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Università di Napoli Federico II

Via Cintia

I-80126 Napoli, Italy

Email: maria.longobardi@unina.it

March 31, 2012

Abstract

The cumulative entropy is an information measure which is alternative to the differential

entropy and is connected with a notion of reliability theory. Indeed, the cumulative entropy

of a random lifetime X can be expressed as the expectation of its mean inactivity time

evaluated at X . After a brief rieview of its main properties, in this paper we relate the

cumulative entropy to the cumulative inaccuracy, and provide some inequalities based on

suitable stochastic orderings. We also show a characterization property of the dynamic

version of the cumulative entropy. In conclusion, a stochastic comparison between the

empirical cumulative entropy and the empirical cumulative inaccuracy is investigated.

Keywords: Stochastic orders, Cumulative entropy, Mean inactivity time, Cumulative inac-

curacy, Dynamic cumulative entropy, Empirical cumulative entropy, Sample spacings.
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1 Introduction

In the last 40 years stochastic orders have attracted an increasing number of authors, who used

them in several areas of probability and statistics, with applications in many fields, such as

∗This paper is dedicated to Moshe Shaked in admiration to his most profound contributions on stochastic

orders.
†corresponding author
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reliability theory, queueing theory, survival analysis, operations research, mathematical finance,

risk theory, management science, biomathematics. Indeed, stochastic orders are often invoked

not only to provide useful bounds and inequalities, but also to compare stochastic systems. A

landmark in this area is the book by Shaked and Shanthikumar (2007), which represents an

essential reference for a large number of researchers dealing with stochastic orderings. To give

an idea of its broad impact we notice that up to now it has received more than 2000 citations

in the literature.

The aim of this paper is twofold: to give a brief review on the properties of an information

measure recently introduced by the authors, and to provide some new results, including simple

examples of applications of stochastic orders to related notions of information theory.

It is well known that the basic way to establish if one random variable is “larger” than

another is based on the comparison of their distributions functions. Formally, given two random

variables X and Y , we say that X is smaller than Y in the usual stochastic order, denoted by

X ≤st Y , if and only if

E[φ(X)] ≤ E[φ(Y )] (1)

for all increasing functions φ : R → R for which the expectations exist (see Section 1.A.1 of

Shaked and Shanthikumar, 2007). Equivalently, X ≤st Y if and only if P(X ≤ t) ≥ P(Y ≤ t)

for all t ∈ R. Another stochastic order that will be used in this paper is the decreasing convex

order, denoted by X ≤dcx Y , which holds if, and only if, Eq. (1) is true for all decreasing

convex functions φ : R → R for which the expectations exist. We remark that the notion of

dcx-order is counterintuitive, in the sense that if X ≤dcx Y , then X is “larger” than Y in some

stochastic sense (see Section 4.A.1 of Shaked and Shanthikumar, 2007).

Let us now recall some preliminary notions of information theory. The concept of entropy

was introduced by Claude Shannon (1948) as a measure of the uncertainty associated with a

discrete random variable. Formally, for a random variable X with possible values {x1, . . . , xn}
and probability mass function p(·), the entropy is given by

H(X) = −E[logb p(X)] = −
n

∑

i=1

p(xi) logb p(xi), (2)

where b, the base of the logarithm, is usually equal to 2, e, or 10. Entropy is the minimum

descriptive complexity of a random variable X, in the sense that it quantifies the expected

value of the information contained in a realization of X. For a thorough description of its role

in coding theory, compression schemes and other fields of information theory see Cover and

Thomas (1991), for instance. A comprehensive description of information-theoretic method-

ologies, based on focal measures such as Shannon entropy and Kullback-Leibler information,
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is given in Ebrahimi et al. (2010).

A suitable extension of the Shannon entropy to the absolutely continuous case is the so-

called differential entropy , which is the shift-independent functional given by

H(X) = −E[log fX(X)] = −
∫ ∞

−∞
fX(x) log fX(x) dx, (3)

where log = loge, and where fX(x) is the probability density function of an absolutely con-

tinuous random variable X having support in R. However, although the analogy between

definitions (2) and (3), the differential entropy is an inaccurate extension of the Shannon dis-

crete entropy. Indeed, the latter is not invariant under changes of variables and can even

become negative.

Various alternatives for the entropy of a continuous distribution have been proposed in the

literature. In Section 4 of Jaynes (1963) the following notion is suggested:

Hm(X) = −
∫ ∞

−∞
fX(x) log

fX(x)

m(x)
dx, (4)

where m(x) is a suitable invariant measure. More recently, the “measure problem” involving

Eq. (4) has been faced in Maynar and Trizac (2011). Another example of information notion

is due to Schroeder (2004), who proposed a measure that, unlike entropy, can be easily and

consistently extended to the continuous probability distributions on interval [a, b], and unlike

differential entropy is always positive and invariant with respect to linear transformations of

coordinates. A “length biased” shift-dependent measure of uncertainty that stems from the

differential entropy is the weighted entropy (see Di Crescenzo and Longobardi, 2006),

Hw(X) = −E[X log fX(X)] = −
∫ +∞

0
x fX(x) log fX(x) dx, (5)

which assigns larger weights to larger values of a non-negative random variable X.

Moreover, the “cumulative residual entropy” is defined as (see Rao et al., 2004)

E(X) = −
∫ +∞

−∞
FX(x) log F X(x) dx, (6)

where FX(x) = P(X > x) is the cumulative residual distribution, or survival function, of a

random variable X. Various applications of (6) are given in Asadi and Zohrevand (2007),

Wang and Vemuri (2007) and Wang et al. (2003a), (2003b).

In Section 2 we recall an information measure, named “cumulative entropy”, defined by

substituiting the survival function F X(x) with the distribution function of X in Eq. (6). Eval-

uations of the cumulative entropy for some distributions over finite and infinite domains are

explicitly given. We also present various properties of such measure. In particular, we relate
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the cumulative entropy to the cumulative inaccuracy, and recall that it can be expressed as

the expectation of the mean inactivity time evaluated at X. Section 3 is devoted to provide

some bounds and inequalities involving the cumulative entropy, for which use of stochastic

orders is made. In Section 4 the dynamic version of the cumulative entropy is recalled, and

a characterization property is provided. Finally, in Section 5 we illustrate some features of

a simple estimator of the cumulative entropy based on the sample spacings. The empirical

cumulative inaccuracy is also introduced, and a stochastic comparison between such empirical

measures is provided.

Note that throughout this paper, the terms “increasing” and “decreasing” are used in

non-strict sense.

2 Cumulative entropy

An information measure similar to (6) is the cumulative entropy, defined as (Di Crescenzo and

Longobardi, 2009a)

CE(X) = −
∫ +∞

−∞
FX(x) log FX(x) dx, (7)

where FX(x) = P(X ≤ x) is the cumulative distribution function of a random variable X.

The measure CE(X) is defined similarly to the differential entropy (3). However, since the

argument of the logarithm is a probability, we have

0 ≤ CE(X) ≤ +∞,

whereas H(X) may be negative. Moreover, CE(X) = 0 if and only if X is a constant. From (6)

and (7) it follows that the cumulative entropy and the cumulative residual entropy are related

by the following relation (Di Crescenzo and Longobardi, 2012):

E(X) + CE(X) =

∫ +∞

−∞
h(x) dx,

where

h(x) = −[FX(x) log FX(x) + FX(x) log FX(x)], x ∈ R

is the partition entropy of X evaluated at x (see Bowden, 2010).

The cumulative entropy is evaluated in Table 1 for various examples of even probability

density functions of standard random variables.

We point out that if Y = aX + b, with a ∈ R, a 6= 0 and b ∈ R, then

CE(Y ) = |a| ·







CE(X) if a > 0,

E(X) if a < 0.
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fX(x) support CE(X)
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Table 1: Cumulative entropy for some standard random variables with even densities.

FX(x) support: 0 < x < +∞ CE(X)

Γ
(

3, 2
x

)

Γ(3)
(inverse-gamma distribution) 0.474543

x3(20 + x(15 + x(6 + x)))

(1 + x)6
(beta prime distribution) 0.556511

1

2
+

1

2
erf

( log x + 0.5 log 2√
2 log 2

)

(lognormal distribution) 0.565746

1 − e−x (exponential distribution) 0.644934

Table 2: Cumulative entropy for some non-negative variables with mean 1 and variance 1.

Other features of CE(X), such as properties of its two-dimensional version, and a normalized

cumulative entropy defined as NCE(X) = CE(X)/E(X) for 0 < E(X) < +∞, were discussed

in Di Crescenzo and Longobardi (2009a).

Table 2 shows the cumulative entropy of some non-negative random variables having unity

mean and variance.

We notice that an extension of the cumulative entropy has been proposed by Abbasnejad

(2011), namely the failure entropy of order α defined as

FEα(X) = − 1

α − 1
log

∫ +∞

0
Fα

X(x) dx,

for α > 0, α 6= 1.

Furthermore, we recall that a weighted version of the cumulative entropy has been defined
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recently as (Misagh et al., 2011)

CEw(X) = −
∫ +∞

0
xFX(x) log FX(x) dx,

in analogy with the weighted entropy (5).

2.1 Connections to reliability theory

Let us now recall various connections between the cumulative entropy and concepts of reliability

theory.

Let X be a non-negative random variable that represents the random lifetime of a reliability

system. Denote by [X |B] a random variable whose distribution is identical to that of X

conditional on an event B. The residual lifetime [X − t |X > t], t > 0, describes the time

lenght between the failure time X and the inspection time t, given that at time t the system

is still active. One of the most used functions to describe the aging process of a system is the

mean residual life of X, given by

mrl(t) = E[X − t |X > t] =
1

FX(t)

∫ +∞

t
FX(x) dx, ∀t ≥ 0 : FX(t) > 0, (8)

which uniquely determines the distribution function of X. Its properties in the description

of systems composed by finite mixtures are pinpointed in Navarro and Hernandez (2008).

Properties of the mean residual life function in a renewal process and relationships with other

relevant functions of reliability theory are examined in Nair and Sankaran (2010).

Information measures have been proposed in the past as a tool to explore the information

content in random lifetimes. We recall Ebrahimi and Pellerey (1995), where a new partial

ordering among life distributions in terms of their uncertainties is introduced and is used to

assess the notion of a “better system”. See also Ebrahimi (1996), and Ebrahimi and Kirmani

(1996), where a direct approach to measure uncertainty in the residual lifetime distribution

has been addressed. Further developments involving new properties of the proposed measure

in connection to order statistics and record values are then derived in Asadi and Ebrahimi

(2000).

Theorem 2.1 of Asadi and Zohrevand (2007) shows that the cumulative residual entropy

(6) can be expressed in terms of (8) as

E(X) = E[mrl(X)]. (9)

A similar result holds for the cumulative entropy. We recall that, given that at time t a system

has been found inactive, [t−X |X ≤ t], t > 0, describes the inactivity time of the system, i.e.

6



the time elapsing between the inspection time t and the failure time X. The inactivity time is

thus dual to the residual lifetime [X − t |X > t]. The mean inactivity time of X, given by

µ̃X(t) = E[t − X |X ≤ t] =
1

FX(t)

∫ t

0
FX(x) dx, ∀t ≥ 0 : FX(t) > 0, (10)

has been studied in reliability theory by Ahmad and Kayid (2005), Ahmad et al. (2005), Misra

et al. (2008), for instance. Similarly to (9), Theorem 3.1 of Di Crescenzo and Longobardi

(2009a) shows that the cumulative entropy can be expressed as the expectation of the mean

inactivity time evaluated at X, i.e.

CE(X) = E[µ̃X(X)]. (11)

We recall that the reversed hazard rate of a random lifetime X is given by (see Block et

al., 1998)

τX(t) =
d

dt
log FX(t) =

fX(t)

FX(t)
, t > 0 : FX(t) > 0. (12)

The following decreasing convex function is defined as a double integral of the reversed hazard

rate:

T
(2)
X (x) = −

∫ +∞

x
log FX(z) dz =

∫ +∞

x

[
∫ +∞

z
τX(u) du

]

dz, x ≥ 0. (13)

Its derivative is strictly related to the distribution function of X. Indeed, from Eq. (13) we

have

Ṫ
(2)
X (x) :=

d

dx
T

(2)
X (x) = log FX(x) = −

∫ +∞

z
τX(u) du. (14)

We recall that Proposition 3.1 of Di Crescenzo and Longobardi (2009a) provides the following

alternative expression of the cumulative entropy of X:

CE(X) = E

[

T
(2)
X (X)

]

, (15)

with T
(2)
X defined in (13).

Given two random lifetimes X and Y having distribution functions FX and FY defined on

(0,∞), let us now introduce the “cumulative inaccuracy”

K[FX , FY ] = −
∫ +∞

0
FX(u) log FY (u) du, (16)

as the cumulative analog of the measure of inaccuracy due to Kerridge (1961). Denoting the

reversed hazard rate of Y as τY , we set

T
(2)
Y (x) = −

∫ +∞

x
log FY (z) dz =

∫ +∞

x

[
∫ +∞

z
τY (u) du

]

dz, x ≥ 0. (17)

Hereafter we give a probabilistic meaning of the cumulative inaccuracy in terms of (13) and

(17).

7



Proposition 2.1 For non-negative absolutely continuous random variables X and Y , having

distribution functions FX and FY , we have

K[FX , FY ] = E

[

T
(2)
Y (X)

]

, K[FY , FX ] = E

[

T
(2)
X (Y )

]

. (18)

The proof of Proposition 2.1 is omitted, being similar to that of Proposition 3.1 of Di

Crescenzo and Longobardi (2009a).

We now aim to provide a connection between the information measures CE(X) and K[·, ·].
Let X and Y be the random lifetimes of two systems which have finite unequal means and

satisfy X ≥st Y or Y ≥st X. Proposition 3.2 of Di Crescenzo and Longobardi (2009a) shows

that if X is absolutely continuous and E[µ̃X(Y )] is finite, then

CE(X) = E[µ̃X(Y )] + E[µ̃′
X(Z)] [E(X) − E(Y )], (19)

where µ̃′
X(t) = 1− τX(t)µ̃X(t), for all t > 0 such that FX(t) > 0, and where Z has probability

density function

fZ(x) =
FY (x) − FX(x)

E(X) − E(Y )
, x ≥ 0. (20)

Hereafter we state an identity similar to (19).

Proposition 2.2 Let X and Y be non-negative random variables with finite unequal means

and satisfying X ≥st Y or Y ≥st X, with X absolutely continuous. If K[FY , FX ] is finite, then

CE(X) = K[FY , FX ] + E

[

Ṫ
(2)
X (Z)

]

[E(X) − E(Y )], (21)

where Ṫ
(2)
X (·) is given in (14), and where the Z is an absolutely continuous non-negative random

variable having probability density function (20).

Proof. It follows from identity (15), from the second of (18) and from the probabilistic

analogue of the mean value theorem given in Di Crescenzo (1999).

3 Inequalities and stochastic comparisons

In this section we shall focus on upper and lower bounds for the cumulative entropy and on

some stochastic comparisons.

In Di Crescenzo and Longobardi (2009a) it has been proved that if X is a non-negative

random variable, then

(i) CE(X) ≥ C eH(X), where C = exp
{

∫ 1
0 log(x | log x|) dx

}

= 0.2065;

(ii) CE(X) ≥
∫ +∞
0 F (x)F (x) dx;
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(iii) CE(X) ≥ −
∫ +∞
µ log F (z) dz;

(iv) CE(X) ≤ E(X);

(v) CE(X) ≤ e−1 b;

(vi) CE(X) ≤ [b − E(X)]
∣

∣

∣
log

(

1 − E(X)
b

)∣

∣

∣
,

where bounds (v) and (vi) hold if X takes values in [0, b], with b finite. The latter inequality

can be generalized by means of the log-sum inequality (see, for instance, Rao, 2005). Indeed,

Proposition 1 of Di Crescenzo and Longobardi (2010) states that if X and Y take values in

[0, b], with b finite, and if X ≥st Y , then

CE(X) ≤ CE(Y ) + [b − E(X)]

∣

∣

∣

∣

log
b − E(X)

b − E(Y )

∣

∣

∣

∣

. (22)

We remark that the inequality given in Eq. (22) is tighter than that given in Proposition 4.5

of Di Crescenzo and Longobardi (2009a), which holds under the same assumption, that is

X ≥st Y . When the stochastic ordering between X and Y is reversed, the following result

holds.

Proposition 3.1 If X and Y are non-negative random variables such that X ≤st Y , then

K[FY , FX ] ≤ CE(X) ≤ K[FX , FY ].

Proof. Since, by assumption, FX(t) ≥ FY (t) for all t ∈ R, the proof follows from Eqs. (7)

and (16).

We remark that X ≤st Y does not imply CE(X) ≤ CE(Y ).

Proposition 3.2 If X and Y are non-negative random variables such that X ≤dcx Y , then

CE(X) ≤ K[FY , FX ].

Proof. Recalling the definition of decreasing convex order, Eq. (15) and the second of (18),

the proof follows noting that (13) is a decreasing convex function.

We notice that Proposition 3.2 substitutes Proposition 4.6 of Di Crescenzo and Longobardi

(2009a).

Example 3.1 Let X and Y have distribution functions FX(x) = exp{−c x−γ}, x > 0, and

FY (x) = exp{−dx−γ}, x > 0, with c > 0, d > 0 and γ > 1. From (13) and (17) we have

T
(2)
X (x) =

c

γ − 1
x−γ+1, T

(2)
Y (x) =

d

γ − 1
x−γ+1, x > 0.

9
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Figure 1: Dynamic cumulative entropy for the beta prime distribution (lower curve) and the

exponential distribution given in Table 2.

Hence, making use of (15) and the second of (18) we obtain

CE(X) =
c1/γ

γ
Γ

(

1 − 1

γ

)

, K[FY , FX ] =
cd−1+1/γ

γ
Γ

(

1 − 1

γ

)

.

It immediately follows that if c ≥ d, i.e. X ≤dcx Y , then CE(X) ≤ K[FY , FX ], in agreement

with Proposition 3.2.

We conclude this section by recalling two further inequalities stated in Di Crescenzo and

Longobardi (2009a):

– If X and Y are non-negative and independent random variables, then

max{CE(X), CE(Y )} ≤ CE(X + Y ).

– If X1,X2, . . . ,Xn are non-negative i.i.d. random variables, then

CE(n X1) ≥ CE(max{X1,X2, . . . ,Xn}).

4 Dynamic cumulative entropy

Dynamic information measures are often employed in system reliability to describe the effect

of the age t on the uncertainty in random lifetimes. For instance, we recall the residual entropy

(Ebrahimi, 1996) and the past entropy (Di Crescenzo and Longobardi, 2002), defined as the

differential entropy of [X |X > t] and of [X |X ≤ t], respectively.
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The dynamic cumulative residual entropy was proposed by Asadi and Zohrevand (2007) as

the cumulative residual entropy of [X |X > t], given by

E(X; t) = −
∫ +∞

t

FX(x)

FX(t)
log

FX(x)

FX(t)
dx, t ≥ 0. (23)

Similarly to (23), the “dynamic cumulative entropy” was defined in Di Crescenzo and Longo-

bardi (2009a) as the cumulative entropy of [X |X ≤ t], namely

CE(X; t) = −
∫ t

0

FX(x)

FX(t)
log

FX(x)

FX(t)
dx, t > 0 : FX(t) > 0.

An alternative expression of CE(X; t) is given by

CE(X; t) = − 1

FX(t)

∫ t

0
FX(x) log FX(x) dx + µ̃X(t) log FX(t), t > 0 : FX(t) > 0, (24)

where µ̃X(t) is the mean inactivity time defined in (10). We remark that CE(X; t) is non-

negative for all t, with

lim
t→0+

CE(X; t) = 0, lim
t→b−

CE(X; t) = CE(X),

for any random variable X with support (0, b), with b ≤ +∞. Figure 1 shows two cases where

CE(X; t) is increasing in t. An instance of absolutely continuous distribution whose dynamic

cumulative entropy is not increasing for all t is provided in Example 6.2 of Di Crescenzo and

Longobardi (2009a). This paper also provides various properties of CE(X; t), such as lower and

upper bounds, and the following two representations as conditional means:

CE(X; t) = E[µ̃X(X) |X ≤ t], t > 0,

and, when X is a absolutely continuous,

CE(X; t) = E[T
(2)
X (X; t) |X ≤ t], t > 0,

where

T
(2)
X (x; t) = −

∫ t

x
log

F (z)

F (t)
dz, t ≥ x ≥ 0. (25)

Hereafter we give a characterization result for CE(X; t). To this purpose, we recall that

(see Theorem 6.1 of Di Crescenzo and Longobardi, 2009a) CE(X; t) is increasing in t if and

only if CE(X; t) ≤ µ̃X(t) for all t > 0 such that FX(t) > 0.

Proposition 4.1 If X is a non-negative absolutely continuous random variable and if CE(X; t)

is increasing for all t ≥ 0, then CE(X; t) uniquely determines FX(t).
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Proof. Differentiating (24) we have

d

dt
CE(X; t) = τX(t) [µ̃X(t) − CE(X; t)] , (26)

where τX(t) is given in (12). Hence, for any fixed t, the reversed hazard rate τX(t) is a positive

solution of equation g(x) = 0, where

g(x) := x [µ̃X(t) − CE(X; t)] − d

dt
CE(X; t).

The assumption that CE(X; t) is increasing in t yields CE(X; t) ≤ µ̃X(t) for all t, so that

lim
x→+∞

g(x) = +∞ and g(0) ≤ 0, due to (26). Therefore, g(x) = 0 has a unique positive

solution. Consequently τX(t), and hence FX(x), is uniquely determined by CE(X; t) under the

assumption that such function is increasing in t.

We remark that Corollary 6.1 of Di Crescenzo and Longobardi (2009a) shows that CE(X; t)

is increasing for all t ≥ 0 if µ̃(t) is increasing for all t ≥ 0. Such paper presents other results on

the cumulative entropy, such as characterizations involving identities CE(X; t) = c µ̃X(t) and

CE(X; t) = c µX(t), where µX(t) = E[X |X ≤ t] denotes the mean past lifetime of X. See also

Section 4 of Navarro et al. (2010) for related results, such as an extension of a characterization

of the power distribution that involves the cumulative entropy.

5 Empirical cumulative entropy

Let X1,X2, . . . ,Xn be a random sample of non-negative, absolutely continuous i.i.d. random

variables. A suitable estimator of CE(X) is the “empirical cumulative entropy”, proposed in

Section 7 of Di Crescenzo and Longobardi (2009a) as

CE(F̂n) = −
∫ +∞

0
F̂n(x) log F̂n(x) dx, (27)

where

F̂n(x) =
1

n

n
∑

i=1

1{Xi≤x}, x ∈ R

is the empirical distribution of the sample. Denoting by X(1) < X(2) < . . . < X(n) the sample

order statistics, and by

U1 = X(1), Ui = X(i) − X(i−1), i = 2, 3, . . . , n

the corresponding sample spacings, it is not hard to prove that the empirical cumulative entropy

can be expressed as

CE(F̂n) = −
n−1
∑

j=1

Uj+1
j

n
log

j

n
. (28)
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Eq. (28) shows that the empirical cumulative entropy is a positive linear combination of the

sample spacings U2, . . . , Un, where the outer spacings U2 and Un possess small weights, whereas

the larger weight is given to the spacing Uj+1 such that j is close to e−1 n ≈ 0.3679n. Eq. (28)

gives asymmetric weights to the sample spacings, so that the empirical cumulative entropy is

asymmetric to the right. It is thus appropriate to measure variability in right-skewed distri-

butions. A case study on neuronal firing data is provided in Di Crescenzo and Longobardi

(2012).

A discussion on CE(F̂n) in the case of random samples from uniform distribution and

exponential distribution is given in Di Crescenzo and Longobardi (2009a). Moreover, the

following asymptotic results have been proved:

(i) the standardized empirical cumulative entropy converges in distribution to a standard

normal variable as n → +∞ (Di Crescenzo and Longobardi, 2009a);

(ii) CE(F̂n) → CE(X) a.s. as n → +∞ (Di Crescenzo and Longobardi, 2009b).

We note that by use of identity −u log u ≤ 1−u, 0 < u < 1, from (27) the following relation

follows:

CE(F̂n) ≤ X a.s.,

where X is the sample mean.

Let us now consider another random sample Y1, Y2, . . . , Yn of non-negative, absolutely con-

tinuous i.i.d. random variables, and denote its empirical cumulative entropy by

CE(Ĝn) = −
∫ +∞

0
Ĝn(y) log Ĝn(y) dy,

where Ĝn(y) is the empirical distribution of the sample. Moreover, in analogy with (16), we

define the empirical cumulative inaccuracy as

K[F̂n, Ĝn] = −
∫ +∞

0
F̂n(u) log Ĝn(u) du.

It can be expressed as:

K[F̂n, Ĝn] = −
n−1
∑

j=1

∫ Y(j+1)

Y(j)

F̂n(u) log
j

n
du, (29)

where Y(1) < Y(2) < . . . < Y(n) are the order statistics of the new sample. Let us denote by

Nj =

n
∑

i=1

1{Xi≤Y(j)}, j = 1, 2, . . . , n,

the number of random variables of the first sample that are less than or equal to the j-th order

statistic of the second sample. Moreover, we rename by Xj,1 < Xj,2 < . . . the random variables

13



of the first sample belonging to (Y(j), Y(j+1)], if any. From the above positions we thus have

∫ Y(j+1)

Y(j)

F̂n(u) du =
Nj

n

[

Y(j+1) − Y(j)

]

+
1

n

Nj+1−Nj
∑

r=1

[

Y(j+1) − Xj,r

]

,

so that Eq. (29) becomes

K[F̂n, Ĝn] = − 1

n

n−1
∑

j=1



Nj+1Y(j+1) − NjY(j) −
Nj+1−Nj

∑

r=1

Xj,r



 log
j

n
.

Cleary, K[Ĝn, F̂n] can be obtained by symmetry.

In analogy to Proposition 3.1, hereafter we show that if the random variables of the two

samples are stochastically ordered, then the empirical cumulative entropy and the empirical

cumulative inaccuracies are suitably ordered.

Proposition 5.1 If random variables Xi and Yi satisfy condition Xi ≤st Yi, then

K[Ĝn, F̂n] ≤st CE(X) ≤st K[F̂n, Ĝn].

Proof. Since Xi ≤st Yi, from Theorem 1.A.3 of Shaked and Shanthikumar (2007) we have

that 1{Xi≤x} ≥st 1{Yi≤x}, and thus F̂n(x) ≥st Ĝn(x), for all x ∈ R. The proof then follows

from the definitions of the involved notions.
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