our proposal is the definition of a new loss
function that takes the role of the conventional full-reference
loss.

Since we lack the full-resolution reference, My, we use the
next most valuable pieces of information, that is, its projections
on the low—resolutionA and panchromatic domains, M; and Py.
The network output My is compared with these two references,
in their respective domains, to ensure spectral and spatial
consistency. Accordingly, the proposed loss becomes

L:(Ml, Po; 1\20) =L (M1; D(Mo)) + ﬂﬁs(f’o; g(ﬁo))
(3)

with f a suitable parameter that weighs the spectral and spatial
loss terms.

Fig. 3 shows our approach geometrically. The target image
M, (red dot) is regarded as the combination of its M; and
Py projections plus a third unknown component (call it U),
which cannot be explained by neither of the former two.
By minimizing the loss of (3), we are pushing the estimate M,
(black dot) toward the projections of M, on the (M;, Py) plane.
The origin of the third component has been critically explored
in [78], comparing alternative perspectives and assumptions.
Our working hypothesis is that this unpredictable part is indeed
small and, therefore, our final estimate will be very close to
the actual image. It is left to the experimental results to say
the final word in favor or against this hypothesis. At the very
least, with our approach, we are not discarding any relevant
data in the training process.
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Fig. 3. Graphical sketch of the ideal proposed approach. Lacking ground
truth, the pansharpening process aims at generating an image, Mg, whose
projections coincide with the known original data, Py and M;. An unknown
residual, U, orthogonal to this plane, remains unaccounted for. Our conjecture
is that this latter component is small.

In the practical implementation, we depart slightly from the
elegant symmetric formulation of (3). Indeed, while the D
operator can be reasonably assumed to be known, such that
M, = D(M,), there is no consensus in the literature on the
exact form and even on the conceptual correctness of the G
operator. To circumvent this problem, this operator is bypassed
here, and the spatial loss term is computed as the sum of B
individual contributions, one for each spectral band of M.
Synthetically, the proposed loss reads as

(M, Po; M) = £ (Mi; D(Mo) ) + pLs(Po: Mo). (4

A block diagram of the proposed training procedure is
shown in Fig. 2, next to the Wald-like training scheme with
resolution downgrading, for easy comparison. Visual inspec-
tion provides an immediate appreciation of the fundamental
changes.

1) In the Wald-like framework, Py is immediately down-
graded and never used further; therefore, high-resolution
information is lost forever.

2) In the proposed framework, instead, an additional spatial
loss term Lg is introduced to take advantage of the
information conveyed by the PAN.

3) In the proposed framework, the only resolution down-
grade takes place after pansharpening and only for the
purpose of comparison with the original MS.

In the following, we describe in detail the spectral and spatial
loss terms.

A. Spatial Loss

The role of the spatial loss is to inject in the pansharpened
image the high-resolution structures observed in the PAN.
Accordingly, the PAN can be used to perform a predic-
tion, necessarily imperfect, of the output image bands, and
preferably a linear prediction, lacking any reasons to prefer
more complex solutions. Following this point of view, here,
we define the spatial loss term as a function of the correlation
coefficient between the PAN and the spectral bands of the
output image.

Let X and Y be two equal-size single-band images, and
let a)%, 03, and oyy indicate their sample variances and
covariance. Then, the correlation coefficient between X and
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Y is defined as

o
Pxy = X <pxy =<1 (5)
Ox0Oy

The correlation coefficient indicates to what extent one image
can be linearly predicted from the other, with |p| = 1 implying
perfect predictability and p = 0 total incorrelation.

Now, we expect to find in the pansharpened bands mostly
the same spatial layout of the PAN and, therefore, a strong
correlation with it. However, to preserve the spectral infor-
mation, such a correlation cannot be unitary. Actually, it can
be expected to vary spatially and from band to band, as a
function of the observed scene. For example, in vegetated
areas, we expect the PAN to have a strong correlation with the
“green” band of the output and a weaker correlation with other
bands, while the opposite will happen in other regions. In rare
cases, even negative correlations are observed, due to local
contrast inversions between the PAN and some MS bands [78].
This leads us to consider a 3-D spatial-spectral correlation
field rather than a single coefficient. Thus, in (5), let X be a
square patch of size ¢ x o extracted from the PAN at spatial
location (i, j) and Y be the corresponding patch extracted from
band b of M,; then, we obtain the 3-D correlation field

P, jib) = pY g @ ) (6)

which depends on spatial coordinates (i, j), spectral coordi-
nate b, and size parameter o.
Now, we could think of defining a local spatial loss as

fa(i,j’b) =1 _pa(i’j»b)s

and the global spatial loss term as its average. However,
by doing so, we would neglect the inherent spatial-spectral
variability of the correlation mentioned above and push it uni-
formly toward 1. Therefore, to address this problem, we define
an auxiliary reference correlation field, p”’“’f(i, j,b), com-
puted between a low-pass filtered version of the PAN and an
expanded version (plain interpolation) of the MS and define
the local loss as

0<t<2 (7)

o 1= p° i, ',b , o~ o,ref
e jby=q LG < p ®)
0, otherwise.

The reference correlation field can be computed exactly from
the available data and provides a rough approximation of the
target correlation field. A positive loss £ = 1 —p? is incurred
at site (i, j, b) whenever the local correlation is too small,
forcing the output band to follow the spatial layout of the PAN.
When p? exceeds the reference value p”’“’f, however, there is
no further contribution to the global loss, and the network is
free to optimize the output based on other inputs.

Although the use of correlation is certainly not new in
pansharpening, we point out that our approach is very different
from what encountered in conventional methods. CS, for
example, relies on the strong assumption of a perfect global
correlation between the pansharpened MS bands and the
PAN [78]. When this assumption is violated, especially in
the presence of occultation or contrast inversion phenomena,
strong spectral aberrations are observed. In some traditional
injection-based methods [79], instead, local correlation is used
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just to exert a consistency check. Injection of PAN details
takes place only when the local correlation is high, switching
to a plain upsampling of the MS bands otherwise. We assume
a generally large local correlation between PAN and MS, but
verify our hypothesis on the reference field, p”™, and leverage
deep learning with a suitable loss to exploit this dependence.

B. Spectral Loss

The spectral loss is computed in a straightforward manner
by comparing the low-resolution projection of the pansharp-
ened image, D(M,), with its natural reference M,

£ o () - m,
where || - ||; indicates the £;-norm.

As already said, the low-resolution projection operator D
has been widely studied in the literature and can be assumed
to be known. It consists of band-dependent low-pass filtering
followed by spatial decimation at pace R

Under this assumption, £, can be expected to Acompletely
vanish in the presence of correct pansharpening, My = My, a
property not always satisfied by other quality indicators [80].

However, this is really the case only if the original spectral
bands are correctly aligned; otherwise, a coregistration step
is required. Indeed, in multiresolution imagery, the MS bands
are often misaligned. This is due to technological constraints
of the sensing systems and may also depend on the specific
product released. As a result, spectral aberrations appear in
the image, easily spotted in false-color representations as thin
lines with weird colors near object boundaries. Therefore, it is
good practice to coregister the MS spectral bands before-
hand, a step often neglected by researcher and practitioners
alike. Interestingly, in the proposed framework, bands are
automatically coregistering. In fact, to maximize their spatial
correlation with the PAN, they are eventually aligned with it
and hence among themselves. This good thing, however, has
a perverse effect. After decimation, in fact, the well-aligned
low-resolution projection will be compared with a misaligned
reference, generating a nonzero loss even in the presence of a
perfect output. However, this problem is readily solved. The
band-to-PAN shifts resulting after the fine-tuning are used in
the decimation step to realign D(My) with M.

In the proposed loss function of (4), two critical hyperpa-
rameters must be set: the patch size ¢ used in the spatial loss
term and the weight f that balances spatial and spectral losses.
In Section IV-E, we describe and discuss the preliminary
experiments carried out to select the values of ¢ and S used
in our implementation.

C. Target-Adaptive Operating Modality

Remote sensing images present a large variability, due to
the portrayed scene, the sensor characteristics, the acquisition
conditions, and so on. Even a large and well-designed dataset
could hardly capture this wide variety, but the training sets
used in practical applications consist often of just one or a
few (large) images, often acquired by the same sensor. This is
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Fig. 4. High-level flowchart of target-adaptive pansharpening.

mostly due to the high cost of multiresolution images and the
scarcity of data freely available for the research community.
Understandably, models trained in these conditions work
poorly on new off-training images. To address this problem,
target-adaptive pansharpening was proposed in [68]. This oper-
ating modality (see Fig. 4) consists in unfreezing the network
weights, ¢@, and performing a few cycles of fine-tuning to
the target image, using some selected samples extracted by the
target image itself. With a sensible choice of parameters, only a
limited increase in complexity is incurred. On the positive side,
the generalization ability improves sharply, with performance
gains that may be also very significant, depending on training-
test mismatch. We, therefore, regard target adaptation as an
essential ingredient for real-world pansharpening methods and
an integral part of the proposed framework. At test time, the
user is only asked to provide/select the pretrained network,
and then, the algorithm runs a few iterations of fine-tuning to
optimize the weights for the target image, before carrying out
the actual pansharpening using the updated parameters, .
The default number of tuning iterations was set to 50 in [68].
Here, we raise it to 100, based on the experimental results
discussed in Section I'V-C.

IV. EXPERIMENTAL ANALYSIS
A. Reference Methods, Datasets, and Performance Measures

1) Comparative Methods: For all comparative analyses,
we rely on the benchmark toolbox [77], which implements a
large number of methods belonging to the four main categories
recalled in Section I: CS, MRA, VO, and ML. All methods
available in the toolbox are used in the experiments, except
for a few VO solutions that suffer software compatibility
issues. In addition, we consider two more state-of-the-art ML
methods, PanNet [50] and DRPNN [56], retrained on our
datasets to ensure a fair comparison.

2) Datasets: Table I lists the datasets used for training,
validation, and fine-tuning of the deep learning-based models
and for testing of all methods. In particular, three satellites
have been considered, WorldView-3 (WV3), WorldView-2
(WV2), and GeoEye-1 (GE1). In some cases, we use baseline
models pretrained on other datasets detailed in the reference
papers.

3) Performance Measures: Assessing the performance of
pansharpening methods is an open issue, given the lack
of full-resolution ground truths. A widespread approach is
to measure performance objectively in a reduced-resolution
setting. Popular indexes used to this end are spectral angle
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TABLE I

DATASETS. GSD: PAN GROUND SAMPLE DISTANCE AT NADIR (m).
PAN/MS RESOLUTION RATIO, R = 4. ADELAIDE AND WASHINGTON,
COURTESY OF DIGITALGLOBE. MEXICO CITY, NAPLES, WATER-
FORD, AND GENOA (DIGITALGLOBE) PROVIDED BY ESA

Sensor-site # tiles PAN size GSD Usage
WV3-Mexico City 1 2048x2048  0.31 Training
WV3-Mexico City 2 2048x2048 031  Validation
WV3-Adelaide 10 2048x2048  0.31 Testing
WYV2-Napoli 1 2048x2048  0.46 Training
WV2-Napoli 2 2048x2048  0.46  Validation
WV2-Washington 13 2048x2048  0.46 Testing
GE1-Waterford 1 2048x2048  0.41 Training
GE1-Waterford 2 2048x2048  0.41  Validation
GE1-Genova 10 2048x2048  0.41 Testing

mapper (SAM), Erreur Relative Globale Adimensionnelle de
Synthése (ERGAS), and Q2" [multiband extension of the
universal image quality index (UIQI)] [81]-[83], also provided
in the benchmark toolbox [77]. However, this approach is at
odds with our goals and is not followed here.

Instead, we consider full-resolution no-reference indexes,
which assess separately spectral and spatial fidelity. Many
such indexes have been proposed in recent years toward this
end, for example, [84]-[86]. For spectral fidelity, we con-
sider here the spectral distortion index, DflK), proposed by
Khan et al. [87], in the slightly modified implementation of
the assessment toolbox [77], together with the reprojection
indexes, R-SAM, R-ERGAS, and R-Q2", proposed in [80].
Note that R-Q2" equals 1-D§K) if the latter is implemented as
originally proposed. For spatial fidelity, instead, we consider
the spatial distortion index, Ds, proposed in [88], and the
correlation distortion index, D,, also proposed in [80]. Unlike
for the spectral case, these two indexes have a deeply different
rationale and sometimes provide contrasting results. In partic-
ular, experiments carried out in [80] show that D, correlates
better than Ds with experts’ visual assessment, especially for
high-quality pansharpening.

B. Does Full-Resolution Training Improve Performance?

The aim of this section is to prove that the proposed full-
resolution training framework does indeed improve the perfor-
mance of deep learning-based pansharpening, as measured by
full-resolution quality indexes and especially visual inspection.
Toward this end, we consider three state-of-the-art networks,
PanNet [50], DRPNN [56], and A-PNN [68], a variant of
PNN [54] with a skip connection for residual learning. For
each network, we consider three versions. First of all, the basic
model originally trained by the authors using losses based
on Lij-norm (A-PNN) or L;-norm (the others). By doing so,
we have a solid starting point, the network optimized by the
authors on their own data and available online. Then, we add
two target-adaptive versions, with adaptation carried out at
reduced resolution, with the Wald-like approach (model-TA),
or at full resolution, with the proposed framework (model-TA-
FR). Unlike in normal operations, where only a few iterations
are used to save time, we use a large number of iterations here,
2000, to ensure a very good adaptation to the target image.
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TABLE II

FOR EACH MODEL € { A-PNN, PANNET, DRPNN}, WE CONSIDER
SEVERAL VERSIONS, DIFFERING IN PRETRAINING AND TARGET
ADAPTATION. Z-PNN Is A PROPOSED PNN VARIANT LATER
DETAILED (SECTION IV-C)

full acronym pretraining target-adaptation

dataset resolution applied resolution # iter.

model authors’ reduced no - -
model* ours reduced no — —
model-TA authors’ reduced yes  reduced 2000
model-TA-FR authors’ reduced yes full 2000
Z-PNN (O iter.) ours full no - -
Z-PNN ours full yes full 100
0.2 —
D
0.98
0.96
0.1t .
0.94
0.92
0 0.9
A-PNN PanNet DRPNN A-PNN PanNet DRPNN
‘ ‘ ‘ ‘ ‘ ‘
b MRsam R-ERGAS
4l ]
4l i
2l ]
sl i
0 0
A-PNN PanNet DRPNN A-PNN PanNet DRPNN
00Pretrained 1B TABBTA-FR
Fig. 5. Full-resolution spectral accuracy indexes for Adelaide.
0.2 ! 07 ‘
Ds D,
0.6
0.5
0.4
0.1
0.3
0.2
0.1
0 0
A-PNN PanNet DRPNN A-PNN PanNet DRPNN

I0Pretrained 1D TA IR TA-FR

Fig. 6. Full-resolution spatial accuracy indexes for Adelaide.

This allows the network to “forget” the initial parameters,
removing possible biases due to the different pretraining
conditions. At this point, differences in performance will
depend only on the architecture and, for each architecture,
on the use of the low- or high-resolution training framework.
Table 1T summarizes these models and variants.?

Figs. 5 and 6 report spectral and spatial quality indexes,
respectively, obtained for the WorldView-3 Adelaide test
image. Similar results are obtained with different test images.

A first observation concerns the significant performance
gaps observed between different pretrained models (light gray
bins). For example, A-PNN has an R-SAM index about half

21n the table, we also include models used in subsequent experiments, that is,
the versions retrained on our datasets (marked by an asterisk), and Z-PNN,
a PNN variant proposed here (Section IV-C). We warn the reader that the
toolbox [77] uses a slightly different acronym [advanced PNN with fine-tuning
(A-PNN-FT)] to indicate the reduced-resolution target-adaptive A-PNN [68]
that we name here A-PNN-TA.
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that of DRPNN. However, such differences depend more on
the limited generalization ability of the methods than on their
intrinsic effectiveness. A-PNN was originally trained on data
well-aligned with our WorldView-3 test image, something that
probably did not happen with DRPNN. This interpretation is
strongly supported by results obtained with the TA models
(dark gray bins). In fact, with target adaptation, the perfor-
mance improves almost always significantly, and the quality
indexes become much more uniform across the three methods.
Overall, target adaptation mitigates the mismatch between
training and test set and the resulting indexes can be regarded
as more reliable indicators of the actual potential of the various
pansharpening tools.

We now turn to the real objective of our analysis, the
performance obtained with target adaptation at high resolu-
tion (blue) to be compared with that obtained at low resolution
(dark gray). Regarding spectral quality, a significant gain is
observed for all methods over all indexes (again, with minor
exceptions), and the performance appears to be even more
uniform than before. For spatial quality, instead, results are
more controversial. While the D, index drops, suggesting
a large quality improvement, the Dg index grows again,
indicating a spatial accuracy comparable to that of pretrained
models. Two facts motivate this strong mismatch. On one
hand, we argue that Dg is not really a reliable indicator
when quality is very high. Indeed, as also noted in [80], Ds
does not really measure spatial quality, but rather a sort of
cross-scale spatial quality consistency. Thus, it may be small
even in the presence of strong spatial distortion, provided
that the same distortion occurs across the various scales of
interest, and it may be large even with perfect pansharpening,
My = Mj. On the other hand, since the spatial loss used
in our training framework follows closely the definition of
D,, this indicator may be biased in favor of TA-FR meth-
ods. Since such contradictions cannot be reconciled, we will
keep using both indicators, leaving the final say to visual
inspection.

In Fig. 7, for some crops of the Adelaide test image,
we show the original MS and PAN data together with the
output pansharpened images obtained with the pretrained, TA,
and TA-FR versions of the three CNN-based methods. Since
we are interested in comparing training schemes against one
another, not architectures, we show different crops for different
architectures so as to offer a richer yet compact picture. First of
all, visual inspection fully confirms the improvements in terms
of spectral accuracy ensured by target adaptation. With respect
to pretrained models, colors are better preserved and some
evident errors are avoided. In addition, the TA-FR solutions
seem to ensure clear improvements also in terms of spatial
accuracy. Some strange patterns created by pretrained or TA
networks disappear. Small objects (e.g., cars) are reconstructed
with higher accuracy and, in general, all contours are sharper.
High-frequency textures observed in the PAN are preserved
(sometimes, even oversharpened). Overall, we see a huge
improvement with respect to the pretrained models, as pre-
dicted by D, and also a consistent improvement with respect
to the TA versions. While further work is certainly necessary to
obtain fully satisfactory pansharpening, we believe that these
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r

Fig. 7. Results on crops from the Adelaide image. (From Left to Right)
MS, PAN, Pretrained, TA, and TA-FR. (From Top to Bottom) A-PNN
(rows 1 and 2), PanNet (rows 3 and 4), and DRPNN (rows 5 and 6). Red,
green, and blue bands are used for RGB composition.

results represent convincing indications that high-resolution
training is the right path to follow.

C. Z-PNN: A CNN-Based Pansharpening Method Pretrained
at Full Resolution

The analysis of Section IV-B sheds light on the potential
of high-resolution training. However, it relies on intensive
target adaptation, which has nonnegligible costs in terms
of both memory and time. Such costs are summarized in
Table III for the three models analyzed thus far, considering a
2048 x 2048-pixel multiresolution image and an NVIDIA
Quadro P6000 GPU. In practice, 2000 iterations require 1-h
processing time or more. This was not the case with the
target-adaptive method proposed in [68], as it worked on
much smaller (16x) low-resolution images and used only
50 iterations.
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TABLE III

COMPUTATION TIME (PER ITERATION) AND MEMORY REQUIREMENTS TO
PERFORM TARGET ADAPTATION ON A 2048 x 2048 WV 3 IMAGE

Time [seconds]
A-PNN PanNet DRPNN

GPU Memory [GB]
A-PNN PanNet DRPNN

TA 0.862 0.346 0.615 0.38 0.74 2.03
TA-FR 1.885 1.885 11.172 896 12.84 24.09
0.02 0.3

L — A-PNN-TA-FR — A-PNN-TA-FR
—ZPNN —7ZPNN

0.2

0.01 |
0.1

. | o

100 880 2000 - 100 2000

Fig. 8. (Left) Spectral and (Right) spatial losses versus number of iterations
for adapting A-PNN-TA-FR (red lines) and Z-PNN (blue lines) to the target
image.

To obtain fast high-quality pansharpening, we refined the
original model weights through a further pretraining phase
carried out at full resolution, using a dedicated training image
for each sensor (see again Table I). By doing so, we expect that
much fewer iterations will be necessary for target adaptation.
Since all three architectures appear to perform equally well,
from now on, we focus only on the simplest one, A-PNN.
The resulting network will be referred to as Z-PNN, short for
Zoom-PNN. We test the impact of this modification on an
off-training WorldView-3 image. Fig. 8 shows the progress
of spectral and spatial loss terms, as adaptation proceeds,
for the versions without (A-PNN-TA-FR) and with (Z-PNN)
this further pretraining phase. The right part, concerning
the spatial loss, is especially telling. While the A-PNN-TA-
FR curve lowers very slowly, reaching eventually the value
L >~ 0.06 after 2000 iterations, the Z-PNN curve reaches the
same value after less than 200 iterations. Actually, the spatial
loss is quite low from the beginning, £s =~ 0.10, ensuring
a good performance even in the absence of any adaptation.
The left figure, instead, shows that the spectral loss benefits
from fine-tuning also when starting from the Z-PNN weights.
In any case, a small number of iterations seem to be sufficient
to observe a significant improvement. Fig. 9 shows, for two
crops of the test image, the evolution of the pansharpened
output as adaptation goes on. The images fully confirm all
previous observations. In summary, it appears that Z-PNN
could be safely used even without adaptation or with just a few
iterations. In the following experiments, we set conservatively
the number of iterations to 100. However, the user is free to
change this value depending on both available resources and
quality target.

D. Comparative Analysis

We can now move to a full-fledged comparative analysis.
Experiments will be carried out on test images acquired by
three different sensors (WV2, WV3, and GEl), listed in
Table I, and the results will be compared with those of the
reference methods summarized in Table IV.
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TA-FR (oo iter.)

Z-PNN (50 iter.)
o7

Z-PNN (100 iter.)

TA-FR (0 i_ler,)
e

TA-FR (1000 iter)  TA-FR (oo iter)

o ]

Z-PNN (0 iter.) Z-PNN (20 iter.) Z-PNN (50 iter.) Z-PNN (100 iter.)

Fig. 9. Impact of target adaptation with increasing iterations on image
quality for (A-PNN-)TA-FR (odd rows) and Z-PNN (even rows) for two WV3
crops. (Left) MS and PAN. Z-PNN reaches a satisfactory quality long before
A-PNN-TA-FR.
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Fig. 10. Numerical results on the WV3-Adelaide dataset.

Numerical results are shown in the bar graphs of
Figs. 10-12, for the WV3, WV2, and GE1 datasets, respec-
tively. Each graph refers to a different full-resolution measure,
and each bar refers to a different method. The reference
methods are those listed in Table IV, grouped according to
their approach (CS, MRA, VO, and ML), and shown with a
different bar style for each group. Newly developed methods,
Z-PNN without (0) and with (100 iterations) target adaptation
and A-PNN-TA-FR, are shown in shades of blue at the end.
Note that PanNet and DRPNN have been retrained on our
dataset to ensure a fairer comparison, an asterisk marks this
version.
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TABLE IV
DETAILED LIST OF ALL REFERENCE METHODS

Component Substitution (CS)
BT-H [89], BDSD [14], C-BDSD [15], BDSD-PC [16], GS [11],
GSA [12], C-GSA [24], PRACS [13]

Multiresolution Analysis (MRA)
AWLP [90], MTF-GLP [90], MTF-GLP-FS [91], MTF-GLP-HPM [90],
MTF-GLP-HPM-H [89], MTF-GLP-HPM-R [92], MTF-GLP-CBD [93],
C-MTF-GLP-CBD [24], MF [94]

Variational Optimization (VO)
FE-HPM [26], SR-D [27], TV [28]

Machine Learning (ML)

PNN [54], PNN-IDX [54], A-PNN [68], A-PNN-TA [68], DRPNN* [56],
PanNet* [50]
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»
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Dg D,
0.4
0.1
0.2
0 0

‘ Jocshamra | @ volBML02-PNN (0 iter.) | 1 z-PNN 0 A-PNN-TA-FR

Fig. 11. Numerical results on the WV2-Washington dataset.

To begin, let us focus on Fig. 10, also because similar
considerations, with minor differences, hold for the other
cases. The most notable outcome is that, contrary to the wide-
spread belief, ML methods do not outperform conventional
methods (smaller is best for all measures but R-Q2"). As an
example, the MRA methods (black) are generally® superior
to ML methods (dark gray) in terms of both spectral quality
and spatial quality indicators. This surprising result is due,
in our opinion, to the low-resolution versus high-resolution
mismatch. ML methods are usually trained at low resolution,
with the Wald-like protocol of Fig. 2 (left), and then tested
again with the Wald protocol. Therefore, it is not surprising
that numerical results speak largely in their favor. Visual
analyses on full-resolution data, however, have always casted
some shadows on the superiority of ML methods. Such doubts
are confirmed here, where results are computed only in terms
of high-resolution indexes. These provide a more unbiased
assessment of performance and are better predictors of the
quality of pansharpened images the end users can expect.

3Note that individual methods show occasional failures on some images,
we neglect these special cases in this high-level analysis.
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Fig. 12.  Numerical results on the GEl-Amsterdam dataset.

The performance of ML methods improves significantly
only when training takes place at high resolution, as proved
by the last three (blue) bars. This behavior is observed, more
or less pronounced, with all sensors, see Figs. 11 and 12, and
the improvement is especially significant in terms of spatial
quality, according to the D, indicator. In particular, the fully
(2000 iterations) adapted method, A-PNN-TA-FR (last bar),
has one of the smallest D, values consistently on all datasets.
Moreover, it has also very good spectral quality indicators,
suggesting an excellent overall performance. On the other
hand, it is fair to underline that Ds results depict a very
different situation, almost opposite to D,. Again, this calls
for accurate visual inspection of pansharpened images, which
is the next step of our analysis.

Figs. 13—15 show the visual results for some crops acquired
by the WV2, WV3 and GEIl, respectively. For each crop,
next to the original MS and PAN, we show the output of
two methods trained at high resolution (A-PNN-TA-FR and
Z-PNN), together with six reference methods. The latter are
chosen as the best and second best ranking methods in terms
of D,, Ds, and DEK).

Let us consider Fig. 13, first, and compare the A-PNN-
TA-FR with the original PAN-MS pair. By suitably enlarging
the figure, one can fully appreciate the impressive spatial
quality of the result. All details are faithfully preserved with
their original shapes and textures, and no alien pattern is
introduced by the pansharpening process. Spectral quality is
also very good, but this property is shared with several other
methods. Z-PNN also provides very good results, and we only
observe a minor loss of spectral accuracy. Continuing along the
row, MTF-GLP-HPM-H and MTF-GLP are the best reference
methods in terms of D,, and in fact, we observe a very good
spatial fidelity also for them. Things are very different, instead,
for A-PNN-TA and PanNet*, the best methods according
to Ds. Besides a reduced precision on object shapes and
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2nd best D,
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Fig. 14. Results for some WV2 crops. (From Left to right) MS, PAN, A-PNN-TA-FR, and Z-PNN, best references for D,, Ds, and DEK).

some loss of resolution, especially for PanNet*, we observe
annoying periodic patterns over the whole scene, confirming
that Ds cannot be considered a fully reliable predictor of
spatial fidelity. Finally, the best methods in terms of DgK) ,
SR-D and AWLP, ensure indeed a good spectral quality,
although comparable to that of other methods, but exhibit some
problems in terms of spatial fidelity.

Figs. 14 and 15 show similar results for the WV2 and
GE1l images, respectively. Beyond minor differences, the
same phenomena described before are observed in all cases.
A-PNN-TA-FR and Z-PNN keep providing very good results,
especially in terms of spatial quality, only rarely matched

by other methods, typically those performing best in terms
of D,.

E. Setting Loss Hyperparameters: Testing Alternative Losses

In all previous experiments, we used the loss of (4) with
hyperparameters ¢ and S optimized experimentally. Here,
we discuss their impact on the performance and motivate
experimentally the values selected in the implementation.
In addition, we test an alternative loss function proposed in
the literature for use in our framework.

1) Setting o : The patch size o is the only critical parameter
of the proposed spatial loss. We already motivated the need
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MS PAN A-PNN-TA-FR Z-PNN

Best D,
(GSA)

Fig. 16.

Impact of patch size (o) on pansharpening quality.

to estimate the MS-PAN correlation on a local as opposed
to global scale (small ¢), thereby limiting long-range spatial
dependencies and preserving spectral fidelity. On the other
hand, with a very small value for ¢, the correlation ends up
being estimated on just a few points. Lacking any more precise
theoretical guidance, we carried out a number of experiments
on test images with ¢ doubling progressively from 2 to 32.
A sample result is shown in Fig. 16. With ¢ = 2, obvious
artifacts are visible on the roads, in the form of diagonal
patterns. These disappear already with ¢ = 4 and then ¢ = 8§,
and however, for larger values, other spectral checkerboard
aberrations appear on the building rooftops, such as echoes
of the existing black separation lines. We observed a similar
behavior on many more test images, which suggests choosing
small values for o, between 4 and 8. Eventually, we set o
equal to the resolution ratio, R, which is always 4 for our
images.

2) Setting f: The parameter § balances the relative impor-
tance of the spatial and spectral loss terms. When f = 0,
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Fig. 17. Spatial and spectral losses as a function of .

only the spectral loss is considered, which negatively affects
the spatial quality, and the opposite happens when f — oo.
To quantify this behavior, Fig. 17 reports the values of the
spatial and spectral loss terms observed for A-PNN-TA-FR
when S grows from 0.0001 to 10. There is a large range of
values where both losses (solid lines) decrease with respect
to the case without adaptation (dashed lines). Thus, to gain a
better insight, we resort again to visual inspection for a sample
test image. In Fig. 18, we show the original MS (enlarged) and
PAN, in the first row, the pansharpened outputs for various
values of S, in the second row, and the difference between the
former and an interpolated version of the MS, in the third row.
For # = 0.01 and even 0.1, the output images appear blurred,
with an insufficient spatial quality. For f = 10, instead, and to
a lesser extent also for f = 1, there are color distortions on the
vegetation and other details, especially visible in the difference
images. A good compromise is obtained with values between
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Fig. 18.

Impact of loss balance (/) on pansharpening quality.

Loss of [72]

Fig. 19. Comparing the loss of [72] with the proposed loss.

0.1 and 1, and in fact, we selected eventually f = 0.25 for
GeoEye and £ = 0.36 for WorldView.

3) Testing an Alternative Loss: Our system has been con-
ceived based on a clear rationale, discussed in Section III, and
our training loss was designed to fulfill it. Nonetheless, one
can legitimately wonder what happens if different losses are
used in the same framework. Thus, we fine-tuned the A-PNN-
TA-FR model replacing our loss with a very different one,
recently proposed [72] for high-resolution training.

This latter, call it £', comprises four terms

L'=L,+ L5+ Lowg + 210O]3. (a1
The first two aim at improving spectral and spatial quality
by minimizing combinations of MSE and SSIM indexes in
the upscaled MS and panchromatic domains. Instead, the third
term directly targets the QNR [3] a well-known full-resolution
quality measure, while the last one, the weighted norm of
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Z-PNN (2048 x2048) Z-PNN (128x128)

Fig. 20. For Z-PNN, the quality of fine-tuning does not appreciably depend
on the size of the target scene, (Middle) 2048 x 2048 or (right) 128 x 128.
Therefore, it can be used to “zoom” in real time on any detail of interest.

PAN FE-HPM

Z-PNN

Fig. 21. In the red-yellow-blue display, the effects of MS bands mis-
alignment are highlighted. Spurious green or magenta lines appear along
object borders in all pansharpened images except Z-PNNs, where this issue
is automatically addressed.

the parameters, serves only for regularization. The reader is
referred to [72] for all details.

Sample pansharpened crops are shown in Fig. 19, next to the
original MS and PAN, for two samples for the WorldView3
Adelaide image. The spectral fidelity is quite good in both
cases, although slightly better indexes are obtained with our
loss, DEK) = 0.03 as opposed to 0.05. When considering
spatial fidelity, however, an obvious performance gap appears.
Images pansharpened with our loss are much sharper, fine tex-
tures and small details are much better preserved, as obvious
from the comparison with the PAN, and no spurious pattern
is generated in the process.

F. Strengths and Weaknesses of the Proposed Framework

The above discussed results make clear what the main
strengths of the proposed framework are. By using the original
PAN-MS pairs to train a deep learning model, we make
sure that the most informative data are considered and lay
the basis for obtaining high spectral and spatial fidelity in
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BDSD-PC

Fig. 22. Results of all methods on a small WV3 vegetation crop. Most methods, including ML methods trained at low resolution, show chromatic aberrations
and resolution loss. ML methods trained at high resolution ensure high spatial and spectral fidelity.

pansharpening. Results obtained with A-PNN, PanNet, and
DRPNN are just examples of the potential of this approach.
On the downside, working at high resolution incurs costs.
Using the original data, without subsampling, causes pre-
training to become much slower and memory intensive, a
nuisance, but not a major problem, considering that pretraining
takes place off-line. On the other hand, target adaptation is
important to ensure the best performance, and this process
takes place online. For Z-PNN and 100 iterations, it requires
about 3 min, as shown in Table III. Depending on application
and mode of use, this may be overly annoying. With the
following experiment, however, we show that this cost may
be significantly reduced.

Fig. 20 shows, on the left column, the original PAN-MS pair
fora 128 x 128 pixel WV3 crop. In the middle column, we see
the output of A-PNN-TA on the top and Z-PNN on the bottom,
both adapted on the 2048 x 2048-pixel target image including
our crop, displaying the by-now usual quality gap. Our focus,
though, is on the right column. Here, adaptation is carried out
only on the very same 128 x 128 pixel target crop, not the
whole image, hence, using much less data and computing time.
While the quality of the A-PNN-TA image further degrades,
likely for the lack of sufficient data, this is not the case for
the Z-PNN image, which is almost indistinguishable from the
previous case. As this behavior is observed consistently in our
experiments, we conclude that Z-PNN can be safely fine-tuned
on the very same scene of interest, even very small, providing
stable and high-quality results. Needless to say, this comes at
a fraction of the original computational cost, just about 1 s in
our example. Therefore, one can use Z-PNN in this modality
to “zoom” on the details of interest, each time upgrading the
original Z-PNN output (already good) in a matter of seconds.

Another critical point regards the different speed of adap-
tation of the spectral and spatial loss terms (see Fig. 8).
Since the latter improves much faster than the former,
Z-PNN and A-PNN-TA-FR turn out to have a very similar
spatial score (D,) but, in some cases, a nonnegligible gap in
terms of spectral score (DEK), R-SAM). This may call for a
longer adaptation phase in the presence of very strict spectral
accuracy requirements.

A valuable strength of the proposed framework is the auto-
matic coregistration of pansharpened spectral bands. To better
appreciate this feature, in Fig. 21, we show, for another
WV3 150 x 150 pixel crop, the input PAN-MS pair and
the output images generated by Z-PNN and some reference
methods where the coregistration problem is not addressed.
This time, however, we use an unusual red—yellow—blue false-
color representation. In fact, while the red, green, and blue
bands are usually well aligned, other bands, such as the
yellow one, may be slightly shifted, due to the imaging
system that acquires subsets of bands in slightly different time
intervals. As expected, severe color distortions are visible in
all the output images except for Z-PNN, where spectral fidelity
remains high also near sharp boundaries.

To conclude this section, in Fig. 22, we show the output
of all reference methods for a single small vegetation crop.
Vegetation is extremely common in multiresolution imagery,
but its correct pansharpening is often prohibitive due to the
presence of fine textures at multiple scales. This is confirmed
by the results in the figure. Apart from some methods that
present a clear failure (e.g., DRPNN¥*), many more provide
disappointing results, with large chromatic aberrations and/or
a significant loss of detail. In general, MRA methods perform
quite well on this image, much better than CS and VO. Also,
ML methods trained at low resolution are among the worst
in this task. Instead, due to the spatial loss based on local
correlation, A-PNN-TA-FR and Z-PNN, trained with our high-
resolution framework, show again a very good performance,
preserving faithfully even the most subtle vegetation textures.

G. Implementation Details

All experiments were run on a server equipped with Nvidia
Quadro P6000 GPU with 24-GB memory, and all networks
were implemented in PyTorch. Some of the tested CNN mod-
els, i.e., Z-PNN, PanNet*, and DRPNN*, needed a pretraining
phase. For Z-PNN, as stated in Section IV-C, the model
weights have been produced as refinement of the original
A-PNN model parameters [68], using a dedicated training
image for each sensor, as indicated in Table I. The whole
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image is used as a one-sample batch, running 2000 iterations
that involve all layers, with a learning rate of 10™> on WV2/3
and 5 x 107 on GeoEye-1, and using the Adam optimizer
with f; = 0.9 and £, = 0.99.

The models for PanNet* and DRPNN*, instead, have
been reimplemented in PyTorch and trained from scratch on
our training datasets for all three sensors, using the same
hyperparameters (learning rate, optimizer, loss, epochs, and
so on) of the original versions. For these models, however,
since the training occurs in the reduced-resolution domain,
we used a 4 x 4 times larger tile, hence 8192 x 8192 pixels,
to compensate for data volume reduction.

V. CONCLUSION

We have proposed a framework for full-resolution training
of pansharpening models, with the aim of exploiting all the
information carried by the original data, with no resolution
downgrading. Lacking a ground truth, we defined a suitable
compound loss, with two components accounting separately
for spectral and spatial fidelity. We used the proposed frame-
work to train several state-of-the-art pansharpening mod-
els. Experimental results are extremely encouraging. Besides
numerical indicators, visual inspection confirms that the qual-
ity of the pansharpened images is largely improved due to
high-resolution training. Beyond the framework itself and the
trained pansharpening methods, though, the main contribution
of this work is to prove the potential of this training approach.
Many improvements are certainly possible, and we hope to
stimulate research on this topic. We are currently working on
a refined spatial loss component.
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