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Abstract 15 

Flood extent delineation techniques have benefited from the increasing availability of remote sensing 16 

imagery, classification techniques and the introduction of geomorphic descriptors derived from 17 

Digital Elevation Models (DEM). On the other hand, high-performing Machine Learning (ML) 18 

methods have allowed for the development of accurate flood maps by integrating several predictor 19 

variables into supervised or unsupervised algorithms. Among others, Random Forest (RF) is a 20 

powerful and widely applied ML classifier, providing accurate predictions also with complex datasets 21 

and for varying parameters set. In the present study, the effectiveness of this algorithm for mapping 22 

flooded areas was evaluated. Various geospatial data sources were integrated, including 23 

morphological indicators, such as the Geomorphic Flood Index (GFI), Sentinel-2 bands, multispectral 24 

indices, and Sentinel-1 polarizations. The reliability of the predictor variables under different training 25 

sample sizes was evaluated and the accuracy of the RF classifier was assessed. Moreover, by 26 

exploring the algorithm ability to identify the most important variables, the predictors contributing 27 

the most to the classification were identified and their stability for varying training parameters was 28 

investigated. To gauge the adaptability and consistency of these features, we applied our analyses to 29 

different study areas around the World. The results indicate that certain predictors displayed 30 

remarkable stability across different sample sizes and remained robust under various training 31 

parameters. However, some variability in the algorithm structure and the features related to the 32 

specific complexities of each considered study case was also observed. 33 

 34 

 35 

Keywords: flood mapping; satellite imagery; morphologic features; random forest (RF); predictors 36 

robustness; GFI; Sentinel-2; Sentinel-1 37 

 38 

1. Introduction 39 

Over the last few years, changing rainfall and runoff regimes, exacerbated by land use modifications 40 

and higher population density, have raised concerns about the increased frequency and magnitudes 41 

of flood events, also accelerated by the effects of climate change and global warming (Merz et al. 42 

2010, Alfieri et al. 2017, Blöschl et al. 2019, Blöschl 2022). According to the recent report by the 43 

Centre for Research on the Epidemiology of Disasters (CRED, Delforge et al. 2022), the recorded 44 
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number of flood occurrences in 2021 was above the 2001–2020 annual average (223 and 163, 45 

respectively). As flood hazard increases, there is a growing need for methodologies able to produce 46 

reliable estimates of the flood extent to support damage assessment and disaster responses and for 47 

planning risk reduction strategies. Hazard mapping represents, indeed, a measure that can address 48 

risk reduction under current and projected future climate scenarios and help with adaptation, 49 

stakeholders’ engagements and communities informing (Field et al. 2012, European Commission 50 

2021). 51 

In this context, Earth Observation (EO) data offers a unique opportunity to retrieve information and 52 

measurements regarding the flooding domain (i.e., extent, depth, volume) and water presence across 53 

large spatial scales and with various temporal resolutions (Schumann et al. 2018, 2022, Tsatsaris et 54 

al. 2021). Both microwave and multispectral satellite remote sensing techniques have been 55 

extensively used in surface water detection and flood mapping. Applications of Synthetic Aperture 56 

Radar (SAR) imagery for water detection from Sentinel-1, COSMO-SkyMed or TerraSAR-X, can be 57 

found in the field of irrigation events monitoring and surface soil moisture retrieval also linked to 58 

flood estimations (Kim et al. 2019, Balenzano et al. 2021, 2022), flooded area mapping (e.g., 59 

Oberstadler et al. 1997, Mason et al. 2009, Giustarini et al. 2012, Cao et al. 2019) and spatio-temporal 60 

inundation dynamics monitoring (e.g., Wang 2004a, Bates et al. 2006, Pulvirenti et al. 2011, Refice 61 

et al. 2018, 2020). Observations derived from SAR sensors are the most commonly adopted and 62 

preferred over optical imagery guaranteeing all-weather and illumination conditions (day and night) 63 

working capabilities (Volpi et al. 2013, Shen et al. 2019). Nevertheless, multispectral satellites offer 64 

a more straightforward interpretation of data through the visual inspection or simple processing of 65 

specific spectral bands or color composites (Albertini et al. 2022a). Several studies have been 66 

conducted to assess the ability of different multispectral sensors, including Landsat, Moderate 67 

Resolution Imaging Spectroradiometer (MODIS) and the most recent Sentinel-2 mission, for flood 68 

extent delineation and evolution monitoring or estimation of flood impacts (e.g., Wang 2004b, 69 

Chignell et al. 2015, Ireland et al. 2015, Memon et al. 2015, Nandi et al. 2017, Munasinghe et al. 70 

2018). A comprehensive review of applications and methods for the detection of surface water and 71 

floods using multispectral satellites has been recently provided by Albertini et al. (2022a). 72 

If satellite observations depict the flood situation at the event scale, geomorphic approaches based on 73 

descriptors derived from Digital Elevation Models (DEMs) provide a valuable characterization of the 74 

portion of a river basin frequently exposed to the flood hazard. Several studies have investigated the 75 

use of a variety of different morphologic features and composite indices, such as the contributing 76 

area, A, local slope, S, elevation difference to the nearest channel, H (or HAND) as first defined by 77 

Nobre et al. (2016), the modified topographic index, TIm, and Geomorphic Flood Index, GFI, 78 

(Manfreda et al. 2011, 2014, 2015, Degiorgis et al. 2012, Samela et al. 2016, 2017, Tavares da Costa 79 

et al. 2019, 2020, Albertini et al. 2022b, Magnini et al. 2022), highlighting the potential to derive 80 

over large-scales and ungauged basins the flood exposure of a territory by simply exploiting the 81 

information on its morphology. 82 

Developments of accurate flood models and inundation maps have also been possible thanks to 83 

advancements in high-performing processing algorithms, including Machine Learning (ML) 84 

methods, able to extrapolate better knowledge and new insights from existing data (Zagorecki et al. 85 

2013). The advent of ML has facilitated the management of large information volumes and multi-86 

sources data fusion, gaining great popularity among the hydrologists and emergency managers 87 

communities in the context of  Earth Observation (EO) data applications to monitor natural disasters 88 
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(Zagorecki et al. 2013, Mosavi et al. 2018, Wagenaar et al. 2020). A wide range of supervised and 89 

unsupervised ML algorithms in remote sensing and flood hazard assessment have been investigated 90 

and compared in order to identify the best available classifier in terms of predictive results and 91 

generalizations over different study areas. Maxwell et al. (2018) provided an overview of ML 92 

classifications of remote sensing imagery comparing six different algorithms, namely the Support 93 

Vector Machines (SVM), Random Forest (RF), single decision trees (DTs), Artificial Neural 94 

Networks (ANNs), boosted DTs, and k-nearest neighbour (k-NN), applied to hyperspectral and high 95 

spatial resolution urban land cover data. The authors showed the superiority of RF, SVM and boosted 96 

DTs, in classification accuracies and computational costs, and their robustness to the characteristics 97 

of the features space. Particularly, the RF classifier has been proven to be able to handle well 98 

multicollinearity, high-dimension and complex datasets and to display stable accuracy to varying 99 

training parameters (Belgiu and Drăguţ 2016, Maxwell et al. 2018, Billah et al. 2023). Applications 100 

of the RF algorithm have been carried out in the context of ecological predictions to map tree species 101 

distribution under future climate conditions (Prasad et al. 2006), land cover classification using 102 

hyperspectral data (Ham et al. 2005) and multispectral imagery and topographic features (Gislason 103 

et al. 2006), to map irrigated crops with Sentinel-2 derived vegetation indices (Radulović et al. 2023), 104 

as well as in flood hazard and risk assessment. For example, using several predictor variables, such 105 

as topographic data, soil properties, hydrological variables and the Normalized Difference Vegetation 106 

Index (NDVI, Rouse et al. 1974), Wang et al. (2015) analyzed the flood hazard distribution of the 107 

Dongjiang River Basin (China) by developing a flood risk map, while Billah et al. (2023) used the 108 

RF classifier to assess flood damages to different land cover classes combining Sentinel-1 and 109 

Sentinel-2 data. 110 

Furthermore, compared to other ML algorithms, the RF classifier can assess the contribution of each 111 

selected predictor variable in the classification. This is possible thanks to embedded functions or ad-112 

hoc algorithms that automatically evaluate whether one of the features is essential for the 113 

classification, rank them by order of importance and eventually eliminate the less relevant from the 114 

feature space. Such an asset allows for further reducing the data dimensionality and computational 115 

cost (Lawrence et al. 2006, Wang et al. 2015, Belgiu and Drăguţ 2016) and, if considering several 116 

study areas, investigating the stability of the predictors, which may help in making generalizations. 117 

In the literature, several studies have examined the sensitivity of the classification accuracies to the 118 

RF parameterization and training samples (e.g., Breiman 2001, Gislason et al. 2006, Guan et al. 2013, 119 

Belgiu and Drăguţ 2016), though few focused on the robustness of predictor variables to varying 120 

algorithm parameters and size of training classes. Some further investigations, for example regarding 121 

the stability of features selection under different algorithm structure, are needed as highlighted in the 122 

review on RF applications in remote sensing introduced by Belgiu and Drăguţ (2016). In this context, 123 

the present study aims to further explore the potentials of RF for flooded areas classification. 124 

In order to assess the capabilities of the RF algorithm and a series of predictor variables in flood 125 

mapping, we carried out an in-depth investigation using a multi-source dataset that includes satellite-126 

based data and DEM-derived features. In particular, we considered: (i) Sentinel-2 spectral bands at 127 

20 m of spatial resolution and six derived multispectral indices, i.e., the Normalized Difference 128 

Moisture Index (NDMI, Gao, 1996), the Normalized Difference Water Index (NDWI, McFeeters, 129 

1996), the Red and Short-Wave Infra-Red (RSWIR, Memon et al., 2015; Rogers and Kearney, 2004) 130 

index, the Modified Normalized Difference Water Index (MNDWI, Xu, 2006), the NDVI and the 131 

Normalized Difference Turbidity Index (NDTI, Lacaux et al. 2007); (ii) Sentinel-1 VV and VH 132 

Jo
urn

al 
Pre-

pro
of



4 

 

polarizations; and (iii) some features derived from DEMs, namely the local slope, S, flow distance to 133 

the nearest stream, D, elevation difference to the nearest channel, H, and the GFI. Through a series 134 

of sensitivity analyses, the aim was to evaluate the robustness of the algorithm itself and the selected 135 

variables for flood extent mapping, to ultimately evaluate the synergy of including both satellite 136 

observations and DEM-based features. 137 

Firstly, the present study seeks to assess the stability of features selection (and resulting RF 138 

performances) for varying training samples size required in performing the classification. Second, it 139 

aims to investigate the contribution of each predictor variable to the classification and quantify the 140 

robustness of the most important for varying training parameters. Finally, it delves into the 141 

exploration of the accuracy of the RF classification and the stability of the selected features in 142 

different study areas. To this end, a first case study was considered to address the first objective, while 143 

three additional research areas were introduced to implement the subsequent analyses and carry out 144 

an intercomparison between research areas. Using a backward features selection method, only the 145 

most relevant predictors showing the greatest contribution to the classification and, hence, the highest 146 

discriminating capabilities, were used and assessed in this case. 147 

2. Study cases and datasets 148 

2.1 Criteria for case studies selection and validation data 149 

To carry out the proposed investigations, various case studies were selected from the list of floods 150 

documented by the Copernicus Emergency Management Service Rapid (EMSR) that occurred 151 

between 2020 and 2023. For each event, mapping products obtained from satellite imagery through 152 

photointerpretation, automatic methods, or with a mixed procedure involving automatic and manual 153 

classification were delivered. The use of satellite images ensures a large spatial coverage and allows 154 

overcoming some issues encountered, for example, with hydrodynamic simulations carried out to 155 

derive reference flood hazard maps, including computational costs. Although these maps are 156 

produced to provide a relatively immediate (hours to days) response to the emergency activation, they 157 

can be considered a reliable source for the retrieval of flooded areas. Therefore, for the scope of this 158 

work, Copernicus EMSR maps represent a valuable validation reference and a homogenous source 159 

among the considered case studies, thus herein chosen for validation purposes. 160 

For the case studies selection, additional priority was given to flood events meeting the following 161 

criteria: (i) availability of satellite images of the same scene from SAR and optical sensors; (ii) 162 

shortest time lag between the satellite acquisitions and respect to the Copernicus delineations; (iii) 163 

cloud-free images for the applicability of the multispectral data; (iv) if possible, heterogeneity of the 164 

landscape complexity, particularly looking at the landform types and land cover. To this end, the 165 

Global Shuttle Radar Topographic Mission (SRTM) Landforms (Theobald et al. 2015) and the 166 

European Space Agency (ESA) WorldCover 10 m 2020 (Zanaga et al. 2021) were employed. 167 

A total of four case studies (hereinafter referred to as CS1 to 4) were thus identified regarding floods 168 

that occurred in Italy, Australia and Malawi. 169 

For all study areas the dataset includes Sentinel-1 Interferometric Wide (IW) Level-1 Ground Range 170 

Detected (GRD) High Resolution (HR) products, Sentinel-2 Level-2A (bottom of atmosphere 171 

reflectance) imagery and the NASA's SRTM DEM (Farr et al. 2007). Figure 1 depicts the locations 172 

of the four selected case studies and the false color composites of the flood events from Sentinel-2 173 

observations. The Copernicus EMSR maps for validation are depicted in Figure 2, while in Table 1 174 

flood events and details about the dataset used for the analyses, as well as main characteristics of the 175 
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research areas are reported. In the following subsections a brief overview of each case study is 176 

provided. 177 

 178 

 179 

 180 

 181 

 
Figure 1. Location of the selected study cases and false color composites of the flood events from Sentinel-2 

observations. Case Study 1 (CS1): Sesia River flood in the Piedmont region, northern Italy, 2-3 October 2020; Case 

Study 2 (CS2): Namoi River flood at the town of Wee Waa, New South Wales, Australia, 22 November - 4 December 

2021; Case Study 3 (CS3): Shire River flood between the towns of Bangula and Nsanje in southern Malawi, 20-26 

January 2022; and Case Study 4 (CS4): flood in the Emilia Romagna region, northern Italy, at multiple locations, 16-

18 May 2023. (map source: Open Street Map). Jo
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Figure 2. Validation maps as derived from the Copernicus Emergency Management Service (EMS). Rapid Mapping products 

EMSR468, EMSR554, EMSR561, and EMSR664 for each case study are reported: flood delineations in red and the areas of interest 

(AOI) in light blue (map source: Google Satellite Hybrid). 

 182 

2.2 CS1: Sesia River case study (Italy) 183 

The first case study is located in northern Italy at the border between the Piedmont and Lombardy 184 

regions. Here a flood event occurred along the Sesia River between 2 and 3 October 2020 extending 185 

for about 131 km2. Heavy precipitations in those days reached 325 mm in the Sesia River basin, 186 

leading to exceptional flooding with pick discharge values above 3000 m3/s and 5000 m3/s at the 187 

“Borgosesia” and “Palestro” stations (Agenzia Regionale per la Prevenzione e la Protezione 188 

dell’Ambiente Piemonte 2020). Being located in the Padana plain, the territory is mainly flat and the 189 

predominant land cover is crops, particularly rice fields. 190 

For the flood event, Sentinel-1 and Sentinel-2 scenes captured on 3 October are available and the 191 

delineation carried out by the Copernicus EMS (Figure 2) on the same day through visual 192 

interpretation of the Sentinel-2 image was selected for the validation process (Table 1). 193 

 194 
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2.3 CS2: Wee Waa case study (New South Wales, Australia) 195 

At the end of November 2021, a La Niña event brought a prolonged rainfall event in southern 196 

Queensland and northeastern New South Wales (NSW), Australia, causing the flooding of multiple 197 

rivers. Different rapid mapping activations from the Copernicus EMS were issued, including the 198 

monitoring of the town of Wee Waa (NSW) where the Namoi River remained under major flooding 199 

conditions for around two weeks (22 November-4 December). The delineation was carried out 200 

through visual interpretation of a post-event Sentinel-2 image acquired on 3 December, depicting a 201 

flood extent of about 154 km2 in the area of Wee Waa (Figure 2). In addition, the Sentinel-1 satellite 202 

captured the flood situation on 4 December. The study region is flat with cropland and grassland as 203 

the main cover types (Table 1). 204 

 205 

2.4 CS3: Southern Malawi case study 206 

On 25 January 2022, a tropical storm named Ana passed over southern Malawi, bringing heavy rain 207 

and widespread flooding in many districts. The monitoring of the flood situation by the Copernicus 208 

EMS was activated on 27 January, particularly in the hardest-hit districts of Chikwawa, Bangula and 209 

Nsanje where the Shire River overflowing was observed. 210 

In the present investigations, the latter two were considered as the areas of interest (AOI) for which 211 

Copernicus flood extent maps to be used in the validation process were obtained through visual 212 

interpretation of a post-event Sentinel-2 acquired on 30 January. For the analyses, we considered 213 

Sentinel-1 and Sentinel-2 images respectively acquired on 2 and 4 February. Flooding in the study 214 

area extended for approximately 90 km2 and affected a flat territory mainly covered by shrubs and 215 

grass (Table 1). 216 

 217 

2.5 CS4: Emilia-Romagna case study (Italy) 218 

In May 2023 the south-east territory of the Emilia-Romagna region (northern Italy) was affected by 219 

severe weather conditions that triggered intense rainfall, generating rivers overflowing and 220 

considerable floods on 2 May in the Bologna, Ravenna and Forlì-Cesena provinces. A subsequent 221 

perturbation between 16 and 18 May exacerbated the dramatic condition of these territories, where 222 

the breaking of several river embankments caused the inundation of different towns, roads and people 223 

displacement. The Copernicus EMS activated the monitoring of the emergency and produced a 224 

detailed delineation of the flood extent. 225 

The present analyses were carried out considering the Forlì, Lugo and Ravenna territories as areas of 226 

interest, in which the flooding covered a total area of about 160 km2. Copernicus maps depicting the 227 

flood situation as of 21 May are available, while Sentinel-1 and Sentinel-2 images were acquired on 228 

22 and 23 May, respectively. The study region is flat and mainly characterized by cropland and 229 

grassland (Table 1). 230 

  231 
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Table 1. Selected case studies (CS) with information about flood occurrence locations and dates, data used for the validation and 232 
analyses with details on production/acquisition dates, original spatial resolutions and data portals for download, and main characteristics 233 
of the study areas. 234 

   Case Study 

   CS1 CS2 CS3 CS4 

 

  
Sesia River 

(Northern Italy) 

Wee Waa 

(New South Wales, 

Australia) 

Southern 

Malawi 

Emilia-

Romagna 

Region 

(Northern Italy) 

Flood event 

date 

2-3 October 

2020 

22 November – 4 

December 

2021 

20-26 January 

2022 

16-18 May 

2023 

D
a

ta
se

t 

Copernicus 

flood map 

Date 
3 October 

2020 

3 December 

2021 

30 January 

2022 

21 May 

2023 

Activation 

Number 
EMSR468 EMSR554 EMSR561 EMSR664 

Sentinel-2 

acquisition 

(Level-2A 

product) 

Date 
3 October 

2020 

3 December 

2021 

4 February 

2022 

23 May 

2023 

Data download 

Sentinel Scientific Data Hub 

https://scihub.copernicus.eu/  

(last accessed on 22 June 2023) 

Spatial 

resolution 
20 m 

Sentinel-1 

acquisition 

Date 
3 October 

2020 

4 December 

2021 

2 February 

2022 

22 May 

2023 

Data download 

Sentinel Scientific Data Hub 

https://scihub.copernicus.eu/  

(last accessed on 22 June 2023)  

Spatial 

resolution 
10 m 

SRTM 

DEM 

Spatial 

resolution 

1 arc-second 

(~ 30 m) 

Data download 

NASA Earthdata Search 

https://search.earthdata.nasa.gov/search  

(last accessed on 22 June 2023) 

M
a

in
 

ch
a
ra

ct
er

is
ti

cs
 

Global SRTM Landforms 
Lower slope 

(flat) 
Lower slope (flat) 

Lower slope 

(flat) 

Lower slope 

(flat) 

ESA WorldCover Cropland 
Cropland 

Grassland 

Shrubland 

Grassland 

Cropland 

Grassland 

 235 

 236 

3. Methodology 237 

The RF classifier is a supervised ML algorithm for prediction problems proposed by Breiman (2001). 238 

It consists of a collection of trees built through a random selection of both predictor variables, p, and 239 

subsets of the training dataset. Each tree provides a prediction on the class membership and the final 240 

choice is made based on the most popular vote among all the trees. The algorithm requires the user 241 
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to specify some parameters that ensure the best classification accuracies, in particular the number of 242 

trees to be grown, Ntree, and the number of variables randomly selected to split each node of the tree, 243 

mtry. These can be fine-tuned through optimization procedures, such as k-fold cross-validation 244 

(Hastie et al. 2009), or set to default values since RF performances have been shown to be quite robust 245 

with varying parameters set. In the literature, several authors recommended 500 to be a reasonable 246 

value for Ntree (Gislason et al. 2006, Belgiu and Drăguţ 2016) and the square root of the number of 247 

predictor variables for mtry (Gislason et al. 2006). 248 

As with all supervised ML algorithms, the RF classifier needs labelled data in order to be trained and 249 

build the final prediction model. Regions of Interest (ROIs) are groups of labelled training samples, 250 

i.e., training pixels, collected through field observations or photointerpretation, and must be 251 

representative of the classes to be predicted. In this work, ROIs were selected based on visual 252 

interpretation of Sentinel-2 RGB band combinations. In particular, true (B4, B3, B2), false (B8a, B4, 253 

B3) and SWIR (B12, B8a, B4) color composites were considered and visually evaluated to derive 254 

flooded and not flooded classes by manually digitizing sample polygons which gather some pixels 255 

together. Regarding the number of samples necessary for training the algorithm, a minimum of 10-256 

30p training pixels per class is suggested in the remote sensing literature (Piper 1992, Van Niel et al. 257 

2005, Mather and Koch 2011, Petropoulos et al. 2011). 258 

While the stability of the RF classification accuracies using different parameterization schema and its 259 

sensitivity to the size of the training samples have long been assessed (e.g., Gislason et al. 2006, 260 

Colditz 2015, Millard and Richardson 2015, Ramezan et al. 2021), specific investigations concerning 261 

the robustness of features selection to varying training samples sizes and the sensitivity of the Ntree 262 

parameter to the number of variables are required (Belgiu and Drăguţ 2016). To this end, a series of 263 

sensitivity analyses was carried out herein either to one or all study cases using satellite-based and 264 

geomorphic features as predictors for flood extent delineation. In particular, it was investigated the 265 

stability of predictors to varying sample sizes (subsection 3.3), their robustness for varying Ntree 266 

(subsection 3.4) and the stability of both predictors and RF accuracies in different study areas 267 

(subsection 3.5). A complete overview of the methodological workflow is presented in Figure 3, while 268 

in the following subsections, pre-processing of input data is illustrated, and a detailed description of 269 

each analysis is provided. 270 Jo
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Figure 3. Methodological workflow adopted for the implementation of the Random Forest classification to delineate flooded 

areas and assess the stability and robustness of predictor variables. 

 271 

 272 

3.1 Pre-processing 273 

A total of p=21 morphologic and satellite-based features were selected as predictors in the RF 274 

classification of flooded areas in the four study cases, as listed in Table 2. A series of pre-processing 275 

steps, the same for all the investigated areas, were applied to both satellite imagery and DEM-based 276 

data before the implementation of the predictors into the RF model. 277 

Regarding Sentinel-2 imagery, nine bands at 20 m spatial resolution ranging from the visible (i.e., 278 

blue, green, red) and near-infrared spectral domain (i.e., Red Edge 1, Red Edge 2, Red Edge 3 and 279 

NIR) to the short-wave infrared (i.e., SWIR 1 and SWIR 2) were considered and pre-processed to 280 

mask clouds and their shadows (if present in the AOI). To this end, the cloud mask layer and the 281 

Scene Classification Layer map at 20 m spatial resolution contained in the distributed Sentinel-2 282 

Level-2A product were employed. It is worth mentioning that in the selected case studies if clouds 283 

were present, they only partially covered the scene and did not affect the flood extent. Once the nine 284 
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bands were pre-processed, six multispectral indices were computed, namely the NDMI, NDWI, 285 

RSWIR, MNDWI, NDVI and NDTI (see Table 2 for the complete formulas). 286 

Sentinel-1 data, in particular the VV and VH bands, were pre-processed in the Sentinel Application 287 

Platform (SNAP, version 9.0.0) according to the standard generic workflow suggested for GRD 288 

products (Filipponi 2019). The implemented processing steps include the application of the orbit file 289 

to update the orbit state vectors and correct the satellite position and velocity; radiometric calibration 290 

to convert digital pixel intensity into backscatter values (sigma noughts values, σ0 [-]); speckle 291 

filtering to remove the scattering noise and improve the image quality; Range Doppler terrain 292 

correction to correct image distortions related to the side looking geometry of the satellite; and the 293 

conversion of σ0 values to decibels (dB) using a logarithmic function (Filipponi 2019, Gašparović 294 

and Klobučar 2021). A Lee filter with a 3x3 window size was used in the speckle filtering step (Lee 295 

et al. 1994, Dutsenwai et al. 2016, Cenci et al. 2017, Ezzine et al. 2018), while the SRTM DEM and 296 

the bilinear resampling method were applied for terrain correction. 297 

Four morphologic features were derived from the SRTM DEM at 30 m spatial resolution, namely the 298 

local slope, S (-), expressed as the tangent of the gradient, that is to say, the maximum slope among 299 

the eight possible directions connecting the pixel under exam to the neighbouring cells; the flow 300 

distance, D (m), and elevation difference, H (m), to the nearest stream, respectively defined as the 301 

length of the path hydraulically connecting the location under exam and the nearest pixel of the river 302 

network and the difference in elevation between these two cells; and the GFI, which is a composite 303 

index expressed as the natural logarithm of the ratio between the water level in the nearest element 304 

of the river network and H. It is computed at the river basin scale once the flow direction and flow 305 

accumulation rasters are derived from a depressionless DEM. For a complete description of this index 306 

and the processing step necessary to compute it, please refer to Samela et al., (2017). 307 

Since input data have different spatial resolutions, Sentinel-1 bands and DEM-derived features were 308 

resampled through bilinear interpolation to 20 m after pre-processing, assuming the resolution of the 309 

Sentinel-2 bands as reference. This choice lies in the fact that ROIs collection for the subsequent 310 

algorithm training was based on the visual interpretation of Sentinel-2 scenes. 311 

Regarding the validation products, vector data produced for the selected flood events by the 312 

Copernicus EMS were rasterized and resampled to match the 20 m resolution of the input data. Since 313 

Copernicus maps could include both flooded areas and flood traces in the delineation, depending on 314 

the selected product, the latter were excluded from the final validation map, especially if the 315 

considered data were days apart from the EMSR delineation and flood event occurrence, as in the 316 

CS3 and 4 (Malawi and Emilia-Romagna case studies). The reason for this lies in the fact that a fair 317 

domain for the comparison between maps was desirable. In fact, it should be considered that the 318 

detection of flooded areas encounters some limitations with post-flood data and, in general, the 319 

quality of the delineation decreases with the time after the flood peak (Notti et al. 2018). 320 

Finally, all data were clipped to the AOI as identified in the map extent layer of each case study 321 

provided in the corresponding Copernicus vector data package (Figure 2).  322 
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Table 2. Satellite-based and morphologic features selected as predictors in the Random Forest classification of flooded areas in the 324 
four case studies. 325 
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Band name Band number 

Blue B2 

Green B3 

Red B4 

Red-Edge 1 B5 

Red-Edge 2 B6 

Red-Edge 3 B7 

Nir B8a 

SWIR 1 B11 

SWIR 2 B12 
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Index name Index formula 

NDVI 
𝑁𝑖𝑟 − 𝑅𝑒𝑑

𝑁𝑖𝑟 + 𝑅𝑒𝑑
 

NDWI 
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝑖𝑟

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝑖𝑟
 

NDMI 
𝑁𝑖𝑟 − 𝑆𝑊𝐼𝑅 1

𝑁𝑖𝑟 + 𝑆𝑊𝐼𝑅 2
 

MNDWI 
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅 1

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅 1
 

NDTI 
𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛
 

RSWIR 
𝑅𝑒𝑑 − 𝑆𝑊𝐼𝑅 1

𝑅𝑒𝑑 + 𝑆𝑊𝐼𝑅 1
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 Feature/index name Feature/index formula 

H / 

D / 

S / 

GFI ln (
ℎ𝑟

𝐻
) 

 326 

 327 

3.2 Stability of predictors to varying sample size 328 

Considering different sizes of training samples, the sensitivity of feature selection (and consequently 329 

the RF prediction accuracy) was assessed on the CS1. 330 

In the literature, different recommendations are given regarding the number of training samples. In 331 

general, a minimum of 10-30p training pixels per class, where p is the number of predictors, is 332 

suggested to be used to train the classifier (Piper 1992, Van Niel et al. 2005, Mather and Koch 2011, 333 

Petropoulos et al. 2011). Therefore, in the current investigation involving the two classes of flooded 334 

and not flooded pixels, a number of pixels per class, n, equal to 210 (10p), 420 (20p) and 630 (30p) 335 

were considered, where p=21 is the number of selected predictors (see subsection 3.1). In addition, 336 

sample sizes outside the suggested range, i.e., a minimum of 50 samples per class (Colditz 2015) and 337 

945 (45p) training pixels were also explored. Such samples were collected through the 338 

aforementioned manual digitization of training polygons and by means of photointerpretation of the 339 
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Sentinel-2 scene. Figure S.1 illustrates some examples of polygons digitized based on the 340 

interpretation of the true color composite to collect the ROIs in the case n=210 and n=945 pixels per 341 

class. In particular, panel S.1(a) describes the agreement/disagreement between the Copernicus 342 

EMSR map and the ROIs pixels labelled as “flooded” and “not flooded”. The size of the training 343 

samples was increased by either digitizing new polygons (ROIs b.1-2 in panel S.1(b)) or enlarging 344 

the existing ones (ROIs a.1-3, b.3-4 in panels S.1(a,b)). 345 

The commonly adopted Jeffries-Matusita (JM) distance was computed to assess the quality of the 346 

collected samples, that is to say, the ability of each individual wavelength in the selected ROIs to 347 

discriminate between flooded and not flooded classes. In Table S.1 JM values for each set of ROIs 348 

are reported. 349 

The analyses were implemented in the R package “caret” (Kuhn et al. 2020) to build the RF models 350 

for the Sesia River flood. In this case, training parameters were set to default values, i.e., Ntree=500 351 

and mtry=√𝑝, and no fine-tuning was carried out. Each training sample was split into 75% for training 352 

and 25% for testing and prediction accuracies were registered. Finally, for each sample size, the 353 

stability of predictors was assessed by considering the Mean Decrease in Accuracy measure (MDA, 354 

Breiman, 2001) to rank them in order of importance. The MDA is an RF internal estimate of the 355 

contribution of each feature to the final classification and quantifies the reduction in accuracy 356 

occurring when one of the predictors is excluded from the model. Hence, higher MDA scores 357 

correspond to very important features. MDA values were scaled between 0% and 100% to provide a 358 

measure of the mean relative importance.  359 

 360 

3.3 Robustness of predictors for varying Ntree 361 

The robustness of feature selection for varying Ntree was assessed to provide an overview of the 362 

sensitivity of predictors to different RF classification schemas. This analysis was conducted in each 363 

case study to also evaluate the stability and potential transferability of predictor variables in different 364 

study areas (see subsection 3.5). 365 

A feature selection technique was used to implement the RF classification exploiting only the most 366 

significant variables. Besides variable importance ranking methods embedded in the RF model, i.e., 367 

the MDA and the Gini Impurity metrics (Breiman 2001), wrapper approaches can be used that 368 

identify and select the most useful variables to train the classification model. Through a specified 369 

search strategy, such methods consist of evaluating different combinations of feature subsets with 370 

which the algorithm is trained (on a training dataset) and tested (on a test set or via cross-validation). 371 

For each subset, classification performances are derived and only the subset yielding the best accuracy 372 

is selected (Kohavi and John 1997, Guyon and Elisseeff 2003). 373 

The RF classifier was applied with the recursive feature elimination (RFE) method, also known as 374 

backward feature selection, for different Ntree parameter values. This analysis allowed the selection 375 

of an optimum number of predictors, p*, among all the input features for testing their robustness in 376 

different parameter sets. The RFE trains the classifier with a recursive backward strategy that fits the 377 

model using a decreasing size of predictor subsets. The model is first trained on a training dataset 378 

using all p predictors, then model performance and variable importance are computed and only the 379 

most relevant are kept. The new subset of predictors is used to train the model once again, predictors 380 

are reranked and the least important are removed. The model with the best performance is identified 381 

and used to fit the final classifier using the corresponding optimal subset p*. 382 
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The RF-RFE was implemented using the “rfe” function in the R “caret” package. The algorithm was 383 

built using in each case study a number of ROIs n at least equal to 10p per class (collected following 384 

the same procedure as for the analysis of the stability of predictors to varying sample sizes), which 385 

were split into 75% for training and 25% for the final testing. JM distance was computed to evaluate 386 

the spectral separability of the selected wavelength (Table S.2). A 5-fold cross-validation was applied 387 

for model evaluation in the RFE and the Overall Accuracy (OA) metric was selected to identify the 388 

optimal model. Different values of Ntree were tested, ranging from 10 to 50 and 100 to 1000, while 389 

the mtry parameter is automatically set by the algorithm to the default value, i.e., to the square root 390 

of the number of optimum predictors p* identified by the “rfe” function. 391 

 392 

3.4 Stability of RF classifier and predictors to varying study area 393 

The accuracy of the RF classifier and the robustness of the optimal feature subsets in the four study 394 

areas were assessed to identify the most stable predictors and their transferability in different contexts. 395 

To carry out this analysis, after testing the robustness of predictor variables for varying numbers of 396 

trees, the model showing the best performances was identified. To this end, for each value of Ntree 397 

an objective function, obj, defined as the sum between the false positive rate, 𝑅𝑓𝑝, and the false 398 

negative rate, 𝑅𝑓𝑛, was considered (Equations 1-3) that assigns equal weights to the two error rates. 399 

The model with the lowest obj value was chosen as the final one. The Copernicus flood maps were 400 

used as validation products in a pixel-per-pixel comparison with the RF classification maps obtained 401 

from the final selected model, and from the confusion matrices true positive (TP), true negative (TN), 402 

false negative (FN), and false positive (FP) pixels were identified. 403 

𝑜𝑏𝑗 =  𝑅𝑓𝑝 + 𝑅𝑓𝑛 (1) 

𝑅𝑓𝑝 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (2) 

𝑅𝑓𝑛 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (3) 

Additional error and accuracy metrics (Equations 4 to 8) were computed, including the True Positive 404 

Rate, 𝑅𝑡𝑝, True Negative Rate, 𝑅𝑡𝑛, OA, Precision and the F-score: 405 

𝑅𝑡𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4) 

𝑅𝑡𝑛 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(5) 

𝑂𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇
 

(6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(7) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑡𝑝

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑡𝑝
 

(8) 

where T is the total number of pixels in the image. 406 

 407 
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4. Results 408 

4.1 Stability of predictors to varying samples size 409 

The sensitivity of the predictors to varying samples size was assessed in the Sesia River flood case 410 

study (CS1). For each configuration, high training and testing accuracies were achieved (Table 3) 411 

through the RF classification model implemented with the default parameters values, as described in 412 

Section 3.2. In particular, training accuracy values above 99% were obtained starting from n = 210 413 

samples per class. Testing accuracies of 100% were registered in each case, mainly because in a two-414 

class classification problem the chance of producing good results is very high (i.e., the probability of 415 

mistake is minimal) since categorizing a pixel in one of the two classes has the same probability. 416 

 417 

Table 3. Accuracy values obtained with the training and testing datasets for varying sample sizes computed as multiples of the number 418 
of predictors p: n = 50, 210 (10p), 420 (20p), 630 (30p) and 945 (45p) number of pixels per class. 419 

 Model Accuracy (%) 

n Training set Test set 

50 98.69 100 

210 (10p) 99.43 100 

420 (20p) 99.98 100 

630 (30p) 99.85 100 

945 (45p) 99.86 100 

 420 

 421 

Figure 4 shows the mean relative importance (top panel) and rankings (bottom panel) of the variables 422 

used to detect flooded and not flooded classes for the five considered sample sizes. In the figure, 423 

different colors refer to the number of training pixels per class, n, that is 50 (green), 210 (orange), 424 

420 (red), 630 (light blue) and 945 (pink). 425 

Based on the RF model, three multispectral indices, namely the NDMI, RSWIR and MNDWI, and 426 

the Sentinel-2 bands SWIR 1 and SWIR 2 (except in one case) were the most important variables 427 

with a relative importance of over 20% in each sample size configuration (Figure 4, top panel). The 428 

NDMI was the predictor with the highest importance, having a stable mean relative value of around 429 

or over 90%. In addition, these were always among the five most ranked variables (Figure 4, bottom 430 

panel) and, between them, the MNDWI showed very strong stability being classified as the third most 431 

contributing predictor for every sample size. The other four variables were also characterized by a 432 

certain stability being in the same rank except in one size out of five. 433 

In addition to those, the NDWI, NDVI and NDTI mean relative importance was between 5% and 434 

10% in each sample size configuration, being always within the first 12 important variables. The 435 

Green band was also ranked among the first 12 predictors in each configuration, but the mean relative 436 

importance was more unstable. All the other predictors showed a relative importance of less than 5%, 437 

or if above, they were characterized by a higher variability in the relative importance value. It is 438 

interesting to note that the VH and VV Sentinel-1 bands and the S morphologic features had the 439 

highest relative importance when the sample size was small, i.e., for n=50 pixels. Finally, the NDTI 440 

and Red Edge 1 predictors showed an opposite behavior: while the contribution of the former almost 441 

linearly decreased for increasing sample size, it increased for the latter (Figure 4, bottom panel). 442 

 443 

 444 
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Figure 4. Stability of predictor variables used to classify flooded and not flooded areas through the Random Forest model trained 

with varying samples size: 50 (green), 210 (orange), 420 (red), 630 (light blue) and 945 (pink) pixels per class. In the top panel 

mean relative importance values (%) are reported, while the ranking of predictors according to the mean decrease accuracy metrics 

is shown in the bottom panel. 

 445 

 446 
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4.2 Robustness of predictors for varying Ntree 447 

Applying the RF classifier with the RFE method the robustness of feature selection for varying Ntree 448 

was assessed in the four case studies. Figure 5 shows the number of optimum predictors (p*, top 449 

panel) for each value of the parameter, together with the model accuracies (bottom panel). Different 450 

colors refer to the Sesia River (CS1, orange), Wee Waa (CS2, green), Southern Malawi (CS3, blue) 451 

and Emilia-Romagna (CS4, purple) study areas. 452 

Overall, good performances were achieved with the optimum subsets size and a certain stability of 453 

the RF accuracies for varying Ntree in the different case studies can be observed. Regarding the 454 

subsets of predictors, in general, for CS3, a decreasing number of variables were identified as 455 

necessary for increasing number of trees, while p* was more stable for CS2. In fact, a lower variability 456 

with Ntree was observed and no less than five and more than 16 variables were selected. Regarding 457 

CS1 and CS4, on average a higher number of predictors were identified as necessary to the 458 

classification and in some cases all the 21 input features were selected. 459 
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Figure 5. Optimum number of predictors, p*, selected through the Recursive Feature Elimination Method (RFE) in the Random 

Forest algorithm (top panel) and accuracy values (bottom panel) for different numbers of trees, Ntree. Colors refer to the four case 

studies, which are the Sesia River (CS1, orange), Wee Waa (CS2, green), Southern Malawi (CS3, blue) and Emilia-Romagna (CS4, 

purple) flood events. 

 460 

CS1: Sesia River case study 461 

Analysing the selected predictors in every Ntree parameter configuration it is possible to assess the 462 

sensitivity of each variable and identify the most stable. The heatmap shown in Figure 6 depicts such 463 

variability for the Sesia River study area. Boxes are marked with colors if variables were selected in 464 

a specific Ntree model configuration. In addition, colors are graded from blue to yellow, respectively 465 

indicating a highest or lower contribution to the flooded areas classification (ranked as first to 21st 466 

most important variables), while grey color is shown if a predictor was not selected. 467 
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Regarding the Sentinel-2 related variables, the NDMI and RSWIR index were the strongest features, 468 

being selected for each Ntree and ranked among the first three most contributing predictors (dark 469 

blue). Together with the first two indices, the MNDWI, NDTI, NDVI and NDWI and the SWIR 2, 470 

SWIR 1 and Red bands were among the first ten important variables (blue to aqua green colors), even 471 

if not present for each Ntree model. Regarding the Sentinel-1 bands, VH showed a lower sensitivity 472 

to changing Ntree compared to VV and higher importance, especially for lower values of Ntree. The 473 

weakest predictors were the morphologic features S, D and H, being selected only for four or five 474 

Ntree values and always among the last three most important variables (green to yellow shades). 475 

 
Figure 6. Heatmap for Case Study 1 (CS1) depicting the robustness of predictors for varying Ntree and their importance (blue to 

green colors). 

 476 

CS2: Wee Waa case study 477 

As reported in Figure 5, a maximum of 16 variables out of the initial 21 were selected for the Wee 478 

Waa case study. The heatmap in Figure 7 shows the robustness of the predictors to varying Ntree and 479 

the importance of each, which in this case goes from 1 to 16 (blue to yellow color shades). 480 

The NDWI, RSWIR, MNDWI, and NDVI variables were the most stable and also ranked as the most 481 

important for each Ntree value (blue shades). Some predictors were selected only starting from certain 482 

values of the parameter, while others only for a low number of trees. For example, the SWIR 1 band 483 

was chosen from Ntree = 20, while the NDMI and NDTI for Ntree values not above 40 and 100, 484 

respectively. In addition, the NDMI was the most contributing to the classification for very low 485 

number of trees, i.e., Ntree = 10. The morphologic features D and H were never selected among the 486 

optimum predictors, while the GFI only once (Ntree = 40). The same occurred with the Sentinel-1 487 

polarization VV (never chosen) and VH (chosen only for Ntree = 40). 488 
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Figure 7. Heatmap for Case Study 2 (CS2) depicting the robustness of predictors for varying Ntree and their importance (blue to 

green colors). 

 489 

CS3: Southern Malawi case study 490 

Five predictors were the most stable being selected almost in each Ntree configuration, thus showing 491 

a high stability to varying numbers of trees (Figure 8). These are the NDWI, Red Edge 2, Red Edge 492 

3, Nir and NDVI, which were always classified among the first eight variables most contributing to 493 

the classification. The weakest features were the NDTI, Blue, Green, SWIR 2, S, D, SWIR 1, VV and 494 

VH, chosen only one time, while the Red band was never selected. The morphologic features GFI 495 

and H contributed to the classification for low values of Ntree (not above 40) and were among the 496 

first eight most important variables. 497 Jo
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Figure 8. Heatmap for Case Study 3 (CS3) depicting the robustness of predictors for varying Ntree and their importance (blue to 

green colors). 

 498 

CS4: Emilia-Romagna case study 499 

The heatmap reported in Figure 9 depicts the robustness of the predictor variables to varying Ntree 500 

for the Emilia-Romagna study case. Five variables, namely the MNDWI and RSWIR indices, the 501 

Sentinel-1 VV polarization, the morphologic features H and the Red Edge 3 Sentinel-2 band showed 502 

the highest stability to the parameter being selected for each value of Ntree. The former two were 503 

also ranked among the first two features mostly contributing to the RF classification (dark blue color), 504 

while the latter three had the highest importance only for a very low number of trees, i.e., Ntree = 10. 505 

In addition, the SWIR 2, SWIR 1, VH, GFI, Nir, Red Edge 2 and NDWI variables showed modest 506 

robustness to varying Ntree and were also classified among the first 14 most important predictors. 507 

The weakest variable was the morphologic feature S chosen only once and ranked as the least 508 

important together with the NDTI, D, and the Sentinel-2 bands in the visible range of the 509 

electromagnetic spectrum (green to yellow shades in the figure).  510 
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Figure 9. Heatmap for Case Study 4 (CS4) depicting the robustness of predictors for varying Ntree and their importance (blue to 

green colors). 

 511 

4.3 Stability of RF classifier and predictors to varying study area 512 

In the four study areas, for each value of Ntree the corresponding RF model was applied to the whole 513 

scene to derive the classification maps depicting flooded and not flooded classes. Each map was 514 

compared with the Copernicus EMSR flood delineation and the RF model minimizing the objective 515 

function (obj, Equation 1) was identified and selected as the best final classification scheme (Table 516 

S.3). In Table 4 details about the optimum models for CS1 to 4 are reported. In particular, for each 517 

study area, obj values of the optimum RF classification scheme and the corresponding number of 518 

trees and optimum predictors are shown. Performance metrics obtained from the pixel-per-pixel 519 

comparison between the final flooded areas map and the Copernicus map are also reported in the 520 

table. 521 

Regarding CS1, the model minimizing the error function was characterized by 20 trees and 12 522 

predictors (obj = 0.3849) and the validation of the detected flood extent showed an OA value of 523 

92.67%, while for CS2 Ntree was equal to 100 and p* to 14 (obj = 0.2030) delineating flooded areas 524 

with an OA of 94.61%. Very high accuracy was achieved with the best RF model for CS3 (OA = 525 

96.02%), characterized by 20 trees (obj = 0.0905) and 14 predictors. Finally, the model with the best 526 

obj value for CS4 was characterized by Ntree = 50 and p* = 19 (obj = 0.2904) and the flooded areas 527 

were detected with an OA of 95.82%. 528 

Table 4 also reports the best set of predictors employed in the implementation of the final RF models 529 

across the four case studies. It is important to emphasize that these are not listed in order of 530 

importance; rather, they are organized to help in identifying the most consistently reliable predictors 531 

within distinct settings. Figure S.2 in the supplementary material, instead, provides a visual 532 

understanding of the variables selected in each case study, as well as of similarities and differences 533 

in their contribution to the classification in the respective RF models. 534 

Among the 21 variables, five multispectral indices, namely the MNDWI, RSWIR, NDMI, NDWI and 535 

NDVI, and the SWIR 1 band were the most stable, being selected in all the study areas, while seven 536 
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predictors in three out of the four (Table 4 and Figure S.2). These include the Sentinel-2 bands Blue, 537 

Green, Red Edge 2, Red Edge 3, Nir and SWIR 2, as well as the VH Sentinel-1 polarization. The 538 

Red, Red Edge 1, NDTI, VV, GFI and H variables were found in two case studies, while the 539 

remaining two morphologic features, i.e., D and S, were specific to individual cases. Finally, five 540 

predictors were ranked in the same class of importance in two case studies out of four (Figure S.2). 541 

These are the RSWIR index and SWIR 2 band (second and fourth most important features both in 542 

CS1 and CS4), SWIR 1 (fifth most contributing variable in both CS1 and CS2), H and Red Edge 1 543 

(respectively classified as the eighth and fourteenth most important predictors both in CS3 and CS4). 544 

Finally, a visual comparison between the flooded area maps derived through the selected models in 545 

the four case studies and the Copernicus flood delineations is reported in Figure 10. Common areas 546 

detected by both the maps are shown in blue, in green areas included in the generated flood maps but 547 

not in the reference one (overestimations) are depicted, while in red the areas included in the reference 548 

maps but not in the generated flooded areas (underestimations).   549 
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Table 4. Results of the pixel-per-pixel comparison between the final Random Forest (RF) models and the Copernicus flood maps for 550 
the four case studies (CS1-4). Details about each optimum model are provided: objective function (obj) values, number of trees (Ntree), 551 
optimum predictors (p*) number, False Positive Rate (Rfp), False Negative Rate (Rfp), True Positive Rate (Rfp), True Negative Rate 552 
(Rfp), Overall Accuracy (OA), Precision, F-score, and selected predictors subsets. 553 

 CS1 CS2 CS3 CS4 

 Ntree=20, p*=12 Ntree=100, p*=14 Ntree=20, p*=14 Ntree=50, p*=19 

 obj = 0.3849 obj = 0.2030 obj = 0.0905 obj = 0.2904 

𝐑𝐟𝐩 (%) 1.78 0.88 3.71 3.06 

𝐑𝐟𝐧(%) 36.71 19.42 5.34 25.98 

𝐑𝐭𝐩(%) 63.29 80.57 94.66 74.03 

𝐑𝐭𝐧(%) 98.21 99.12 96.29 96.94 

OA (%) 92.67 94.61 96.02 95.82 

Precision (%) 86.99 96.72 83.48 55.38 

F-score (%) 73.27 87.91 88.72 63.36 
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Figure 10. Classification results derived from the implementation of the optimal Random Forest (RF) models in the four case 

studies : a) Sesia River (CS1); b) Wee Waa (CS2); c) Southern Malawi (CS3) and d) Emilia-Romagna (CS4). 

 555 

5.  Discussion 556 

In this work, RF classification capabilities for flood mapping using a multi-source dataset were 557 

evaluated. Predictors included morphologic descriptors, Sentinel-2 bands, derived multispectral 558 

indices, and Sentinel-1 polarizations. Rather than focusing mainly on the algorithm accuracies, which 559 

have been shown herein and in previous works (e.g., Billah et al. 2023) to be as higher as 90%, the 560 

primary objective of this study was to carry out an in-depth investigation on the predictive power of 561 

several input variables, their robustness and stability to varying training sample sizes and RF 562 

parameters, as well as to different contextual settings. 563 
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RF classification accuracies have been long assessed in a variety of research experiments and under 564 

different parameterizations (e.g., Gislason et al. 2006, Wang et al. 2015, Ghansah et al. 2021, 565 

Ramezan et al. 2021, Billah et al. 2023), though no studies have specifically examined the sensitivity 566 

of predictive variables to the algorithm architecture. 567 

 568 

5.1 Stability of predictors to varying samples size 569 

A first analysis of the stability of predictors to varying training samples sizes was carried out using 570 

the RF classifier on the Sesia River case study (CS1). Five different sizes of pixels per class, n, were 571 

considered based on recommendations reported in the literature (i.e., at least 50 samples per class, 572 

10p, 20p, 30p, 45p, with p indicating the number of predictors). Results concerning the model 573 

accuracies confirmed that at least 10p training samples per class should be used to achieve good 574 

performances (in the proposed analysis accuracy above 99% was registered starting from n=210 575 

pixels per class, i.e., n=10p). 576 

Regarding the stability of predictors for each sample size, the internal RF MDA measure showed that 577 

three multispectral indices are quite insensitive to the training sizes, namely the MNDWI, RSWIR 578 

and NDMI. In particular, the former is the most stable variable, being classified as the third most 579 

important feature for each value of n, while the latter two can either be ranked as first or second 580 

variables. In addition, the NDMI is shown to be the predictor with the highest mean relative 581 

importance (equal or over 90% in each sample size configuration). Similarly, the Sentinel-2 bands 582 

SWIR 1 and SWIR 2 show a certain stability, being ranked as either the fourth or fifth most important 583 

variables for varying n. Concerning the morphologic descriptors, the GFI and H exhibit quite constant 584 

behavior for changing training set size, even if are not among the most important variables. If results 585 

are rather stable for higher n values, they slightly differ when the dimension of the training dataset is 586 

small (i.e., n = 50). A higher variability of the predictors ranking (and MDA measure) is, in fact, 587 

observed. On the one hand, a lower n led to a lower number of features classified as most important 588 

(e.g., nine predictors are ranked among the first ten most important variables for n=50 and 10 for all 589 

the other cases, while a MDA at least equal to 10% was observed for six predictors in the case n=50 590 

and for seven or eight variables in the other cases), but the accuracy value was lower. On the other 591 

hand, some predictor variables acquired more relevance than with higher sample sizes. Indeed, the 592 

contribution of the local slope, S, is more significant when n=50. Likewise, the Sentinel-1 VV and 593 

VH polarization show a higher importance for small sample sizes. Such behavior may be explained 594 

considering that ROIs were collected manually by digitizing sample polygons based on visual 595 

interpretation of Sentinel-2 scenes. Therefore, they mainly reflect Sentinel-2 related variables 596 

patterns, which do not necessarily correspond to those of morphologic features and Sentinel-1 bands. 597 

If considering for example the predictor S, in which variations at the pixel scale reflect changes in 598 

local slope, smaller polygon dimensions or numbers imply a higher chance to capture the local 599 

patterns. 600 

 601 

5.2 Robustness of predictors for varying Ntree 602 

Considering different case studies, the robustness of predictors was assessed under different 603 

configurations of number of trees. In this case, the algorithm was trained using at least 10p samples 604 

per class and the RFE method for features selection was applied to build RF models exploiting only 605 

the p* most important variables. Such a procedure aids in reducing data dimensionality excluding 606 
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those that do not significantly contribute to the classification. In general, results showed that RF 607 

performances obtained with different subset sizes are stable with respect to changing number of trees. 608 

Nevertheless, no clear patterns across the case studies can be detected in terms of relationships 609 

between p* and model accuracies or Ntree. Every study area and flooding event needs an exploratory 610 

assessment of the variables and training parameters best suited for predicting the flood extent. 611 

Regarding the stability of predictors to varying Ntree, the RSWIR index was found to be the most 612 

robust and insensitive to the parameter as it was selected as one of the best predictors (among the first 613 

five most important variables) for each value of Ntree and in three case studies out of four (CS1, CS2, 614 

CS4). The MNDWI also showed moderate stability, being chosen in every Ntree configuration in two 615 

case studies out of four (CS32, CS4) and among the first five most contributing variables in three 616 

case studies (CS1, CS2, CS4). This confirms that the MNDWI is a reliable index for flood mapping 617 

(see e.g., Albertini et al. 2022a), being not only insensitive to the training sample size and to some 618 

extent to the algorithm architecture (i.e., the Ntree parameter) but also one of the best predictor in 619 

different study areas. 620 

 621 

5.3 Stability of RF classifier and predictors to varying study area 622 

The investigation on the stability of the RF classifier and predictors to varying study areas was carried 623 

out by identifying the best model in terms of minimization of the error function as defined in Equation 624 

1 and through the comparison with the reference maps from the Copernicus EMSR. It is interesting 625 

to note that for every study area no less than 12 predictors and a number of trees between 20 and 100 626 

were found necessary for an accurate delineation (above 92% overall accuracy) of flooded areas 627 

(p*=14 in two out of four case studies). In most cases (three out of four), the best combination of 628 

predictors included Sentinel-2 bands in the visible range of the electromagnetic spectrum and 629 

multispectral indices and Sentinel-1 polarizations. This is in agreement with findings from the 630 

literature, according to which spectral indices are more stable than other variables when applied to 631 

new study areas (Belgiu and Drăguţ 2016). Regarding morphologic descriptors, the GFI and H also 632 

appear to be robust predictors significantly contributing to the classification. Differences between the 633 

case studies, especially in the selection of geomorphic predictors were mainly linked to limitations 634 

related to the available DEM. In fact, some errors regarding deviations of the DEM-derived 635 

hydrologic network from the actual river flow were observed in the Sesia River and Wee Waa case 636 

studies, most likely due to active alluvial and erodible rived beds that during floods lead to changes 637 

in the watercourse and the creation or reactivation of channels (Fugazza et al. 2008, Wray 2009). 638 

Such deviations affect the estimation of geomorphic descriptors, which inevitably cannot capture the 639 

morphology of the territory with fidelity. Figure S.3 in the supplementary material aims to explain 640 

this mechanism, by depicting the flood extents as derived from the RF models, the river network 641 

extracted from the DEM and the GFI computed based on it. Whenever differences between the river 642 

channels and the drainage system at the time of the floods exist (Figure S.3(a.1), (a.2) and (b.2)), 643 

deviations between the GFI configuration and the actual flood patterns exist as well and geomorphic 644 

features become less relevant for the classification (CS1 and 2). If the GFI description of floodable 645 

areas better matches the flood imprint (Figure S.3(b.1), (c.1), (c.2), (d.1) and (d.2)), as follows from 646 

a more accurate representation of the river network, hence these contribute to the classification (CS3 647 

and 4). This obviously highlights the need for updated morphological descriptors which may become 648 

rapidly outdated, especially in alluvial systems, where every flood may potentially lead to significant 649 
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modifications of the water course trajectories and position. Issues related to DEMs accuracy and 650 

hydraulic consistency of the extracted river channels have also been recently considered by Magnini 651 

et al. (2023) who highlighted the need for reliable river network extraction to effectively use DEM-652 

based flood hazard indicators. 653 

 654 

In conclusion, this work proved that minor changes to the RF algorithm allow its transferability to 655 

different study areas. In addition, the findings of the analyses underlined how the joint use of both 656 

optical and SAR features, as well as geomorphic descriptors, allows for achieving a fair delineation 657 

of flooded areas with minimum errors. In particular, the use of geomorphic data can help reduce false 658 

alarms and missed interventions and solve some issues related to satellite imagery, such as those 659 

linked to the presence of vegetation, turbid water, clouds, shadow areas, or to the time span between 660 

the satellite overpass and the flood peak, which can reduce the ability of interpreting and 661 

reconstructing the phenomena. On the other hand, morphologic features strictly depend on the input 662 

elevation data. In the current work, a global and open-source product was used (i.e., the SRTM DEM) 663 

to provide a unified and homogeneous modelling framework among case studies. Further future 664 

investigations could concern the use of national and local data for the classification, or the selection 665 

of DEMs tailored to specific requirements and geographical features, as highlighted by Moges et al. 666 

(2023). 667 

It is worth underlining that the current study was carried out considering the Sentinel-2 imagery as 668 

the reference for collecting training samples, which may have somewhat influenced the outcomes of 669 

the implemented analyses and favored Sentinel-2-related features over the other variables. 670 

Furthermore, some over or underestimations observed in the final classified flood maps (Figure 10) 671 

might also be linked to the (dis)agreement between the collected ROIs pixels and the Copernicus 672 

delineations, as illustrated, for example, in Figure S.1 for CS1. In fact, the visual interpretation of 673 

Sentinel-2 scenes can lead to some misinterpretations. However, considering that Copernicus EMSR 674 

maps are also obtained through a mixture of photointerpretation and classification, the implemented 675 

methodology and comparison can be considered robust. 676 

 677 

 678 

6. Conclusions 679 

In this study, the RF algorithm was employed for flood mapping using a multi-source dataset. This 680 

included satellite-based data (both optical and SAR) and morphologic features to ultimately assess 681 

the robustness of the algorithm and predictors to varying training schemes and landscape contexts. 682 

Overall, generalizations between different study areas are difficult to be made and the identification 683 

of predictor variables suitable for different settings requires ad-hoc investigations. Every flood event 684 

is dominated by the combination of several factors (turbidity, initial soil moisture conditions, land 685 

cover and vegetation status at the time of the flood, and geomorphologic dynamics), which makes 686 

flood mapping case specific. Nonetheless, some key conclusions can be drawn from the current work 687 

which can be summarized as follows: 688 

• The MNDWI is one of the most powerful variables for flooded areas detection, as it was 689 

proven to be highly stable to changing training dataset size, number of trees in the RF 690 

algorithm and study areas. Likewise, the RSWIR index was found to be a robust index to 691 

varying Ntree and context. 692 
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• Morphologic descriptors can be important if updated morphological data are available, 693 

otherwise they do not significantly contribute to the classification also because of errors in the 694 

DEM. 695 

• In all the considered study areas, the RF accuracy across different subset sizes of the predictor 696 

variables was quite stable for varying Ntree. Furthermore, a RF model built with no less than 697 

12 predictors was found to provide the best flood delineation in terms of reduction of false 698 

positives (overestimation errors) and false negatives (underestimation errors). 699 

• RF classifier exhibits very high predictive capabilities in flooded areas mapping with accuracy 700 

values above 92% especially when the synergy between Sentinel-2, Sentinel-1 and 701 

geomorphic data (mainly the GFI and H features) is exploited. 702 

The study provided an exploration of the predictive power of a variety of predictors used in flooded 703 

area mapping which can straightforwardly be incorporated in RF models. Further investigations may 704 

be needed in order for the results to be confirmed and the possibility of using high-resolution satellite 705 

images may be explored in future studies when those imagery are timely available. Nonetheless, this 706 

work proved that the identification of the most robust and stable variables, as well as the synergetic 707 

use of multi-source data, allows for enhancing classification accuracy and for they transferability to 708 

new study areas. 709 

 710 
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Highlights 

• Multi-source Random Forest classification of floods exhibits accuracies above 90% 

• Predictors stability to the algorithm architecture and study areas was assessed 

• Models built with the most important predictors provides the best flood delineation 

• The MNDWI is robust to training sample sizes, number of trees and study areas 

• Morphologic descriptors are relevant predictors under updated morphological data 
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