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A B S T R A C T

The electroencephalographic (EEG) features for discriminating high and low cognitive load associated with
fine motor activity in neurosurgeons were identified by combining wearable transducers and Machine Learning
(ML). To date, in the literature, the specific impact of fine-motor tasks on surgeons’ cognitive load is poorly
investigated and studies rely on the EEG features selected for cognitive load induced by other types of tasks
(driving and flight contexts). In this study, the specific EEG features for detecting cognitive load associated with
fine motor activity in neurosurgeons are investigated. Six neurosurgeons were EEG monitored by means of an
eight-dry-channel EEG transducer during the execution of a standardized test of fine motricity assessment.
The most informative EEG features of the cognitive load induced by fine motor activity were identified
by exploiting the algorithm Sequential Feature Selector. In particular, five ML classifiers maximized their
classification accuracy having as input the relative alpha power in Fz, O1, and O2, computed on 2-s epochs
with an overlap of 50 %. These results demonstrate the feasibility of ML-supported wearable EEG solutions
for monitoring persistent high cognitive load over time and alerting healthcare management.
1. Introduction

Neurosurgical practice requires to perform small and precise move-
ments, such as suturing or manipulating small instruments, coordinat-
ing hand, wrist, and finger movements. These fine motor tasks are
enabled by the use of specific cognitive resources [1]. The strong
interrelations between fine motor skills and executive functions (i.e., In-
hibition, Working Memory, Flexibility, etc.) has been demonstrated
through neuroimaging studies and by evidence from patients with
brain damage [2–4]. Moreover, neurophysiological interactions were
found between the dorsolateral prefrontal cortex and the neocerebel-
lum, i.e., the brain areas typically associated with cognition and fine
motor, respectively [1,5]. Notably, cognitive tasks such as verb gen-
eration, verbal fluency, and the Wisconsin Card Sorting Test activate
the dorsolateral prefrontal cortex, while also enhancing activation in
the contralateral cerebellum [6–8]. In particular, in the Wisconsin Card
Sorting Test, the subjects are required to categorize a set of 64 cards
according to color, shape, and number by matching them to one of four
stimulus cards depicting a red triangle, two green stars, three yellow
crosses, and four blue circles, respectively. A feedback is given on each
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trial whether he or she is right or wrong. This test assesses cognitive
flexibility, i.e., the ability to shift cognitive strategies in response to
changing environmental contingencies [9]. The execution of fine motor
activity necessitates both basic and high-order executive functions such
as sustained and selective attention, planning, information processing
speed, and decision-making [10,11].

Prolonged exposure to high levels of cognitive load during a task
can lead to cognitive fatigue [12]. The impact of cognitive fatigue
is well-documented across various professional groups. In general, a
condition of cognitive fatigue led to impairments in simple and complex
information processing speed and in tasks requiring executive functions
over a sustained period of time [12]. Surgeons, in particular, face longer
work compared to many other medical disciplines, leading to sleep
deprivation and cognitive fatigue [13]. In [14], an acute mentally-
fatiguing task has been demonstrated to impair fine motor skills and
inhibition of irrelevant information.

Few studies in the literature investigate the cognitive load in-
duced by fine-motor activity in surgeons. Bakhshipour et al. [15] stud-
ied the change in the concentration of oxygenated and deoxygenated
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Fig. 1. The EEG cap Helmate by ab-medica: (a) side view, (b) front view, (c) electrodes [17].
hemoglobin in the prefrontal area by near-infrared spectroscopy owing
to the increase in cognitive load related to fine motor skills. In [16],
Authors investigated the subjective rating of mental effort and simple
reaction time-based secondary task measures to predicted changes in
cognitive load during the simulation of surgical activity. These studies
often rely on indirect methods for monitoring brain activity, such as
individual report scaling questionnaires or on brain measures with low
temporal resolution and, consequently, lacking real-time information.

Recently, wearable Electroencephalography (EEG) solutions have
been proposed for real-time mental monitoring of surgeons [18,19]
due to EEG high temporal resolution. Most studies focusing on EEG-
based monitoring of cognitive load induced by fine motor tasks rely
on the EEG features selected for cognitive load induced by other types
of tasks. For example, in [18], authors proposed a real-time fatigue
monitoring system for laparoscopic neurosurgeons based on the com-
putation of Mahalanobis Distance between Spectral Density Powers of
pre-frontal alpha and theta. The study adopts EEG features derived from
the driver fatigue detection framework, and the relationship between
mental fatigue and fine motor activity was not focused on. In [20], the
Authors discriminate between two classes of cognitive load induced
by a laparoscopic simulation task by exploiting the frontal theta and
parietal alpha bands. These features have been validated in simulated
driving and flight tasks. Also in the context of robotic-assisted surgery,
EEG features previously identified in driving task were employed to
monitor the mental fatigue of surgeons [21].

However, the variability between tasks should be taken into account
when their impact on the EEG features is explored. Generally, attempts
to employ the EEG features of a particular task in detecting cognitive
load during different tasks have shown poor performance [22–24].
In [25], Authors identified EEG features peculiar to the surgery context
in the context of error prediction. They aim to evaluate the predictive
ability of EEG data in detecting technical errors during laparoscopic
surgery. However, the study did not specify the type of errors and
explored the restrict set of EEG features by exploiting only statistical
approaches.

In the last years, machine learning emerged as a promising approach
for effective feature selection. In particular, feature selection methods
can be categorized into filters and wrappers. Wrappers methods, such
as Sequential Feature Selection (SFS) [26], perform better than filter
methods because feature selection process is optimized for the classifier
to be used [27].

Based on Machine-Learning approaches, the present study aims to
select the most informative EEG features of cognitive load related to
fine motor tasks with the perspective of prototyping an EEG wear-
able system specifically devoted to the detection of mental fatigue in
surgeons.

In particular, in Section 2, the experimental sample, the hardware,
the experimental protocol, and the EEG data processing are described.
Moreover, in Sections 3 and 4, results are presented and discussed,
respectively.
2 
Fig. 2. Experimental protocol: participants competing two by two while performing
Purdue Pegboard Test.

2. Methods and materials

2.1. Experimental sample

Six trainee neurosurgeons from different European countries (four
males and two females, age 29.2 ± 1.8) were involved in the study. All
participants were right-handed. They authorized inclusion in the study
by signing the informed consent form. All procedures were conducted
in compliance with the Helsinki declaration.

2.2. Hardware

Ab Medica Helmate (Fig. 1) is a Class IIA device used for EEG signal
acquisition (certified according to the Regulation on medical devices
(EU) 2017/745) [28].

The electronic is mounted on the ultralight foam structure. The
transducer provides ten dry electrodes disposed according the 10/20
international system: Fp1, Fp2, Fz, Cz, C3, C4, O1, O2, AFz, and
Fpz. The signals are differentially acquired with respect to the Fpz
electrode and grounded to the AFz electrode. All electrodes are made
of conductive rubber with an Ag/AgCl coating at their endings. Three
different types of electrodes, with different shapes, are used to pass hair
and reach the scalp or join to the hairless areas. The sampling rate of
EEG signals is 512 Sa/s . EEG data are transmitted by Bluetooth Low
Energy protocol in packets of 32 samples [29].

2.3. Experimental protocol

Participants executed the Purdue Pegboard Test (PPT) at two diffi-
culty level while their EEG signals were acquired. The PPT is a valid
and standardized test to assess fine motor skills for clinical and neu-
ropsychological evaluation [30]. According to Spreen and Strauss [31],
the PPT’ score reflects a combination of different aspects of motor and
cognitive speed, coordination and effort. An increasing cognitive load
is required to the subject by changing the level of difficulty of the
test [32]. Therefore, the PPT could allow to investigate the increasing
cognitive load linked to fine-motor activity.

Participants underwent the Purdue Pegboard Test (PPT) in two
distinct modes: (i) right hand and (iv) assembly. Specifically, subjects
were asked to first perform the task three times in the right hand mode
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Fig. 3. Impact of epoch length and overlap on data separability. Labeled data for (a) non-overlapping 2-s epoch, (b) non-overlapping 1-s epoch, and (c) 2-s epoch with 50%
overlap. EEG features of low (in blu) and high (in yellow) cognitive load.
and then three times in the assembly mode. The task was organized as
a competitive challenge, with participants competing two by two, as
illustrated in Fig. 2.

The primary objective of the task was to insert as many pins as
possible into a board featuring two perpendicular lines, each containing
25 evenly spaced holes, within 30 s. Specifically, in the right hand
modality, participants were instructed to pick up and insert pins using
their right hand into the right line of holes on the board. In the assembly
modality, participants were tasked with inserting a pre-defined struc-
ture, consisting of a pin, a washer, a bearing, and a second washer, into
the designated hole by using both hands. Participants had a fixed time
limit of 30 s for pin insertion.

A pause of 30 s was set between the trials. The synchronization
between each test and the EEG acquisition was ensured by a countdown
scanned by a software interface. At the end of the countdown, the
participant starts the execution of the task and the experimenter places
a marker on the EEG signal from the keyboard. The EEG device was
held on the participant’s head for the duration of the experiment in
order to limit the sources of uncertainty related to the positioning of
the electrodes and the pressure exerted by the electrode on the skin.
Each PPT mode was associated with a specific cognitive load condition
label: right hand was designated as low cognitive load, while assembly
modality as high cognitive load.
3 
2.4. EEG data processing

A Wilxocon test [33] was carried out on the mean and the standard
deviation of the acquired EEG trials in order to evaluate the quality of
the data. The analysis revealed that the EEG trials of all task condition,
namely, right hand (47.04 ± 49.19 μV) and assembly execution modality
(49.84±50.92 μV), were comparable as far as the mean (𝑝-value = 0.580)
and standard deviation values (𝑝-value = 0.370) are concerned.

In the artifact removal phase, EEG data were filtered by means of
the fourth-order Butterworth bandpass filter [0.5–45] Hz. Then, the
Artifact Subspace Reconstruction (ASR) [34] with a cutoff of 15 was
applied in order to remove the transient artifacts from the signal.
The ASR is a component-based artifact removal method and works
by decomposing the signal into components and by removing com-
ponents whose amplitude exceeds a certain threshold (automatically
calculated depending on the variance of the signal). Finally, the signal
is reconstructed by considering the remaining components.

The EEG features extraction was inspired by the literature reported
in the Introduction. Therefore, the absolute (abs) and relative (rel)
powers were computed in the delta ([1–4] Hz), alpha ([8–13] Hz), theta
([4–8] Hz), beta ([13–30] Hz), low beta ([13–20] Hz), high beta ([20–
30] Hz), and gamma ([30–45] Hz) bands for three different epochs
length: (i) non-overlapping 1-s epochs, (ii) non-overlapping 2-s epochs,
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Fig. 4. Histogram of the occurrences of the ten features that individually achieve the highest accuracy for each classifier.
Fig. 5. Pie chart of the band information of the features that individually achieve the
highest accuracy for each classifier.

and (iii) 2-s epochs with 50% overlap. The graphs (Fig. 3) based on
the t-distributed Stochastic Neighbor Embedding (t-SNE) show in a bi-
dimensional space the EEG features at varying the epoch-length and the
overlap condition. Choosing an increase in the analysis window and
a 50% overlap improves the separability of the data between classes
and simplifies the classification problem. This makes the classification
process simpler, requiring fewer features, and allows the task to be
tackled with a classifier with a low number of identifiable parameters,
even from datasets that are not necessarily large.

In the feature selection phase, the Sequential Feature Selection
(SFS) algorithm [35] was employed. The SFS is a machine learning
algorithm to select the most informative subset of EEG features by
progressively adding (forward) or removing features from the overall
features (backward). The features subset selection adopts the criterion
of maximizing the cross-validation score of an estimator. In this study,
the SFS was implemented in the forward modality and the considered
estimators were: k-Nearest Neighbor (kNN), Support Vector Machine
(SVM), Random Forest (RF), Artificial Neural Network (ANN), and
Linear Discriminant Analysis (LDA). A Leave-One-Subject-Out (LOSO)
cross-validation technique was used. The LOSO approach was adopted
to evaluate the generalization capabilities of the classifier [36] by
assessing the accuracy of tests on data belonging to a subject never
seen before. In particular, all classifiers were subjected to the same SFS
4 
process. In the first round, each classifier was trained and tested on the
same features, using only one at a time. At each subsequent step, as
required by the SFS algorithm, the combination of features (namely,
the robust features) that maximizes accuracy for each classifier was
identified. With the adoption of the Leave-One-Subject-Out approach,
one-sixth of the epochs were used for testing and the remainder as
training. The number of features to be selected was varied until the
best performance was obtained.

3. Results

The accuracy and the subset of EEG features achieving the best
performance at varying the SFS estimator and the epoch length are
reported in Table 1.

Further analysis was conducted for the condition (i.e., epoch length
and classifier) achieving the best accuracy. In particular, the accuracy
achieved from each feature singularly was computed. The EEG features
are sorted decreasingly for each classifier according to the accuracy
achieved. Then, the top ten features that singularly achieve higher
accuracy have been focused on (Table 2). The band information of
the selected EEG features is shown in the pie chart in Fig. 5. In
particular, the EEG bands achieving higher accuracy are alpha (68%)
and high beta (30%). The histogram of the occurrences for the top ten
significative EEG features of each classifiers is reported in Fig. 4.

4. Discussion

This study aims to identify the most informative EEG features
from signal acquired by wearable transducer (wireless, low number of
channels, dry electrodes) for detecting cognitive load associated with
fine motor activity in neurosurgeons. Most of the existing contributions
on EEG-based monitoring of cognitive load induced by fine motor tasks
are based on the EEG features of cognitive load validated for other
tasks. In particular, the mostly employed EEG features in detecting
surgeons’ cognitive load, namely the alpha and theta power in frontal
regions, are proposed due to their effectiveness in the context of car
driving or air flight. As a consequence, the impact on cognitive load
of fine motor activity peculiar to surgical practice might be overlooked
when using nonspecific EEG features.

In order to assess the impact of fine motor engagement on the elec-
troencephalographic signal, a gold standard experiment for selective
activation of fine motor activity was proposed. In addition, a feature
selection procedure among the 112 features in input (8 channels × 7
bands × 2 kinds of computation) was performed by applying a machine



P. Arpaia et al. Computer Standards & Interfaces 92 (2025) 103896 
Table 1
Percentage accuracy (mean and standard deviation) obtained by the subset of EEG features selected by the SFS in combination with different classifiers and epoch length. Higher
values are in bold.

Epoch length Classifier Number of EEG features EEG features Accuracy (%)

kNN 14 Abs gamma at Fz
Rel delta at O1
Rel theta at Fz and C4
Rel low beta at C3, Cz, and C4
Rel high beta at Fp1, Cz, Fz, and O2
Rel gamma at C3, Fp1, and Fz

66.4 ± 3.0

SVM 3 Abs theta at C3
Abs low beta at C3 and Fz

67.3 ± 8.9

1 s - no overlap

LDA 17 Abs. delta at Fp2 and C4
Abs. theta at Fp1 and Cz
Abs. alpha at Fz
Abs. low beta at Cz
Abs. high beta at Cz and Fz
Abs. gamma at Fz
Rel. theta at Fz and C4
Rel. alpha at Fp1
Rel. low beta at Cz and Fp2
Rel. high beta at O1 and Cz
Rel. gamma at Cz

74.2 ± 7.2

ANN 5 Abs theta at C3
Rel delta at O1
Rel theta at Fz
Rel low beta at Cz
Rel high beta at C3

70.2 ± 10.2

RF 9 Abs theta at Fz
Abs high beta at Fp2
Abs gamma at Fz
Rel delta at O1
Rel delta at Fz
Rel alpha at O1, C3, and Fz
Rel high beta at C4

73.5 ± 8.4

kNN 8 Abs. theta at C3
Abs. high beta at Cz
Rel. theta at Fp2
Rel. high beta at O1
Rel. gamma at C3, Cz, Fp2 and O2

57.8 ± 15.7

SVM 7 Abs. theta at C3
Abs. low beta at C3, Fp1, Cz and Fz
Rel. delta at O1
Rel. gamma at O2

60.9 ± 16.1

2 s - no overlap

LDA 5 Rel. delta at O1
Rel. theta at Cz, Fz, and C4
Rel. gamma at O2

62.2 ± 9.2

ANN 1 Abs theta at Cz 70.2 ± 21.9

RF 5 Abs theta at C4
Rel theta at Fz and C4
Rel low beta at C4
Rel gamma at O1

64.8 ± 4.7

kNN 1 Rel. alpha at O2 99.9 ± 0.2

SVM 2 Rel. high beta at O2
Rel alpha at Fz

100.0 ± 0.0

2 s - 1 s overlap

LDA 7 Abs. delta at Fp1 and O1
Rel. delta at Cz
Rel. theta at Fp2
Rel. alpha at Fz
Rel. low beta at C4
Rel. high beta at O1

99.7 ± 0.3

ANN 1 Abs delta at C3
Abs alpha at O1 and Fp2

100.0 ± 0.0

RF 1 Rel alpha at O2 100.0 ± 0.0
learning algorithm. In particular, two different analyses were carried
out. In the first analysis, the SFS was used to select the subset of EEG
features achieving the highest accuracy at varying the SFS estimator
and the epoch length. The pre-processing leading to higher average
accuracy in the previous stage is also used in the subsequent analysis.
The second analysis consists of (i) sorting the 112 features decreasingly
for each classifier according to the accuracy achieved by each feature
5 
individually, (ii) making a histogram of the occurrences for the top ten
features of each classifier. The aim of these analyses was the identi-
fication of the most robust EEG features as they maximize accuracy
regardless of classifier, namely the features that are most likely to be
effective identifiers of the cognitive phenomena being investigated.

The first analysis showed that the best performance (accuracy of
100.0± 0.0%) was achieved with 2-s epochs and overlap of 1 s by SVM,



P. Arpaia et al.

b
o
E
R
t
a
a

f
a
l
e
o
c
d
o
m
t
t
o
i
c
o
t
c

s
f
a
d
o
a
t
o
a
r
b
r
w
o
f
s
c

t
T
s
a
C
p
t

Computer Standards & Interfaces 92 (2025) 103896 
ANN and RF. In general, accuracy above 99.0% were achieved by all
classifiers for 2-s epochs with 1 s overlap. Compared with the 1 s win-
dow, the 2-s observation guarantees higher frequency resolution and a
better normal mode noise rejection due to the signal integration within
a wider temporal window. Moreover, the introduction of the overlap
while ensuring for each time window an appropriate duration, allows
providing the classifiers with a more conspicuous training dataset. In
particular, already in this first analysis, the relevance of the alpha-
band relative power feature in O2 emerges, allowing the achievement
of accuracies above 99.0% with KNN and RF classifiers when used as
the only input.

The second analysis revealed that the 68% and 30% of the 50
(10 features × 5 classifiers) EEG features achieving higher accuracy
elong to alpha and high beta band, respectively. In the histogram of
ccurrences, channel information revealed that the most discriminating
EG features are relative to the occipital and fronto-parietal regions.
elative alpha power in Fz, relative alpha power in O1 and O2 showed

he highest number of occurrences. In particular, decrease in relative
lpha at O1 (p-value = 0.031) and O2 (p-value = 0.031) and in relative
lpha at Fz (p-value = 0.031).

These results are partially in agreement with previous studies. In
act, alpha and theta rhythms in the pre-frontal cortex were recognized
s the EEG features more informative with respect to the cognitive
oad related to surgical activity by Zander et al. [20]. However, Zander
t al. observed a decreased occipital alpha activity during performance
f technically challenging tasks. The difference in the feature trend
ould reflect the different experimental condition between the two
ifficulty levels of the task proposed by Zander et al. and the impact
n the visual cortex. Indeed, from the visual stimulation related to the
anipulation of real objects (simpler task) participants are required

o realize an on-screen virtual experience (more difficult task). In
he literature, alpha power over the contralateral central area was
bserved better discriminating between left and right hand movement
magination [37]. Therefore, the high accuracy observed in alpha band
ould be related to unilateral versus bilateral movement tasks instead
f low versus high cognitive tasks. This strengthens the hypothesis that
he relative alpha power in O1 and O2 could be effective identifiers of
ognitive load related to fine motor activity.

In addition, the relative alpha power in O1 and O2 were con-
idered in the literature in the context of cognitive fatigue resulting
rom prolonged time spent on a task (TOT). In particular, in [38],

significant increase of the PSD in the alpha and theta bands was
ocumented in the occipital, medial and frontal regions during fatigue
ver a long period. However, in the present study, a decrease in relative
lpha in O1 and O2 was observed. This discrepancy could be due to
he different mental conditions analyzed. In particular, in [38], the
nset of a fatigue condition is considered. While, in the present study,
condition of increased cognitive load is taken into account. It is

easonable to assume that the two conditions can be characterized
y opposite trends of the feature under consideration: a decrease in
elative alpha characterizes an increase in cognitive load, whereas,
hen fatigue arises, the value of the feature increases. Therefore,
ccipital relative alpha power emerges as promising candidate (to be
urther investigated in future studies considering a larger experimental
ample) for the investigation of impact of fine motor activity on the
ognitive load.

However, despite these observations, the reported accuracies across
he analyzed features and regions appear to be largely consistent.
his suggests that while certain EEG features and brain regions may
how promise in discriminating cognitive load, the overall impact on
ccuracy remains uniform across the analyzed features and regions.
onsequently, the implications of these findings on the discriminative
ower of EEG features should be interpreted with caution, considering
he uniformity in accuracy values across different features and regions.
6 
Table 2
Top ten EEG features achieving the highest accuracy (mean and standard deviation)
for each classifier in ascending order. The considered epoch length of the EEG features
is 2 s with 50% of overlap.

Classifier EEG features Accuracy (%)

Rel alpha O2 99.9 ± 0.1
Abs alpha Fp2 99.8 ± 0.2
Abs alpha O2 99.8 ± 0.2
Abs high beta C4 99.8 ± 0.2

KNN Rel alpha O1 99.8 ± 0.2
Rel alpha Fp1 99.8 ± 0.2
Rel alpha Cz 99.8 ± 0.2
Rel alpha Fz 99.8 ± 0.2
Rel alpha Fp2 99.8 ± 0.2
Rel high beta O2 99.8 ± 0.2

Rel high beta O2 99.7 ± 0.3
Rel alpha O1 99.3 ± 0.4
Rel alpha O2 99.3 ± 0.7
Rel high beta O1 99.3 ± 0.7

SVM Rel alpha Fz 99.2 ± 0.5
Rel alpha Cz 99.1 ± 0.4
Rel alpha C4 98.9 ± 0.9
Rel high beta Fz 98.9 ± 0.3
Rel theta O2 98.8 ± 0.8
Rel alpha C3 98.8 ± 1.6

Rel high beta O1 88.8 ± 0.7
Rel high beta O2 88.0 ± 2.9
Rel alpha O2 87.5 ± 4.2
Rel alpha Fz 86.7 ± 2.9

LDA Rel alpha C4 86.6 ± 3.0
Rel alpha Cz 86.3 ± 3.2
Rel alpha O1 86.1 ± 2.2
Rel alpha C3 86.1 ± 2.2
Rel high beta Fp1 85.9 ± 2.7
Rel high beta Fz 85.9 ± 2.6

Abs high beta O1 98.9 ± 1.0
Abs high beta O2 98.9 ± 0.9
Abs alpha O1 98.6 ± 1.4
Abs high beta C4 96.7 ± 3.3

ANN Abs alpha C3 96.0 ± 4.0
Abs high beta Fp1 96.0 ± 1.9
Abs alpha Cz 95.9 ± 4.0
Abs alpha Fp2 95.8 ± 3.2
Abs high beta C3 95.8 ± 3.8
Abs alpha Fp1 95.1 ± 4.0

Rel alpha O2 99.9 ± 0.1
Abs alpha Fp2 99.8 ± 0.2
Abs alpha O2 99.8 ± 0.2

RF Abs high beta C4 99.8 ± 0.2
Rel alpha O1 99.8 ± 0.2
Rel alpha Fp1 99.8 ± 0.2
Rel alpha Fz 99.8 ± 0.2
Rel alpha Fp2 99.8 ± 0.2
Abs alpha Cz 99.7 ± 0.2
Abs alpha O1 99.7 ± 0.3

Note: In each cell of the ‘‘Accuracy (%)’’ column, the mean accuracy is followed by
the standard deviation.

5. Conclusions

In this study, the electroencephalographic (EEG) features for detect-
ing cognitive load associated with fine motor activity in neurosurgeons
were investigated from signal acquired by wearable transducer (wire-
less, low number of channels, dry electrodes). The EEG signal of six
neurosurgeons was monitoring by using an eighth-channel EEG trans-
ducer during the execution of a standardized test of fine motricity
assessment (PPT). In particular, participants were asked to perform the
PPT at two level of difficulty. Each PPT mode was associated with a
specific cognitive load condition label: right hand was designated as
low cognitive load, while assembly modality as high cognitive load.
The absolute and relative powers were computed in the delta, alpha,
theta, beta, low beta, high beta, and gamma bands for three different

epochs length: (i) non-overlapping 1-s epochs, (ii) non-overlapping 2-s
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epochs, and (iii) 2-s epochs with 50% overlap. The Sequential Feature
Selection algorithm embedding five ML estimator was employed to find
the most informative subset of EEG features to discriminate between
the two cognitive load conditions elicited by fine motor tasks. The
100% of accuracy was achieved by the Random Forest using the alpha-
band relative power in O2, computed on 2-s epochs with 50% overlap.
Moreover, the EEG features singularly achieving the higher accuracy
with all the considered classifiers were: relative alpha power in Fz,
O1 and O2. In particular, relative alpha power in O1 and O2 emerge
as relevant features for the characterization of the impact of motor
activity on cognitive activity, while the high accuracy observed in alpha
band in the central region might be related to unilateral versus bilateral
movement tasks instead of low versus high cognitive tasks. However,
the implications of these findings on the discriminative power of EEG
features should be interpreted with caution, considering the uniformity
in accuracy values across different features and regions.

In future works, randomized experimental protocol will be imple-
mented in order to minimize the confounders’ (time on task and task
learning) impact and new EEG features (entropy, coherence etc.) will
be explored.

CRediT authorship contribution statement

Pasquale Arpaia: Writing – review & editing, Supervision. Mirco
rosolone: Writing – original draft, Data curation. Ludovica Gargiulo:
riting – original draft, Data curation. Nicola Moccaldi: Writing
original draft, Supervision, Conceptualization. Marco Nalin: Con-

eptualization. Alessandro Perin: Conceptualization. Cosimo Puttilli:
onceptualization.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
asquale Arpaia reports financial support was provided by The Ministry
f Enterprises and Made in Italy. If there are other authors, they declare
hat they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported
n this paper.

ata availability

Data will be made available on request.

cknowledgments

This work was carried out as part of the ‘‘INTENSE’’ project, which
as financially supported by the Ministry of Enterprises and Made in

taly (MIMIT).

eferences

[1] A.C. Rule, L.L. Smith, Fine motor skills, executive function, and academic
achievement, Phys. Act. Health Promot. Early Years: Effect. Strateg. Early Child.
Educ. (2018) 19–40.

[2] E.J. Corti, A.R. Johnson, H. Riddle, N. Gasson, R. Kane, A.M. Loftus, The
relationship between executive function and fine motor control in young and
older adults, Hum. Mov. Sci. 51 (2017) 41–50.

[3] M.N. Maurer, C.M. Roebers, Towards a better understanding of the association
between motor skills and executive functions in 5-to 6-year-olds: The impact of
motor task difficulty, Hum. Mov. Sci. 66 (2019) 607–620.

[4] M.N. Maurer, C.M. Roebers, Is the fine motor–executive functions link stronger
for new compared to repeated fine motor tasks? PLoS One 15 (11) (2020)
e0241308.

[5] E. D’Angelo, Physiology of the cerebellum, Handb. Clin. Neurol. 154 (2018)
85–108.

[6] M.E. Raichle, J.A. Fiez, T.O. Videen, A.-M.K. MacLeod, J.V. Pardo, P.T. Fox, S.E.
Petersen, Practice-related changes in human brain functional anatomy during

nonmotor learning, Cereb. Cortex 4 (1) (1994) 8–26.

7 
[7] K.F. Berman, J.L. Ostrem, C. Randolph, J. Gold, T.E. Goldberg, R. Coppola, R.E.
Carson, P. Herscovitch, D.R. Weinberger, Physiological activation of a cortical
network during performance of the Wisconsin Card Sorting Test: a positron
emission tomography study, Neuropsychologia 33 (8) (1995) 1027–1046.

[8] R. Schlösser, M. Hutchinson, S. Joseffer, H. Rusinek, A. Saarimaki, J. Stevenson,
S. Dewey, J.D. Brodie, Functional magnetic resonance imaging of human brain
activity in a verbal fluency task, J. Neurol. Neurosurg. Psychiatry 64 (4) (1998)
492–498.

[9] B. Kopp, F. Lange, A. Steinke, The reliability of the wisconsin card sorting test
in clinical practice, Assessment 28 (1) (2021) 248–263.

[10] U.C. Dissanayake, V. Steuber, F. Amirabdollahian, EEG spectral feature modula-
tions associated with fatigue in robot-mediated upper limb gross and fine motor
interactions, Front. Neurorobot. 15 (2022) 788494.

[11] O. Senkiv, S. Nõmm, A. Toomela, Applicability of spiral drawing test for mental
fatigue modelling, IFAC-PapersOnLine 51 (34) (2019) 190–195.

[12] S. Cockshell, J. Mathias, Cognitive functioning in chronic fatigue syndrome: a
meta-analysis, Psychol. Med. 40 (8) (2010) 1253–1267.

[13] K.C. Kayser, V.A. Puig, J.R. Estepp, Predicting and mitigating fatigue effects due
to sleep deprivation: A review, Front. Neurosci. 16 (2022) 930280.

[14] J.R. Magnuson, S.M. Doesburg, C.J. McNeil, Development and recovery time
of mental fatigue and its impact on motor function, Biol. Psychol. 161 (2021)
108076.

[15] C.M. Smith, M.D. Segovia, O.F. Salmon, Impact of reduced weight on motor
and cognitive function in astronaut analogs: A simulated lunar gravity workload
study, Acta Astronaut. 206 (2023) 18–29.

[16] F.A. Haji, D. Rojas, R. Childs, S. de Ribaupierre, A. Dubrowski, Measuring
cognitive load: performance, mental effort and simulation task complexity, Med.
Educ. 49 (8) (2015) 815–827.

[17] AB-medica S.P.A., 2020, https://www.abmedica.it/.
[18] N.Z. Ndaro, S.-Y. Wang, Effects of fatigue based on electroencephalography signal

during laparoscopic surgical simulation, Minim. Invas. Surg. 2018 (2018).
[19] J.M. Morales, J.F. Ruiz-Rabelo, C. Diaz-Piedra, L.L. Di Stasi, Detect-

ing mental workload in surgical teams using a wearable single-channel
electroencephalographic device, J. Surg. Educ. 76 (4) (2019) 1107–1115.

[20] T.O. Zander, K. Shetty, R. Lorenz, D.R. Leff, L.R. Krol, A.W. Darzi, K. Gramann,
G.-Z. Yang, Automated task load detection with electroencephalography: towards
passive brain–computer interfacing in robotic surgery, J. Med. Robot. Res. 2 (01)
(2017) 1750003.

[21] G. Di Flumeri, P. Aricò, G. Borghini, N. Sciaraffa, V. Ronca, A. Vozzi, S.F. Storti,
G. Menegaz, P. Fiorini, F. Babiloni, EEG - based workload index as a taxonomic
tool to evaluate the similarity of different robot-assisted surgery systems, in:
Human Mental Workload: Models and Applications: Third International Sympo-
sium, H-WORKLOAD 2019, Rome, Italy, November 14–15, 2019, Proceedings 3,
Springer, 2019, pp. 105–117.

[22] P. Zhang, X. Wang, W. Zhang, J. Chen, Learning spatial–spectral–temporal EEG
features with recurrent 3D convolutional neural networks for cross-task mental
workload assessment, IEEE Trans. Neural Syst. Rehabil. Eng. 27 (1) (2018)
31–42.

[23] G.N. Dimitrakopoulos, I. Kakkos, Z. Dai, J. Lim, J.J. deSouza, A. Bezerianos,
Y. Sun, Task-independent mental workload classification based upon common
multiband EEG cortical connectivity, IEEE Trans. Neural Syst. Rehabil. Eng. 25
(11) (2017) 1940–1949.

[24] M.J. Boring, K. Ridgeway, M. Shvartsman, T.R. Jonker, Continuous decoding of
cognitive load from electroencephalography reveals task-general and task-specific
correlates, J. Neural Eng. 17 (5) (2020) 056016.

[25] B.A. Armstrong, D. Nemrodov, A. Tung, S.J. Graham, T. Grantcharov, Elec-
troencephalography can provide advance warning of technical errors during
laparoscopic surgery, Surg. Endosc. 37 (4) (2023) 2817–2825.

[26] W. Mlambo, W.K. Cheruiyot, M.W. Kimwele, A survey and comparative study
of filter and wrapper feature selection techniques, Internat. J. Engrg. Sci. 5 (8)
(2016) 57–67.

[27] S. Khalid, T. Khalil, S. Nasreen, A survey of feature selection and feature
extraction techniques in machine learning, in: 2014 Science and Information
Conference, IEEE, 2014, pp. 372–378.

[28] L. Angrisani, A. Apicella, P. Arpaia, A. Cataldo, A. Della Calce, A. Fullin, L.
Gargiulo, L. Maffei, N. Moccaldi, A. Pollastro, Instrumentation for EEG-based
monitoring of the executive functions in a dual-task framework, ACTA IMEKO
10 (1) (2022) 6–14.

[29] L. Angrisani, P. Arpaia, F. Donnarumma, A. Esposito, M. Frosolone, G. Improta,
N. Moccaldi, A. Natalizio, M. Parvis, Instrumentation for motor imagery-based
brain computer interfaces relying on dry electrodes: a functional analysis,
in: 2020 IEEE International Instrumentation and Measurement Technology
Conference (I2MTC), IEEE, 2020, pp. 1–6.

[30] H. Strenge, U. Niederberger, U. Seelhorst, Correlation between tests of attention
and performance on grooved and Purdue pegboards in normal subjects, Percept.

Motor Skills 95 (2) (2002) 507–514.

http://refhub.elsevier.com/S0920-5489(24)00065-5/sb1
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb1
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb1
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb1
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb1
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb2
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb2
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb2
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb2
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb2
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb3
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb3
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb3
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb3
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb3
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb4
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb4
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb4
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb4
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb4
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb5
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb5
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb5
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb6
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb6
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb6
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb6
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb6
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb7
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb7
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb7
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb7
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb7
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb7
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb7
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb8
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb8
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb8
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb8
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb8
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb8
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb8
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb9
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb9
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb9
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb10
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb10
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb10
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb10
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb10
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb11
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb11
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb11
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb12
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb12
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb12
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb13
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb13
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb13
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb14
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb14
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb14
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb14
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb14
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb15
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb15
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb15
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb15
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb15
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb16
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb16
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb16
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb16
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb16
https://www.abmedica.it/
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb18
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb18
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb18
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb19
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb19
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb19
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb19
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb19
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb20
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb20
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb20
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb20
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb20
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb20
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb20
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb21
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb22
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb22
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb22
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb22
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb22
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb22
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb22
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb23
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb23
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb23
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb23
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb23
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb23
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb23
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb24
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb24
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb24
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb24
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb24
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb25
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb25
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb25
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb25
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb25
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb26
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb26
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb26
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb26
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb26
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb27
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb27
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb27
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb27
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb27
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb28
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb28
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb28
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb28
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb28
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb28
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb28
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb29
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb29
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb29
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb29
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb29
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb29
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb29
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb29
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb29
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb30
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb30
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb30
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb30
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb30


P. Arpaia et al. Computer Standards & Interfaces 92 (2025) 103896 
[31] D.A. Carone, E. Strauss, EMS Sherman, & O. Spreen, A Compendium of
Neuropsychological Tests: Administration, Norms, and Commentary: A Review
of:, Oxford University Press, New York, 2007, 2006.

[32] E. Bakhshipour, R. Koiler, K. Milla, N. Getchell, Understanding the cognitive
demands of the purdue pegboard test: an fNIRs study, in: Advances in Neu-
roergonomics and Cognitive Engineering: Proceedings of the AHFE 2020 Virtual
Conferences on Neuroergonomics and Cognitive Engineering, and Industrial
Cognitive Ergonomics and Engineering Psychology, July 16-20, 2020, USA,
Springer, 2021, pp. 55–61.

[33] F. Wilcoxon, Individual comparisons by ranking methods, in: Breakthroughs in
Statistics: Methodology and Distribution, Springer, 1992, pp. 196–202.

[34] C.-Y. Chang, S.-H. Hsu, L. Pion-Tonachini, T.-P. Jung, Evaluation of artifact
subspace reconstruction for automatic EEG artifact removal, in: 2018 40th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBC, IEEE, 2018, pp. 1242–1245.
8 
[35] T. Rückstieß, C. Osendorfer, P. Van Der Smagt, Sequential feature selection
for classification, in: AI 2011: Advances in Artificial Intelligence: 24th Aus-
tralasian Joint Conference, Perth, Australia, December 5-8, 2011. Proceedings
24, Springer, 2011, pp. 132–141.

[36] S. Kunjan, T.S. Grummett, K.J. Pope, D.M. Powers, S.P. Fitzgibbon, T. Bastiampil-
lai, M. Battersby, T.W. Lewis, The necessity of leave one subject out (LOSO) cross
validation for EEG disease diagnosis, in: Brain Informatics: 14th International
Conference, BI 2021, Virtual Event, September 17–19, 2021, Proceedings 14,
Springer, 2021, pp. 558–567.

[37] G. Pfurtscheller, C. Neuper, D. Flotzinger, M. Pregenzer, EEG-based discrimina-
tion between imagination of right and left hand movement, Electroencephalogr.
Clin. Neurophysiol. 103 (6) (1997) 642–651.

[38] L.E. Ismail, W. Karwowski, Applications of EEG indices for the quantification
of human cognitive performance: A systematic review and bibliometric analysis,
PLoS One 15 (12) (2020) e0242857.

http://refhub.elsevier.com/S0920-5489(24)00065-5/sb31
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb31
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb31
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb31
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb31
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb32
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb33
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb33
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb33
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb34
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb34
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb34
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb34
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb34
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb34
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb34
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb35
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb35
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb35
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb35
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb35
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb35
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb35
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb36
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb36
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb36
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb36
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb36
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb36
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb36
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb36
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb36
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb37
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb37
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb37
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb37
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb37
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb38
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb38
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb38
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb38
http://refhub.elsevier.com/S0920-5489(24)00065-5/sb38

	Specific feature selection in wearable EEG-based transducers for monitoring high cognitive load in neurosurgeons
	Introduction
	Methods and Materials
	Experimental sample
	Hardware
	Experimental protocol
	EEG data processing

	Results
	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


