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Abstract— This work proposes a simple yet effective method to
adapt unsupervised convolutional neural networks (CNNs) from
multispectral (MS) to hyperspectral (HS) pansharpening. Thus,
it focuses on the fusion of a single high-resolution panchromatic
(PAN) band with a low-resolution HS data cube. This is achieved
by means of a decorrelation transform, following the principal
component analysis (PCA) approach, which enables the compres-
sion of a significant portion of the HS image energy into a few
bands. Afterward, a suitably adapted pansharpening network
designed for four spectral bands is used to super-resolve only
the principal components (PCs). Experiments demonstrate high
performance in both quantitative and qualitative evaluations,
favorably comparing against state-of-the-art methods.

Index Terms— Convolutional neural network (CNN), hyper-
spectral (HS) image, image fusion, pansharpening, principal
component analysis (PCA).

I. INTRODUCTION

YPERSPECTRAL (HS) images are widely employed
to address diverse applications such as unmixing [1],
change detection [2], object detection [3], semantic segmen-
tation [4], classification [5]. However, due to technological
constraints, high spectral resolution imposes a relatively low
spatial resolution compared to other imaging systems, for
example, multispectral (MS) sensors. Therefore, it is very
useful to exploit efficient and effective pansharpening tools,
capable of increasing the spatial resolution of the HS images
while preserving their spectral quality, thanks to the fusion
with a simultaneously acquired high-resolution panchromatic
(PAN) image [6].
A survey about the topic has been presented in [6]. More-
over, a recent contest has been organized at IEEE WHISPERS
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2022 and its outcomes have been reported in [7]. Most of
the current solutions are actually generalizations of methods
originally conceived for the classical MS pansharpening prob-
lem [8], where usually 4-8 bands are fused. Among these,
component substitution (CS) [8], [9], [10] and multiresolution
analysis (MRA) [11], [12], [13] are the most popular ones.
In addition, Bayesian [14] or matrix factorization [15] solu-
tions have also been employed.

In the last years, many deep learning-based solutions have
been devised for the MS pansharpening problem [16], [17],
[18], [19] as well as for the HS pansharpening problem [20],
[21], [22], [23]. In [20], a new HS pansharpening frame-
work via spectrally predictive convolutional neural networks
(CNNs) has been proposed. Following the same research line,
a new network aimed to keep under control the spectral dis-
tortion while progressively refining the spatial details has been
presented in [24]. On other hand, a spatial-domain constraint
between the fused image and the PAN has been imposed to
the network in [23]. A popular research line leverages on the
use of attention mechanisms declined in different manners.
Channel and spatial attentions have been introduced in [21]
for the problem at hand. Instead, in [22], an arbitrary scale
attention upsampling module has been explored, while, in [25],
a residual attention network has been considered. Finally,
a dual-attention guided fusion block has been presented in
[26]. Another approach that is worth to mention has been
proposed in [27]. It is based on the use of a deconvolution
long short-term memory network enclosed in a bi-directional
architecture.

Despite the research efforts registered in the last years,
mostly concerned on architectural aspects, some fundamen-
tal questions remain unanswered. One is about the training
context. All the above-mentioned solutions, except [25],
refer to supervised learning schemes, hence, because of the
lack of ground-truth (GT), they are forced to rely on syn-
thesized reduced-resolution (RR) datasets with unavoidable
implications on generalization. This problem has been deeply
analyzed in [18] for MS pansharpening, registering a paradigm
shift toward the unsupervised approach, which gives the pos-
sibility to train networks on full-resolution (FR) real data [28],
[29]. Another issue, peculiar for the HS case and rarely taken
into account [30], is the variable number of bands to manage.
This variability arises from acquisition errors, which often
require the removal of subsets of bands. Last but not least, in
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the HS case, the lack of data for training is more critical than
for the simpler MS case where, however, adaptive strategies,
such as, [17], have been considered.

Motivated by the above considerations, here we propose an
HS pansharpening technique based on the recently proposed
zoom pansharpening neural network (Z-PNN) [18], conceived
for PAN-MS fusion, suitably adapted to the HS case leverag-
ing on spectral decorrelation transforms, that is, a principal
component analysis (PCA). The method is fully unsupervised
(allowing training at FR), is adaptive, and can operate with an
arbitrary number of bands.

II. PROPOSED SOLUTION

In this work, we propose a plain and efficient solution to the
problem of HS pansharpening, which leverages on the recently
proposed method called Z-PNN [18], originally designed for
MS pansharpening. In the following, we briefly recall Z-PNN,
then we describe how it has been generalized to the case of
HS data.

A. Z-PNN

The Z-PNN method [18] inherits the target-adaptive
paradigm introduced in [17], but it is based on a new loss
conceived to use FR images without GTs, hence allowing
a fully unsupervised training and tuning. The target-adaptive
modality involves two stages: adaptation and prediction. The
former is an iterative tuning phase, where the whole PAN-
MS input pair feeds the pretrained network. At each tuning
iteration, the spatial and spectral consistencies of the output
are quantified to provide updated parameters, thanks to a
suitable composite loss that makes use of the input PAN and
MS as references, respectively. After a predefined number of
iterations (i.e., 100), the network parameters are eventually
frozen and used for the last run of the network to provide the
final pansharpened image.

More in detail, said M and P the MS and PAN input
components, respectively, M is the pansharpened image, and
D is a suitable downscaling operator, the overall loss is
given by

ﬁ(M, P: M) o (M; D(M)) +,3£S<P; M) (1)

where the two loss terms are weighted by B to account for
both spectral and spatial consistency. The spectral loss, L;,
is given by

£,\(M;D(A7I)) :||D<1\71) — M| 2)

where || - ||; indicates the £;-norm, and the low-resolution
projection operator, D, consists of a band-wise low-pass
filtering followed by spatial decimation with a factor of R
(resolution ratio):

DM, -, b)) =[M(-,-, D) x hp] I r 3)

being h;, the point spread function for band b, while |z and
* are the decimation and convolution operators, respectively.
Besides, said p{fj(Mb; P) the local (to a 0 x o window)

correlation coefficient between P and band 1\7Ib at location
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(i, j), the spatial loss term, Lg, is given by

cs(Ps M) =1 (min(pl, o7, (Mo P))) (4
being (-) the average operator along i, j and b. p;’%, is a
correlation upper bound, estimated through a smoothed version
of P and the 23-tap polynomial interpolation of M. By doing
so, image locations, where the correlation coefficient have
reached the corresponding bounding level, do not contribute
to the gradient computation. Experimental evidence suggested
to set o = R.

B. HS Pansharpening by Z-PNN

In principle, the same methodology to pansharp MS images
through CNN models could be applied to HS images by
increasing the number of input bands from less than ten
to hundreds and, in case, redefining the resolution ratio.
In practice, this generalization to a much larger number of
bands is a nontrivial task for several reasons.

1) It grows the network “weight” (number of parameters)
and, with it, the GPU memory requirements.

2) It grows the volume of data for an effective training.

3) The availability of HS-PAN datasets for training is much
limited compared to MS-PAN datasets.

4) It grows the statistical mismatch between synthetic RR
data for supervised training and real FR test data, giving
raise to generalization issues.

5) The number of spectral bands can vary from one dataset
to another, even when they come from the same sensor
(it often occurs that subsets of bands undergo sensing
issues, necessitating to get rid of them).

6) Only a fraction of the spectral bands falls within the
PAN bandwidth, so that can reliably be considered well
correlated with it.

On the basis of the considerations made above, we focused
our attention on Z-PNN for several reasons.

1) It is unsupervised, allowing to avoid the resolution
downgrade protocol for generating labeled data.

2) It makes use of an online target-adaptive phase for
parameter tuning, mitigating the scarcity of training data.

3) It allows to balance the spectral and spatial constraints
through a simple hyperparameter.

4) It is relatively light.

To cope with the high and variable number of bands of the
HS images, we apply Z-PNN on subsets of PCA transformed
bands by means of the processing chain shown in Fig. 1 (here-
inafter, we will refer to the proposed method as PCA-Z-PNN).
The input low-resolution HS image is split first into two sets of
bands, one comprising those wavelengths that overlap with the
PAN bandwidth, the other gathering the remaining ones. To be
clear, we split the input bands according to their block-wise
autocorrelation matrix, allowing a differentiated (adaptive) set-
ting of the involved hyperparameters. Then, inspired by [31],
each set undergoes a decorrelating transform aimed to extract
four principal components (PCs) to be forwarded to the Z-PNN
pansharpening engine. Once the PCs are pansharpened, they
are concatenated with the other (lower energy) interpolated
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Fig. 1. Top-level flowchart of the proposed solution. The same scheme, with
a different hyperparameter setting, is applied to each of the two subsets of
HS bands. £, and Lg are the loss terms involved in (1)—(4).

components to be inversely transformed, coming back to the
original spectral domain.

It is worth to observe that, thanks to its unsupervised and
adaptive formulation, Z-PNN can work equally well in the
transformed domain. The PCA transform, in fact, operates
exclusively in the spectral dimension of the HS datacube,
leaving unaltered the spatial information and the PAN, which
is not involved. Hence, while the spatial consistency loss forces
the transfer of the spatial information from the PAN to the
HS bands through their compact PCs, the spectral loss term
ensures the consistency between high- and low-resolution PCA
bands and, indirectly, between high- and low-resolution HS
bands. On other hand, the Z-PNN model is run in target-
adaptive modality directly from scratch with random weights.
This allows to prevent possible biases due to pretraining
on nonPCA datasets or on PCA datasets built on different
statistics (hence, different decorrelation transforms). On the
downside, a computational overhead has to be counted at
inference time because of the tuning operations. The separate
processing of the two sets of bands allows us to find an optimal
balance between the spectral and the spatial loss terms, that
is, a different value for the hyperparameter, 8, within the loss
[see (1)] differing for bands that are more or less correlated
with the PAN image.

III. EXPERIMENTAL RESULTS

To assess the proposed approach, we used several PRISMA
datasets (see Table I), comprising both RR datasets with GT
and FR datasets without GT, released by the organizers of
the 2022 WHISPERS HS pansharpening challenge [7]. One
more FR image (Prato) is also enclosed just for validation
purposes. The RR Milan image is also reserved to validation
while the three remaining PRISMA images are used for test.
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TABLE I

DATASETS. THE RESOLUTION RATIO IS 6. THE LAST THREE DATASETS
ARE AVAILABLE AT RR, HENCE WITH GT

Zone Sensor GSD PANssize #bands Use GT (RR)
Prato PRISMA  5m  2400x2400 73 valid. no
Bologna PRISMA 5m  2400x2400 69 test no
Florence PRISMA 5m  2400x2400 63 test no
Milan PRISMA 30m  900x900 73 valid. yes
Barcelona PRISMA 30m  900x900 59 test yes
Pavia/Univ. ROSIS-3 1.3m 610x340 103 test yes

TABLE 1T

RESULTS ON THE RR TEST IMAGES (BARCELONA AND PAVIA)

Barcelona (PRISMA) Pavia/Univ. (ROSIS-3)
Q2™ SAM ERGAS (@Q2" SAM ERGAS
(D) (€3] (@3] D) (@3] (@3]

GS [9] 0.5080 14.104 7.9535 0.7727 6.6799 4.4807
GSA [10] 0.6912 3.3297 2.8750 0.8731 6.1354 3.0682
AWLP [11] 0.6166 4.8929 4.1890 0.8415 7.6729 3.6439
MTF-GLP [12] 0.6207 3.6398 3.9223 (.8820 6.5759 3.1684
MF [13] 0.6189 5.5063 7.2229 0.8558 6.5684 3.9074
PCA [32] 0.4908 17.452 9.1831 0.7977 6.9850 3.9900
HyperPNNT1 [20] 0.6491 5.2565 3.2416 0.7769 7.7578 4.2776
HSpeNetl1 [24] 0.6857 4.3354 2.8756 0.8032 7.6207 4.0907
Proposed w/out split 06888 3.8133 3.1428 0.7181 6.9523 5.3625
PCA-Z-PNN 0.6961 3.6991 2.8719 0.8862 6.1988 3.0578

Beyond PRISMA images, we also considered a ROSIS-3 HS
image (Pavia/University) test image for a more comprehensive
experimental analysis. However, differently from PRISMA,
ROSIS-3 does not provide a PAN image. Therefore, following
a common practice [20], [21], an RR HS-PAN set has been
synthesized by spatially downscaling the HS image, on one
side, reaching a spatial resolution of 7.8 m (R equal to 6,
again), and, on the other side, averaging bands sampled from
the visible spectrum to get a synthetic PAN. As benchmark,
in addition to the baseline methods given in [7], we also
consider two recently proposed CNN approaches [20], [24].
Moreover, to prove the effectiveness of the band split strategy,
we also consider the proposed method without band splitting.

Let us start with the discussion of the numerical assessment
for RR datasets summarized in Table II. Here, the availability
of the GT allows to quantify the synthesis error, which we
measure through the most popular indexes for pansharpening:
spectral angle mapper (SAM) [33], Erreur Relative Globale
Adimensionelle de Synthese (ERGAS) [34], and the general-
ized version [35] of the Universal Image Quality Index [36].
The proposed solution seems to work fairly (not extremely)
well, in line with the state-of-the-art, with top scores on
ERGAS and Q2". This should not surprise as our method
is designed to provide its best on real data. In fact, learning
exclusively on FR data, it can fit more or less well on synthetic
data depending on the resolution downgrade process. Among
the competitors, GSA seems to provide the best performance.

Besides, with the help of Fig. 2, we can have a look at
some (cropped) pansharpening results, for which we show an
RGB-like subset from the visible spectrum (top row) and a
false color subset from the near-infrared-short-wave infrared
(NIR-SWIR) range (bottom row).

The reading of these results is a bit controversial since most
of the methods, including the proposed, provide outputs that

Authorized licensed use limited to: Universita degli Studi di Napoli Federico Il. Downloaded on January 09,2025 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.



5511505

PCA-Z-PNN GSA

Fig. 2.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 20, 2023

AWLP  MTF-GLP HyperPNN1 HSpeNetl

Close-up on pansharpening results on the RR Barcelona image. (Top) Bands from the visible spectrum (wavelengths: 660.3, 587.8, 441.7 [nm)]).

(Bottom) Bands from the NIR-SWIR range (wavelengths: 2052.8, 1229, 770.5 [nm]).
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Fig. 3.
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Pansharpening results on the FR Bologna image. (Top) Bands from the visible spectrum (wavelengths: 660.3, 587.8, 441.7 [nm]). (Bottom) Bands

from the NIR-SWIR range (wavelengths: 1585.6, 1037.8, 760.1 [nm]). EXP (interpolated HS) replaces the missing GT to provide a visual “spectral” reference.

TABLE III
NUMERICAL RESULTS AT FR (BOLOGNA AND FLORENCE)

Bologna (PRISMA) Florence (PRISMA)
Dy ) D) QM Dy D) QF (M

GS [9] 0.2648 0.0113 0.7269 0.2073 0.0344 0.7654
GSA [10] 0.0512 0.0121 0.9373  0.0555 0.0033 0.9414
AWLP [11] 0.0274 0.0490 0.9249 0.0257 0.0367 0.9385
MTF-GLP [12] 0.0396 0.0341 0.9277 0.0331 0.0254 0.9423
MF [13] 0.0939 0.0663 0.8460 0.1044 0.0447 0.8556
PCA [32] 0.2949 0.0125 0.6963 0.1826 0.0094 0.8097
HyperPNNI1 [20] 0.1203 0.0117 0.8695 0.1198 0.0152 0.8668
HSpeNetl [24] 0.0748 0.0401 0.8881 0.0714 0.0149 0.9148
Proposed w/out split 0.0313 0.0637 0.9070 0.0502 0.0254 0.9256
PCA-Z-PNN 0.0264 0.0238 0.9504 0.0170 0.0096 0.9735

are sharper and more detailed than the GT. This is due to the
synthesized PAN, which seems to be much more detailed than
the GT. This also partially explains why the overall numerical
results are not satisfying in this case. However, the PCA-Z-
PNN solution seems to be closer to the GT than others.

Let us move to the experimental results for the FR datasets
summarized in Table III and Fig. 3. The quality is assessed
(refer to [7] for details) in terms of spectral (D;) and spatial
(D3) consistency or, synthetically, through their combination
0* = (1 — D1 — Dg). The proposed solution con-
sistently outperforms the competitors especially in terms of
spectral consistency. On the other hand, the achieved spatial
consistency, which is well known to be quite difficult to
quantify [8], [37], and here measured through DY, seems
to be aligned with that of the best competitors. Overall, the
proposal shows large gains over the best competitors in terms
of O*. Indeed, if we move to the visual inspection of some
sample results on Bologna with the help of Fig. 3, we can

notice that the top method according to D, that is, GSA
(neglecting methods whose spectral distortion is too high, e.g.,
above 0.1), provides too blurred results, at least compared
to PCA-Z-PNN. The proposed solution, instead, works pretty
well in both visible and NIR-SWIR ranges. Compared to the
others, there are negligible spectral aberrations and the spatial
details of the PAN are well transferred to the final fused
image, also in the challenging NIR-SWIR range (bottom row).
Among the competitors, HSpeNetl seems to work fine on the
spatial detail injection, although at a price of a larger spectral
distortion, particularly noticeable in the visible spectral range
and quantified through D, equal to 0.07, whereas PCA-Z-PNN
achieves about 0.02.

As a final remark, we notice that in all the cases the
band splitting strategy provides a remarkable performance
gain.

A. Implementation Details and Complexity

Compared to the original formulation of Z-PNN [18], which
runs about 100 tuning iterations starting from pretrained
parameters, here, for the reasons discussed above, we run a
much longer tuning (1000 iterations) but starting from random
initial weights. However, the computational burden remains
acceptable, thanks to a relatively light network architecture,
which comprises just three convolutional layers complemented
by a residual skip connection. In particular, we use the same
model proposed in [17] for the 4-band MS case (refer to [17]
for additional details). Under these conditions, for the given
HS test images, we registered execution times of about 26 and
4 min for the FR and RR PRISMA images, respectively, and
about 90 s for Pavia/Univ. ROSIS-3 image on an RTX 2080 Ti
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NVIDIA GPU with 12 GB memory, which can be acceptable
for many practical applications based on HS images.
Concerning the balance hyperparameter S, after several
experiments carried out on the validation datasets (see Table I),
we found that the optimal values for the two HS subsets

are

0.5 and 0.25 for the set “covered” by the PAN and

its complement, respectively, using the Adam optimizer with
default parameters and a learning rate of Se—35.

IV. CONCLUSION

In this work, we proposed a simple yet effective CNN-based
solution for HS pansharpening, which inherits the Z-PNN
framework, conceived for the 4-band MS case, leveraging on
the PCA decorrelation transform applied to subsets of HS
bands. By doing so, we ended up with a hybrid solution
having several properties: 1) it can be applied to any HS
dataset, no matter how many spectral bands are considered;
2) it does not require data for pretraining; 3) it is adaptive to
the target image with good generalization properties; and 4) it
exclusively learns from FR real data.
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