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Abstract: Mitochondria are highly plastic and dynamic
organelles long known as the powerhouse of cellular bio-
energetics, but also endowed with a critical role in stress
responses and homeostasis maintenance, supporting and
integrating activities across multifaced cellular processes.
As a such, mitochondria dysfunctions are leading causes of
a wide range of diseases and pathologies. Thyroid hor-
mones (THs) are endocrine regulators of cellular meta-
bolism, regulating intracellular nutrients fueling of sugars,
amino acids and fatty acids. For instance, THs regulate the
balance between the anabolism and catabolism of all the
macro-molecules, influencing energy homeostasis during
different nutritional conditions. Noteworthy, not only most
of the TH-dependent metabolic modulations act via the
mitochondria, but also THs have been proved to regulate
the mitochondrial biosynthesis, dynamics and function.
The significance of such an interplay is different in the
context of specific tissues and strongly impacts on cellular
homeostasis. Thus, a comprehensive understanding of
THs-dependent mitochondrial functions and dynamics is
required to develop more precise strategies for targeting
mitochondrial function. Herein, we describe the mecha-
nisms of TH-dependent metabolic regulation with a focus
on mitochondrial action, in different tissue contexts, thus
providing new insights for targeted modulation of mito-
chondrial dynamics.
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Introduction

Thyroid hormones synthesis andmetabolism

Thyroid hormones (THs) action is critical for the develop-
ment of many tissues and for the regulation of their function
in the adult [1, 2]. Indeed, THs influence numerous aspects of
cell physiology such as cell growth, differentiation, and
apoptosis and are key regulators of cell energy metabolism
and thermogenesis [3]. THs increase oxygen consumption
and heat production, while hypothyroidism has the opposite
effects [3]. In addition to its influence on oxygen consump-
tion,mitochondrial function is deeply affected by the thyroid
state. The biological action of THs (T3 and T4) is mediated
through the interaction of T3, a biologically active hormone,
with nuclear thyroid hormone receptors (TRs) determining
enhancement or inhibition of the expression of target genes.
The TR isoforms, α and β, ligand-dependent transcription
factors and members of the nuclear receptor gene super-
family, are differentially expressed in tissues and have
distinct roles in TH signaling [1, 4]. In addition to the canonical
genomic action, THs also exert a non-genomic action, which is
responsible for rapid effects. Thenon-genomic actiondoes not
involve T3 binding to TRs but is mediated by the interaction
with receptors on the cellmembrane, as in the case of integrin
αvβ3, or with intracellular molecules to activate intracellular
cascade pathways [5, 6].

Serum THs levels are regulated by the hypothalamic–
pituitary–thyroid (HPT) axis, which maintains stable TH
levels through the actions of TSH and TSH-releasing hor-
mone (TRH). The thyroid gland produces an excess of the
inactive hormone T4 compared to the active hormone T3.
Thus, most of the T3 intracellular availability derives from
the local regulation of THs metabolism. Without perturbing
serum concentrations, the intracellular THs levels can be
modified by the deiodinases, a family of enzymes composed
of three members: type 1 (D1), type 2 (D2) and type 3 deio-
dinase (D3) [7]. The three enzymes are expressed in a tissue-
specific manner in fetal and adult life [8] and differentially
catalyze THs activation or inactivation [9, 10]. D1 and D2
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catalyze the activation pathway: the conversion of T4 to T3,
withmore affinity than T4 for nuclear receptors, whereas D1
and D3 inactivate both T4 and T3 [11]. Moreover, THs can
enter the cells viamembrane transporter proteins, including
MCT8 and MCT10 [12]. Therefore, the final extent of THs
function is determined by the fine-tuned balance between
different tissue deiodinases, the receptors and the trans-
porters in the target cells [13, 14].

Thyroid hormones and energy homeostasis

Experimental studies revealed how several TH-induced
processes contribute to regulating metabolic homeostasis
in humans [15]. Nuclear and non-genomic action of THs
affect the key metabolic pathways that control energy
balance by regulating energy expenditure and accumula-
tion through both central and peripheral actions [16]. THs
facilitate adaptive thermogenesis via the brown adipose
tissue, modulate appetite and food intake and regulate the
body weight [17, 18]. Indeed, it is well known that in healthy
individuals, variations in serum TSH are associated with
changes in body weight in both men and women [19].
Moreover, THs influence insulin signaling, glucose uptake
and lipid metabolism, thus promoting adipocyte differen-
tiation, lipogenesis and lipolysis, depending on metabolic
state [20], in both white adipose tissue (WAT) and brown
adipose tissue (BAT), although BAT is predominantly
involved in energy expenditure. THs in high doses can also
induce catabolism of proteins [21]. Dysregulation of the
thyroid state leads to considerable alterations in energy
balance, indeed, the importance of the THs-mediated
homeostatic control of energy metabolism is evident in
patients with thyroid dysfunction [22]. Hyperthyroidism, a
clinical syndrome that causes an excess of TH, promotes a
hypermetabolic state characterized by increased energy
expenditure at rest, weight loss despite increased food
intake, reduced cholesterol levels, increased lipolysis and
gluconeogenesis [23]. By contrast, hypothyroidism is associ-
ated with hypometabolism characterized by decreased
metabolic rate, weight gain despite reduced food intake,
increased cholesterol levels, reduced lipolysis, and decreased
gluconeogenesis [24]. The intolerance to cold and heat are
hallmark features of hypothyroid and hyperthyroid patients,
respectively. Typically, the metabolic regulation of TH has
been attributed to the acceleration of both anabolic and
catabolic reactions [20]. Therefore, the action of TH turns out
to promote the futile cycles that contribute significantly to the
increase in the oxygen consumption as observed in thyro-
toxicosis [3]. Briefly, THsmaintain basalmetabolic rate (BMR),
by increasing ATP production for metabolic processes and by

generating and maintaining ion gradients [25]. In partic-
ular, they preserve BMR by decoupling oxidative phos-
phorylation in mitochondria [26] through up-regulation of
UCP-1, activating the mitochondrial permeability transi-
tion pores and modulating the ADP/ATP translocase [27].
The action of TH also has a significant effect on mito-
chondrial respiration through promoting mitochondrial
biogenesis [28] and stimulating the transcription of PGC-1α
[29], which is considered the main regulator of aerobic
respiration.

Thyroid hormones regulation of cellular
metabolism in illness

The effects of THs on cellular metabolism are exacerbated in
different pathological conditions [30]. For instance, hypothy-
roidism is associated with metabolic deregulations, such as
hypercholesterolemia and increased low‐density lipoprotein
(LDL) levels, representing a risk factor for developingdiabetes
mellitus (DM) and cardiovascular complications [31–36].
Hyperthyroidism is associated with various cardiovascular
events mostly as a significant risk of heart failure, even in
individuals without a history of cardiovascular disease. An
excess of THs stimulates venous return, increases blood vol-
umeandheart rhythm [37]. This causes circulatory congestion
by relaxing vascular smooth muscle cells, which can reduce
vascular resistance by up to 70% [38]. A recent report showed
that hyperthyroid individuals without diabetes have an
increased risk of developing Type 2 DM, indicating that thy-
roid dysfunction may precede diabetogenic processes [39]. In
this line, while hyperthyroid patients show increased basal
hepatic glucose production and elevated fasting insulin levels
compared to healthy individuals, hyperthyroid patients
treatedwithmethimazole showsignificantly reduced levels of
the same parameters, reaching the levels of healthy controls
[40]. Several studies have shown that elevated circulating TSH
levels are associated with an increased prevalence of meta-
bolic syndrome and obesity [41]. Hepatic insulin resistance
in hypothyroid individuals has been shown to result in
increased gluconeogenesis and subsequent accumulation of
hepatic glucose [42, 43]. Thus, given the central role of insulin
action in the regulation of hepatic gluconeogenesis and
glycogenolysis [44], impaired insulin sensitivity caused by
altered THs levels may per se have important consequences
on glucose homeostasis. Moreover, since TH significantly
affects energy metabolism, tissues with high metabolic
demand, such as skeletal muscle, show serious effects in
hypothyroid and hyperthyroid patients. For example,
studies aimed at determining the physiological and patho-
logical role of TH in skeletalmuscle have shown that patients
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with hypothyroidism exhibit muscle damage, as evidenced
by high levels of creatine kinase [45]. Also, hyperthyroid
individuals showmuscle weakness, notably muscle strength
and muscle cross-sectional area increase when TH function
is normalized in these patients [46].

Alterations in THs status leading to different forms of
hyperthyroidism and hypothyroidism are associated not
only with the onset of metabolic syndromes such as dia-
betes mellitus, but also with the cancer. Indeed, patients
with high prevalence of pathologies related to thyroid sta-
tus, such as diabetes, obesity, as well as nonalcoholic stea-
tohepatitis (NASH), one of the most common chronic liver
diseases characterized by inflammation and hepatic
fibrosis, are also predisposed to develop hepatocellular
carcinoma (HCC), however the association between THs
and HCC may also be independent of these comorbidities
[47, 48]. Indeed, clinical evidence has shown that hypo-
thyroidism predisposes to the development of HCC, sug-
gesting that dysfunctional THs may be a risk factor for this
type of cancer [48, 49]. In this regard, a link between THs
and the pathophysiology of various types of cancer has
been established by more than a century of research. Both
in vitro studies and research in animal models have shown
an effect T3 and T4 on cancer proliferation, apoptosis,
invasiveness and angiogenesis [50]. Also in humans, accu-
mulating evidence clearly indicates that the deregulation
of TH signaling occurs in different types of cancer [11, 51].
THs mediate their effects on the cancer cell through both
genomic and non-genomic pathways and a dysregulation
of intra-tumoral THs is involved in cancer initiation and
progression. The modulation of deiodinases expression in
tumor can affect cancer cells behavior [52]. A differential
modulation of D2 and D3 has been demonstrated at specific
stages of carcinogenesis in squamous cell carcinoma (SCC)
[53]. Altered TH levels are also associated with metabolic
reprogramming and angiogenesis of malignant cells,
thereby promoting metastasis in vivo [54]. In this line, the
critical role of intra-tumoral modulation of TH by deiodi-
nases D3 and D2 has been demonstrated not only in skin,
but also in other epithelial tumors, including colon and
prostate cancer (PCa) [55–57].

In summary, both hyperthyroidism andhypothyroidism
are associated with the risk of developing various pathol-
ogies such as diabetes and cancer, highlighting the
complexity of the mechanisms controlled by TH. The regu-
lation of physiological and pathophysiological processes
by TH is highly complex and tissue-specific, depending on
the metabolic status of the cells and their sensitivity to THs
signal determined by deiodinases, receptors and trans-
porters expression.

Effects of thyroid hormones on
mitochondria

The evidence that THs greatly affect mitochondria func-
tioning goes back a long way. However, despite this and the
increasing knowledge of the physiology and mechanism of
THs-dependent mitochondria regulation, several aspects of
such effects remain to be elucidated. The current evidence is
focused on two possible mechanisms that might underlie the
effects of THs on mitochondrial respiration: i. a mechanism
involving their nuclear action and ii. a mechanism involving
a direct effect of THs on mitochondria (Figure 1). The tran-
scriptional activity of THs trough the T3-TRs complexes is
potently involved in mitochondrial regulation. For instance,
THs are major regulators of mitochondrial biogenesis and
consequently of mitochondrial activity, through the tran-
scriptional induction of PGC1α and the nuclear respiratory
factor 1 (NRF-1) [58], which in turn promote the expression of
genes encoding the mitochondrial transcription factors
(TFAM, TFB1M, TFB2M), and, subsequently, activate mito-
chondrial OXPHOS gene expression [59]. THs also directly
induce mitochondrial OXPHOS genes, as they increase gene
and protein expression of mitochondrial-encoded subunit 1
of cytochrome c oxidase (MTCO1), a subunit of respiratory
chain complex IV and TFAM [60]. In addition, THs increase
the transcription of the ROS scavenger SOD2 (superoxide
dismutase 2) [61]. In detail, THs exert a dose-dependent
control on the dynamics of ROS, thus reducing the produc-
tion of ROS via SOD2 under physiological circumstances
while increasing the production of ROS and apoptosis under
thyrotoxicosis conditions [61]. Thus, mitochondrial meta-
bolism and redox state are profoundly regulated by the
nuclear action of THs (Table 1).

In addition to nuclear pathways, since many mito-
chondrial genes that are endogenously regulated by T3 lack
of thyroid responsive elements in their regulatory elements,
a TR-independent pathway of T3-mediated gene regulation is
likely. Indeed, TH can directly affect mitochondrial replica-
tion, through the truncated forms of TRα1 [62] and TRβ1 [63]
that are specifically imported into the mitochondria and
stimulate the transcription of themitochondrial genome. In
general, mitochondrial binding sites specific to T3 have
been demonstrated over the years, thus acting directly on
mitochondrial modulation [64]. The existence of these
mitochondrial binding sites for T3 shows that T3 plays very
important physiological roles in the regulation of the mito-
chondrial transcription apparatus, thus regulating mito-
chondrial biogenesis by acting in synchrony with the nuclear
genome.
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Figure 1: Thyroid Hormones have a deep influence on mitochondria functioning via genomic and non-genomic mechanisms.

Table : Key genes under thyroid hormone control involved in mitochondrial regulation.

Gene Regulation by TH Role References

UCP- Up-regulation Uncoupling []
PGCa Up-regulation Mitochondrial biogenesis []
NRF- Up-regulation Mitochondrial biogenesis []
OXPHOS Activation Aerobic metabolism []
MTCO Up-regulation Mitochondrial oxidative phosphorylation []
TFAM Up-regulation Mitochondrial replication []
SOD Up-regulation ROS balance []
AMPK Activation Mitochondrial biogenesis []
UCP Up-regulation Uncoupling []
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All the cited evidence highlights the intimate link
between THs and mitochondria and have pointed out that,
acting through the classical nuclear action or via the direct
mitochondrial regulation, THs can play tissue-specific effects
on mitochondrial biogenesis, dynamics and functioning.
Herein, we describe the effects of THs on mitochondria at
single tissue level.

Skeletal muscle

Skeletal muscle (SKM) is among the most important tissues
for energy expenditure and glucose and lipid homeostasis
[65, 66]. SKM shows remarkable plasticity in response to
physiological stimuli such as exercise, fasting and hor-
monal signals, including THs. Indeed, changes in thyroid
status affect SKM metabolic processes as well as mito-
chondrial activity and biogenesis, leading to changes in
mitochondrial mass, structure and contractility [67]. THs
also regulate the expression of key genes involved in
muscle myogenesis and regeneration [65, 68, 69]. All TH
signaling components, transporters, TRs and the deiodi-
nases D2 and D3 are expressed in rodent and human skel-
etal muscle [70, 71]. Although expressed at very low level in
SKM, D2 and D3 have a physiological relevance for SKM, as
demonstrated by loss of function studies. For instance, D2
null mice show a delay in the differentiation of muscle stem
cells and this impacts on the muscle regeneration process,
as seen in experimental models of cardiotoxin induced
muscle damage [9, 10, 69]. Moreover, the D2-mediated T3
activation stimulates the slow-to-fast muscle fiber type
switch [68, 72]. The transition from a glycolytic to an
oxidative fiber increase both mitochondrial content and
mitochondrial fusion, forming elongated mitochondria
[73]. The role of T3 in stimulating PGC1α and oxidative
pathways has a particular importance in SKM, since it is
strictly linked to the insulin signaling [74]. In addition, D2
expression and activity is critical for themuscle locomotory
performance as indicated by the concomitant stimulation
of PGC1α and D2 in exercised muscles [75]. AMP-activated
kinase (AMPK) regulates the expression of genes involved
in mitochondrial biogenesis, as well as phosphorylated and
active PGC1α [76, 77]. Chronic and acute administration of
T3 to euthyroid [78] and hypothyroid [79, 80] rats has been
shown to induce activation of AMPK, which may mediate
the effect of T3 on mitochondrial biogenesis in SKM. The
mechanisms by which T3 induces mitochondrial activity
and oxygen consumption in muscle are also related to the
stimulation of the transcription of the mitochondrial
enzymes and of the uncoupling protein 3 (UCP3) [81, 82],
whichpromotesmitochondrial uncoupling inmuscle, thereby

dissipating energy in the form of heat and reducing the en-
ergy efficiency of the cell. Interestingly, D2 is early upregu-
lated in muscle after acute cold exposure indicating a role of
TH in the thermogenic activity of SKM [83].

Finally, considering that through autophagy, cells
select and specifically target damaged organelles, such as
mitochondria, to lysosomes for their degradation [84],
modulation of autophagy is a key strategy for improving
muscle performance and treating degenerative conditions
such as various dystrophic diseases [85]. In contrast, auto-
phagic hyperactivity or inhibition leads to significant loss
of muscle mass, myopathies, and muscle injury [86, 87].
Therefore, homeostasis of the autophagic process is critical
to ensure both functionality and mitochondrial content in
SKM. Recently, Lesmana and colleagues have shown that
TH-induced mitochondrial biogenesis and activity is depen-
dent on T3-induced autophagy [88], consistent with previous
studies showing a link between autophagic induction and
mitochondrial function during exercise [89, 90].

Liver

The liver represents a major target for THs, which regulate
liver function by modulating the basal metabolic rate of
hepatocytes; the liver, in turn, metabolizes THs and regulates
their systemic endocrine effects [91]. For example, THplays an
important role in the regulation of hepatic glucose, lipid and
cholesterolmetabolism and homeostasis [92]. In addition, THs
play a key role in lipophagy, mitochondrial quality control
and regulation of metabolic genes. As mentioned above, TH
induces the maintenance of mitochondrial homeostasis,
indeed promotes the process of “mitophagy” to prevent cell
damage due to excessive ROS production [93], during nutrient
deprivation and exposure to inflammatory or pro-apoptotic
stimuli [94]. In liver, THs are known to be potent inducers of
hepatic autophagy and mitochondrial function [95] and have
also beneficial effects on lipid homeostasis, reducing serum
levels of cholesterol and triglycerides. In addition, hypothy-
roidism has been associated with non-alcoholic fatty liver
disease (NAFLD) and vice versa [96], bothhypothyroidismand
NAFLD are associated with the development of fatty liver,
obesity and insulin resistance [96]. In this context, regulation
of autophagy represents a new strategy for the treatment of
several important liver diseases [97], including NAFLD [98].
Indeed, TH-induced mitophagy [99] may help to counteract
the excessive oxidative stress and consequent mitochondrial
damage caused by the lipotoxic intermediates present in
NAFLD. Although it is well described that TH stimulates the
transport of free fatty acids into mitochondria [100], the
processes leading to the generation of free fatty acids are not
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well understood. Recently, studies have suggested that
TH-induced lipophagy, one of the major pathways of lipid
mobilization in hepatocytes, may be useful in reducing he-
patic lipid accumulation and increasing mitochondrial
β-oxidation [101]. Therefore, thyroid dysfunction may lead to
intrahepatic and systemic dysregulation thus impairing not
only hepatic but also whole body energy metabolism. How-
ever, the use of THs in clinical settings is severely limited
because THs can cause side effects such as atrial arrhythmias,
osteoporosis and hyperthermia. To avoid these effects, TH
mimetics targeting the liver have been developed and have
considerable therapeutic potential [102].

Thyrotoxicosis is characterized by an excessive energy
consumption and heat production in the mitochondria [103].
It has long been known that mitochondria in the liver of
hyperthyroid rats appear swollen [104]. This morphological
change appears to protect the hyperthyroid liver from
increased oxidative damage. Indeed, in the presence of Ca2+,
the oxidative modification of inner membrane proteins has
been shown to promote greater permeabilization of the in-
ner membrane [105], which determines mitochondrial
swelling. Mitochondria with high levels of ROS keep pores
open and are discarded, while organelles with low ROS
production survive [67]. Therefore, the regulation of mito-
chondria ROS levels can be deciphered as a survival mech-
anism. Hepatic mitochondria in hyperthyroid rats show
increased swelling [106], balancing cellular production of
ROS, thus suggesting that TH plays a central role as a mito-
chondrial preservative agent. Additionally, it is also worth
mentioning the effects of oxidative stress, mitochondrial
dysfunction and ROS production in liver disease but also in
liver cancer. The liver is capable of regeneration, but it is
subject to pathologies that can lead to cancer, such as
fibrosis, cirrhosis and non-alcoholic fatty liver disease. The
immediate consequences of oxidative stress and ROS pro-
duction include enhanced D3 activity, leading to reduced T3
production, and increased rT3 levels, stimulating tumor cell
proliferation [107, 108].

Brain

THs are involved in many processes that regulate the
metabolism and development of the central nervous system
(CNS). In fact, THs stimulate the growth and differentiation
of neurons to ensure optimal brain function and are also
essential for normal brain development: they influence
neurogenesis, neuronal and glial cell differentiation and
migration, synaptogenesis andmyelination. Their deficiency
may severely affect the brain during fetal and postnatal
development, causing retarded maturation, intellectual

deficits, and neurological impairment [109]. Consequently,
the importance of TH effects in the mature brain is
underscored by the variety of neurological and psychiatric
disorders that result from thyroid dysfunction in adults.
These include anxiety, lethargy, sleep disturbances, mood
disorders, cognitive deficits, and seizures [110]. Moreover,
considering the beneficial effects of THs on axonal matu-
ration, myelination and on synaptic plasticity, alterations
of systemic THs levels have a deep impact on neuronal
stroke [111].

Mitochondria in neuronal tissue are fundamental to
their unique function as major energy producers, and THs
are critical in regulating this function. Alterations in THs
levels can lead to mitochondrial dysfunction, which is
implicated in several neurological disorders, demonstrating
potential causal relationships between oxidative stress and
cognitive functions, including cognitive performance, intel-
ligence, memory, reaction time, and language [112]. TH may
also promote recovery and neuronal regeneration after
brain injury [113]. An important role in neuroprotection is
played by mitochondrial metabolism in astrocytes. Mito-
chondrial energy production is rapidly increased after T3
treatment via a mitochondrially targeted TH receptor [114].
Therefore, an effective strategy to enhance neuroprotection
may be to target astrocyte metabolism to increase ATP
levels in the brain. Thus, of growing interest is the role of
THs and mitochondria in some neurodegenerative and
neurocognitive disorders, like in Alzheimer’s disease, in
depression and anxiety.

Conclusions

Thyroid Hormones control nutrient fueling and metabolic
rate via diverse pathways. Mitochondria, as the prime
metabolic platform, are site target of THs. The cellular
mechanisms underlying the THs-dependent mitochondrial
regulation have been widely investigated. However, still
many aspects of the complex relationship between THs and
mitochondria remain to be fully elucidated, as well as the
impact of hyper- and hypothyroidism in mitochondrial
dysfunctions.

Multiple aspects contribute to such a complexity: the
double ability of THs to act at short- and long-term regu-
lation by integrating genomic and non-genomic molecular
processes; the interaction of TH receptors with different
co-repressor or co-activator partners in specific cellular
contexts; the countless genes and pathways under the
transcriptional or non-transcriptional regulation of THs; the
differential contribution of THs to metabolic regulation in
each target tissue.
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Here, we review the effects of thyroid hormones on
mitochondrial energetics with a particular emphasis on the
differential contribution of THs in specific cellular districts.
The whole picture emerging indicates THs as master reg-
ulators for mitochondria synthesis and function. Indeed,
the effects of THs range from modulating inner membrane
proteins and lipids composition to balancing the ATP pro-
duction/uncoupling processes ratio to the fine tuning the
reactive oxygen species production and scavenging. In
conclusion, intensive research studies are still needed for
a clear understanding of the multiple function of THs in
mitochondria in order to provide critical benefits on
overall whole-body metabolism in healthy and disease.
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