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Abstract We introduce some special system of generators on finite groups, that
we call diagonal double Kodaira structures and whose existence is equivalent to
the existence of some special Kodaira fibred surfaces, that we call diagonal double
Kodaira fibrations. This allows us to rephrase in purely algebraic terms some results
about finite Heisenberg groups, previously obtained in Causin and Polizzi (Ann.
Sc. Norm. Super. Pisa Cl. Sci. (5) XXII:1309–1352, 2021), and makes possible to
extend them to the case of arbitrary extra-special p-groups.
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1 Introduction

A Kodaira fibration is a smooth, connected holomorphic fibration f1 : S −→ B1,
where S is a compact complex surface and B1 is a compact complex curve, which
is not isotrivial (this means that not all its fibres are biholomorphic to each others).
The genus b1 := g(B1) is called the base genus of the fibration, whereas the genus
g := g(F ), where F is any fibre, is called the fibre genus. If a surface S is the total
space of a Kodaira fibration, we will call it a Kodaira fibred surface; it is possible to
prove that every such a surface is minimal and of general type.

Examples of Kodaira fibrations were originally constructed in [1, 11] in order
to show that, unlike the topological Euler characteristic, the signature σ of a real
manifold is not multiplicative for fibre bundles. In fact, every Kodaira fibred surface
S satisfies σ(S) > 0, see for example the introduction of [12], whereas σ(B1) =
σ(F ) = 0, and so σ(S) �= σ(B1)σ (F ).
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A double Kodaira surface is a compact complex surface S, endowed with a
double Kodaira fibration, namely a surjective, holomorphic map f : S −→ B1 ×
B2 yielding, by composition with the natural projections, two Kodaira fibrations
fi : S −→ Bi , i = 1, 2.

In [5] the author (in collaboration with A. Causin) introduced a new topological
method to construct double Kodaira fibrations, based on the so-called Heisenberg
covers of $b × $b, where $b denotes a real, closed, connected, orientable surface
of genus b (from now on, we will simply write “a real surface of genus b”). These
are finite Galois covers S −→ $b × $b, whose branch locus is the diagonal
	 ⊂ $b × $b and whose Galois group is isomorphic to a finite Heisenberg
group. In this note we rephrase the group-cohomological methods of [5] in a purely
algebraic way, by introducing the so-called diagonal double Kodaira structures on
a finite group G, see Definition 2.1. These are special systems of generators of
G, whose existence is equivalent to the fact that G is a good quotient of some
higher genus pure braid group on two strands, where “good” means that the natural
braid called A12 in [6] has non-trivial image under the quotient map. The existence
of diagonal double Kodaira structures yields in turn the existence of some special
double Kodaira fibrations, that we call of diagonal type, see Definition 4.2.

With this new and compact terminology, we give a short account of some of the
main results contained in [5], namely

• the existence of (double) Kodaira fibrations over every curve of genus b (and not
only over special curves with extra automorphisms) and the proof that the number
of such fibrations over a fixed base can be arbitrarily large, see Theorem 4.5;

• the first “double solution” to a problem, posed by Geoff Mess, from Kirby’s
problem list in low-dimensional topology, see Theorem 4.6;

• the existence of an infinite family of (double) Kodaira fibrations with slope
strictly higher than 3+ 1/3, see Theorem 4.8 and Remark 4.9.

This paper also contains some new results, namely

• the construction of diagonal double Kodaira structures on extra-special p-groups
of any exponent, see Theorems 3.7 and 3.10. This extends the equivalent
statements for extra-special p-groups of exponent p proved in [5];

• an explicit upper bound for the slope of a diagonal double Kodaira fibration, see
Proposition 4.12 and Remark 4.13.

An intriguing problem is the existence of diagonal double Kodaira structures on
finite groups that are not extra-special or, more generally, on finite groups whose
nilpotency class is at least 3, cf. Remark 2.4. However, we will not develop this
point here, hoping to come back on it in a sequel to this paper.

Notation and Conventions The order of a finite group G is denoted by |G|. If
x ∈ G, the order of x is denoted by o(x). The subgroup generated by x1, . . . , xn ∈ G
is denoted by 〈x1, . . . , xn〉. The center of G is denoted by Z(G). If x, y ∈ G, their
commutator is defined as [x, y] = xyx−1y−1. We denote both the cyclic group of
order p and the field with p elements by Zp.
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2 Diagonal Double Kodaira Structures

LetG be a finite group and let b, n ≥ 2 be two positive integers.

Definition 2.1 A diagonal double Kodaira structure of type (b, n) on G is an
ordered set of 4b + 1 generators

S = (r11, t11, . . . , r1b, t1b, r21, t21, . . . , r2b, t2b, z),

with o(z) = n, such that the following relations are satisfied. We systematically
use the commutator notation in order to indicate the conjugacy action, writing for
instance [x, y] = zy−1 instead of xyx−1 = z.
• Surface relations

[r−1
1b , t

−1
1b ] t−1

1b [r−1
1 b−1, t

−1
1 b−1] t−1

1 b−1 · · · [r−1
11 , t

−1
11 ] t−1

11 (t11 t12 · · · t1b) = z

[r−1
21 , t21] t21 [r−1

22 , t22] t22 · · · [r−1
2b , t2b] t2b (t−1

2b t−1
2 b−1 · · · t−1

21 ) = z−1

• Conjugacy action of r1j

[r1j , r2k] = 1 if j < k (2.1)

[r1j , r2j ] = 1

[r1j , r2k] = z−1 r2k r
−1
2j z r2j r

−1
2k if j > k

[r1j , t2k] = 1 if j < k

[r1j , t2j ] = z−1

[r1j , t2k] = [z−1, t2k] if j > k

[r1j , z] = [r−1
2j , z]

• Conjugacy action of t1j

[t1j , r2k] = 1 if j < k (2.2)

[t1j , r2j ] = t−1
2j z t2j

[t1j , r2k] = [t−1
2j , z] if j > k

[t1j , t2k] = 1 if j < k

[t1j , t2j ] = [t−1
2j , z]

[t1j , t2k] = t−1
2j z t2j z−1 t2k z t

−1
2j z−1 t2j t

−1
2k if j > k

[t1j , z] = [t−1
2j , z]
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Remark 2.2 From (2.1) and (2.2) we can deduce the corresponding conjugacy
actions of r−1

1j and t−1
1j . We leave the cumbersome but standard computations to

the reader.

Remark 2.3 Abelian groups admit no diagonal double Kodaira structures. Indeed,
the relation [r1j , t2j ] = z−1 in (2.1) provides a non-trivial commutator in G,
because o(z) = n.

Remark 2.4 Assume that the commutator subgroup [G, G] is contained in the
center Z(G), i.e., that G/Z(G) is abelian (being G non-abelian, this is equivalent
to the fact that G has nilpotency class 2, see [9, p. 22]). Then the relations defining
a diagonal double Kodaira structure on G assume the following simplified form.

• Relations expressing the centrality of z

[r1j , z] = [t1j , z] = [r2j , z] = [t2j , z] = 1 (2.3)

• Surface relations

[r−1
1b , t

−1
1b ] [r−1

1 b−1, t
−1
1 b−1] · · · [r−1

11 , t
−1
11 ] = z (2.4)

[r−1
21 , t21] [r−1

22 , t22] · · · [r−1
2b , t2b] = z−1

• Conjugacy action of r1j

[r1j , r2k] = 1 for all j, k (2.5)

[r1j , t2k] = z−δjk

• Conjugacy action of t1j

[t1j , r2k] = zδjk (2.6)

[t1j , t2k] = 1 for all j, k

where δjk stands for the Kronecker symbol.

If S is a diagonal double Kodaira structure of type (b, n) on G, then the subgroup

K2 := 〈r21, t21, . . . , r2b, t2b, z〉

is normal in G and so there is a short exact sequence

1 −→ K2 −→ G −→ Q1 −→ 1,
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where the elements r11, t11, . . . , r1b, t1b yield a complete set of representatives
for Q1. On the other hand, the set of relations defining S is invariant under the
substitutions

z←→ z−1, t1j ←→ t−1
2 b+1−j , r1j ←→ r2 b+1−j ,

hence we can also see G as the middle term of a short exact sequence

1 −→ K1 −→ G −→ Q2 −→ 1,

where

K1 := 〈r11, t11, . . . , r1b, t1b, z〉

and r21, t21, . . . , r2b, t2b yield a complete set of representatives forQ2.

Definition 2.5 A diagonal double Kodaira structure S as above will be called of
strong type (b, n) if K1 = K2 = G. Otherwise, it will be called of non-strong type
(b, n).

Sometimes we will not specify the pair (b, n), and we will simply say that S is “of
strong type” or “of non-strong type”, respectively.

3 The Case of Extra-Special p-Groups

The following classical definition can be found, for instance, in [7, p. 183] and [9,
p. 123].

Definition 3.1 Let p be a prime number. A finite p-groupG is called extra-special
if its center Z(G) is cyclic of order p and the quotient V = G/Z(G) is a non-trivial,
elementary abelian p-group.

An elementary abelian p-group is a finite-dimensional vector space over the field
Zp, hence it is of the form V = (Zp)dimV andG fits into a short exact sequence

1 −→ Zp −→ G −→ V −→ 1. (3.1)

Note that, V being abelian, we must have [G, G] = Zp, namely the commutator
subgroup of G coincides with its center. Furthermore, since the extension (3.1) is
central, it cannot be split, otherwiseG would be isomorphic to the direct product of
the two abelian groups Zp and V , which is impossible because G is non-abelian. It
can be also proved that, ifG is extra-special, then dimV is even, so |G| = pdimV+1

is an odd power of p.
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For every prime number p, there are precisely two isomorphism classes M(p),
N(p) of non-abelian groups of order p3, namely

M(p) = 〈r, t, z | rp = tp = 1, zp = 1, [r, z] = [t, z] = 1, [r, t] = z−1〉
N(p) = 〈r, t, z | rp = tp = z, zp = 1, [r, z] = [t, z] = 1, [r, t] = z−1〉

and both of them are in fact extra-special, see [7, Theorem 5.1 of Chapter 5].
If p is odd, then the groupsM(p) and N(p) are distinguished by their exponent,

which equals p and p2, respectively. If p = 2, the groupM(p) is isomorphic to the
dihedral groupD8, whereas N(p) is isomorphic to the quaternion groupQ8.

The classification of extra-special p-groups is provided by the result below, see
[7, Section 5 of Chapter 5].

Proposition 3.2 If b ≥ 2 is a positive integer and p is a prime number, there are
exactly two isomorphism classes of extra-special p-groups of order p2b+1, that can
be described as follows.

• The central product H2b+1(Zp) of b copies ofM(p), having presentation

H2b+1(Zp) = 〈 r1, t1, . . . , rb, tb, z | rpj = tpj = zp = 1,

[rj , z] = [tj , z] = 1,

[rj , rk] = [tj , tk] = 1,

[rj , tk] = z−δjk 〉.

If p is odd, this group has exponent p.
• The central product G2b+1(Zp) of b − 1 copies ofM(p) and one copy of N(p),

having presentation

G2b+1(Zp) = 〈 r1, t1, . . . , rb, tb, z | rpb = tpb = z,

rp1 = tp1 = . . . = rpb−1 = tpb−1 = zp = 1,

[rj , z] = [tj , z] = 1,

[rj , rk] = [tj , tk] = 1,

[rj , tk] = z−δjk 〉.

If p is odd, this group has exponent p2.

Remark 3.3 In both cases, from the relations above we deduce

[r−1
j , tk] = zδjk , [r−1

j , t
−1
k ] = z−δjk . (3.2)

Remark 3.4 For both groups H2b+1(Zp) and G2b+1(Zp), the center is 〈z〉 $ Zp.
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Remark 3.5 If p = 2, we can distinguish the two groups H2b+1(Zp) and
G2b+1(Zp) by counting the number of elements of order 4.

Remark 3.6 The group H2b+1(Zp) is isomorphic to the matrix Heisenberg group of
order p2b+1, that is, the subgroup of GLb+2(Zp) consisting of matrices with 1 along
the diagonal and 0 elsewhere, except for the top row and rightmost column, namely

H2b+1(Zp) =
⎧⎨
⎩
⎛
⎝1 x z

t0 Ib ty
0 0 1

⎞
⎠

∣∣∣∣ x, y ∈ (Zp)b, z ∈ Zp

⎫⎬
⎭ .

With this identification, calling {e1, . . . , eb} the standard basis of (Zp)b, we have
that:

– rj corresponds to the matrix with x = 0, y = ej , z = 0;
– tj corresponds to the matrix with x = ej , y = 0, z = 0;
– z corresponds to the matrix with x = 0, y = 0, z = 1.

Here is our first main result, cf. [5, Section 3].

Theorem 3.7 Let b ≥ 2 be a positive integer and let p be a prime number. If p
divides b+ 1, then every extra-special p-groupG of order p2b+1 admits a diagonal
double Kodaira structure of strong type (b, p).

Proof In both cases G = H2b+1(Zp) and G = G2b+1(Zp), set

r1j = r2j := rj , t1j = t2j := tj

and define

S = (r11, t11, . . . , r1b, t1b, r21, t21, . . . , r2b, t2b, z).

Since every extra-special p-group G satisfies [G, G] = Z(G), it suffices to check
the simplified set of relations given in Remark 2.4. Verifying (2.3), (2.5) and (2.6)
is immediate from the presentation of G (see Proposition 3.2), whereas the surface
relations (2.4) follow from (3.2) because, by assumption, we have b = −1 in Zp.
Thus S provides a diagonal double Kodaira structure onG, that is of strong type by
construction. ��

Our next goal is to show that, if in Theorem (3.7) we drop the condition that p
divides b + 1, we can still obtain some diagonal double Kodaira structures of non-
strong type on extra-special p-groups of (bigger) order p4b+1. Let us first show a
couple of technical lemmas.

Lemma 3.8 If b ≥ 2 is an integer and p ≥ 5 is a prime number, we can find
non-zero elements

λ1, . . . , λb, μ1, . . . , μb ∈ Zp
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such that

b∑
j=1

λj =
b∑
j=1

μj = 1 (3.3)

and λjμj �= 1 for all j ∈ {1, . . . , b}.
Proof The following simple argument is borrowed from [5, proof of Proposi-
tion 2.16]. Choose arbitrarily λj , with j ∈ {1, . . . , b − 1}, and μj , with j ∈
{1, . . . , b − 2}, such that λjμj �= 1 for all j ∈ {1, . . . , b − 2}. Then λb is uniquely
determined by λb = 1−∑b−1

j=1 λj , whereasμb−1 andμb are subject to the following
conditions:

• μb−1 + μb is equal to a constant c = 1−∑b−2
j=1 μj

• μb−1 �= λ−1
b−1, μb �= λ−1

b .

These requirements are in turn equivalent to μb−1 /∈ {λ−1
b−1, c − λ−1

b }. If p ≥ 5
this can be clearly satisfied, because there are more than two non-zero elements in
Zp. ��
Now, take any anti-symmetrix matrix A = (ajk) of order 2n over Zp, and consider
the finitely presented groups

H(A) = 〈 x1, . . . , x2n, z | xp1 = . . . = xp2n = zp = 1,

[x1, z] = . . . = [x2n, z] = 1,

[xj , xk] = zajk 〉,
(3.4)

G(A) = 〈 x1, . . . , x2n, z | xp1 = . . . = xp2n−2 = zp = 1,

xp2n−1 = xp2n = z,

[x1, z] = . . . = [x2n, z] = 1,

[xj , xk] = zajk 〉,

where the exponent in zajk stands for any representative in Z of ajk ∈ Zp.
Recall that, given three elements a, b, c in a group G, we have the commutator

relation [a, bc] = [a, b]b[a, c]b−1. Since all commutators in H(A) are central, we
get

[a, bc] = [a, b][a, c] for all a, b, c ∈ H(A), (3.5)

and similarly for G(A).
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Lemma 3.9 If detA �= 0, then the following holds:
• H(A) is an extra-special p-group of order p2n+1 and exponent p. In particular,

it is isomorphic to H2n+1(Zp);
• G(A) is an extra-special p-group of order p2n+1 and exponent p2. In particular,

it is isomorphic to G2n+1(Zp).

Proof We prove only the first point, the second being similar. The commutator
relations in (3.4) show that every element of H(A) can be written in the form
xt11 . . . x

t2n
2n , with t1, . . . , t2n ∈ Z. Since xj has order p and [xj , xk] is central, it

follows that H(A) has exponent p.
The quotient of H(A) by the central subgroup 〈z〉 is an elementary abelian p-

group of order p2n. Therefore the only remaining issue is check that the center
of H(A) is precisely 〈z〉, and no larger. To this purpose, it suffices to check that
an element of the form xt11 . . . x

t2n
2n is central if and only if all the tj are zero. By

using (3.4) and (3.5), we get

xk, x
t1
1 . . . x

t2n
2n t = [xk, x1]t1 . . . [xk, x2n]t2n

= zak1t1+...+ak2nt2n .

It follows that xt11 . . . x
t2n
2n is central if and only if we have

ak1t1 + . . .+ ak2nt2n = 0, k = 1, . . . , 2n.

This is a homogeneous system of linear equations in the variables t1, . . . , t2n and
whose coefficient matrix is A. Being A non-singular by assumption, there is only
the trivial solution t1 = . . . = t2n = 0. ��

We are now in a position to prove our second main result, cf. [5, Section 2].

Theorem 3.10 If b ≥ 2 is a positive integer and p ≥ 5 is a prime number, then
every extra-special p-group G of order p4b+1 admits a diagonal double Kodaira
structure of non-strong type (b, p).

Proof Again, we treat in detail the case G = H4b+1(Zp); the proof for G =
G4b+1(Zp) is similar. Let us consider the anti-symmetric matrix

�b =
(
Lb Jb

Jb Mb

)
∈ Mat4b(Zp),
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where the blocks are the elements of Mat2b(Zp) given by

Lb =

⎛
⎜⎜⎜⎜⎜⎝

0 λ1

−λ1 0
0

. . .

0
0 λb

−λb 0

⎞
⎟⎟⎟⎟⎟⎠

Mb =

⎛
⎜⎜⎜⎜⎜⎝

0 μ1

−μ1 0
0

. . .

0
0 μb

−μb 0

⎞
⎟⎟⎟⎟⎟⎠

Jb =

⎛
⎜⎜⎜⎜⎜⎝

0 −1
1 0

0

. . .

0
0 −1
1 0

⎞
⎟⎟⎟⎟⎟⎠

and λ1, . . . , λb , μ1, . . . , μb are as in Lemma 3.8. We have

det�b = (1− λ1μ1)
2(1− λ2μ2)

2 · · · (1− λbμb)2 �= 0

and so, by Lemma 3.9, we infer that H(�b) is isomorphic to H4b+1(Zp). By
definition, the group H(�b) is generated by a set of 4b + 1 elements

S = {r11, t11, . . . , r1b, t1b, r21, t21, . . . , r2b, t2b, z}

subject to the relations

rp1j = tp1j = rp2j = tp2j = zp = 1,

[r1j , z] = [t1j , z] = [r2j , z] = [t2j , z] = 1,

[r1j , r1k] = [t1j , t1k] = 1,

[r1j , r2k] = [t1j , t2k] = 1,

[r2j , r2k] = [t2j , t2k] = 1,

[r1j , t1k] = zδjk λj ,

[r2j , t2k] = zδjk μj ,

[r1j , t2k] = [r2j , t1k] = z−δjk .

Using (3.3), we can check that the two surface relations (2.4) are satisfied. Since the
remaining relations (2.3), (2.5) and (2.6) clearly hold, it follows that S provides a
diagonal double Kodaira structure of type (b, p) on H(�b), and so a diagonal dou-
ble Kodaira structure of the same type on the isomorphic group H4b+1(Zp). Such a
structure is not strong, because the two subgroupsK1 = 〈r11, t11, . . . , r1b, t1b, z〉
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and K2 = 〈r21, t21, . . . , r2b, t2b, z〉 are isomorphic to H2b+1(Zp), hence they both
have index p2b in G. ��
Remark 3.11 The conclusion of Lemma 3.8 is false when p ≤ 3. If p = 2, this
follows immediately from the fact that there exists a unique non-zero element in
Z2. If p = 3, two non-zero elements λi , μi ∈ Z3 satisfy λiμi �= 1 if and only if
λi = −μi , so (3.3) cannot hold. This shows that, if Theorem 3.10 is also true for
p ≤ 3, then it must be proved in a different way.

Remark 3.12 The existence of a diagonal double Kodaira structure of non-strong
type on H4b+1(Zp) was first showed in [5, Section 2], although we did not use this
terminology; the original proof relies on some group-cohomological results related
to the structure the cohomology algebra H ∗($b × $b − 	, Zp), where $b is a
real surface of genus b and 	 ⊂ $b × $b is the diagonal. Besides, such a proof
does not use Lemma 3.9, but an equivalent statement coming from the identification
of H4b+1(Zp) with the so-called symplectic Heisenberg group Heis(V , ω), where
V = H1($b ×$b −	, Zp) $ (Zp)4b and ω is any symplectic form on V .

Then, assuming that p divides b + 1, in [5, Section 3] we deduced the existence
of a diagonal double Kodaira structure of strong type on H2b+1(Zp) by setting

λ1 = . . . = λb = μ1 = . . . = μb = −1.

Indeed, this yields a diagonal double Kodaira structure on a “degenerate” Heisen-
berg group of order p4b+1 (in this case det�b = 0), admitting the group H2b+1(Zp)

as a quotient.
In this note we adopted, instead, a purely group-theoretical approach; it is less

geometric but shorter than the original one and it naturally yields new results,
namely the existence of diagonal double Kodaira structures on the extra-special p-
groups of exponent p2.

4 Geometric Interpretation: From Diagonal Double Kodaira
Structures to Diagonal Double Kodaira Fibrations

For more details on the basic definitions and results of this section, we refer the
reader to the Introduction and to [5], especially Sects. 1 and 3. Recall that a Kodaira
fibration is a smooth, connected holomorphic fibration f1 : S −→ B1, where S is a
compact complex surface andB1 is a compact complex curve, which is not isotrivial.
The genus b1 := g(B1) is called the base genus of the fibration, whereas the genus
g := g(F ), where F is any fibre, is called the fibre genus.

Definition 4.1 A double Kodaira surface is a compact complex surface S, endowed
with a double Kodaira fibration, namely a surjective, holomorphic map f : S −→
B1 × B2 yielding, by composition with the natural projections, two Kodaira
fibrations fi : S −→ Bi , i = 1, 2.
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The aim of this section is to show how the existence of diagonal double Kodaira
structures is equivalent to the existence of some special double Kodaira fibrations,
that we call diagonal double Kodaira fibrations. Looking at Gonçalves-Guaschi’s
presentation of surface pure braid groups, see [6, Theorem 7] and [5, Theorem 1.7],
we see that a finite group G admits a diagonal double Kodaira structure S of type
(b, n) if and only if there is a surjective group homomorphism

ϕ : P2($b) −→ G, (4.1)

such that z := ϕ(A12) has order n. Here P2($b) is the pure braid group of genus
b on two strands, which is isomorphic to the fundamental group π1($b × $b −
	, (p1, p2)) of the configuration space of two ordered points on a real surface of
genus b, and the generator A12 is the homotopy class in $b ×$b −	 of a loop in
$b ×$b that “winds once” around the diagonal	.

With a slight abuse of notation, in the sequel we will use the symbol $b to
indicate both a smooth complex curve of genus b and its underlying real surface.
By using Grauert-Remmert’s extension theorem together with Serre’s GAGA, the
group epimorphism ϕ gives the existence of a smooth, complex, projective surface
S endowed with a Galois cover

f : S −→ $b ×$b,

with Galois groupG and branched precisely over	 with branching order n, see [5,
Proposition 3.4].

The braid group P2($b) is the middle term of two short exact sequences

1 −→ π1($b − {pi}, pj ) −→ P2($b) −→ π1($b, pi) −→ 1, (4.2)

where {i, j } = {1, 2}, induced by the two natural projections of pointed topological
spaces ($b×$b−	, (p1, p2)) −→ ($b, pi). Composing the left homomorphism
in (4.2) with ϕ : P2($b) −→ G, we get two homomorphisms

ϕ1 : π1($b − {p2}, p1) −→ G, ϕ2 : π1($b − {p1}, p2) −→ G,

whose image equals K1 and K2, respectively. By construction, these are the
homomorphisms induced by the restrictions fi : �i −→ $b of the Galois cover
f : S −→ $b×$b to the fibres of the two natural projections πi : $b×$b −→ $b.
Since 	 intersects transversally at a single point all the fibres of the natural
projections, it follows that both such restrictions are branched at precisely one point,
and the number of connected components of the smooth curve �i ⊂ S equals the
index mi := [G : Ki ] of Ki in G.
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So, taking the Stein factorizations of the compositions πi ◦ f : S −→ $b as in the
diagram below

b

bi

πi◦f
fi θi

(4.3)

we obtain two distinct Kodaira fibrations fi : S −→ $bi , hence a double Kodaira
fibration by considering the product morphism

f = f1 × f2 : S −→ $b1 ×$b2 .

Definition 4.2 We call f : S −→ $b1 ×$b2 the diagonal double Kodaira fibration
associated with the diagonal double Kodaira structure S on the finite group G.
Conversely, we will say that a double Kodaira fibration f : S −→ $b1 × $b2 is of
diagonal type (b, n) if there exists a finite group G and a diagonal double Kodaira
structure S of type (b, n) on it such that f is associated with S.

One can wonder whether all double Kodaira fibrations are of diagonal type; the
answer is negative, as we will show in Example 4.11, see also Proposition 4.12 and
Remark 4.13.

Since the morphism θi : $bi −→ $b is étale of degreemi , by using the Hurwitz
formula we obtain

b1 − 1 = m1(b − 1), b2 − 1 = m2(b − 1). (4.4)

Moreover, the fibre genera g1, g2 of the Kodaira fibrations f1 : S −→ $b1 ,
f2 : S −→ $b2 are computed by the formulae

2g1 − 2 = |G|
m1
(2b − 2+ n), 2g2 − 2 = |G|

m2
(2b − 2+ n) ,

where n := 1− 1/n. Finally, the surface S fits into a diagram

b × b

b1 b2

f

f
θ1×θ2

so that the diagonal double Kodaira fibration f : S −→ $b1 ×$b2 is a finite cover
of degree |G|

m1m2
, branched precisely over the curve

(θ1 × θ2)
−1(	) = $b1 ×$b $b2 .
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Such a curve is always smooth, being the preimage of a smooth divisor via an
étale morphism. However, it is reducible in general, see [5, Proposition 3.11]. The
invariants of S can be now computed as follows, see [5, Proposition 3.8].

Proposition 4.3 Let f : S −→ $b1×$b2 be the diagonal double Kodaira fibration
associated with a diagonal double Kodaira structure S of type (b, n) on a finite
groupG. Then we have

c2
1(S) = |G| (2b− 2)(4b− 4+ 4n− n2)

c2(S) = |G| (2b− 2)(2b− 2+ n).

As a consequence, the slope and the signature of S can be expressed as

ν(S) = c2
1(S)

c2(S)
= 2+ 2n− n2

2b − 2+ n

σ(S) = 1

3

(
c2

1(S)− 2c2(S)
)
= 1

3
|G| (2b− 2)(2n− n2),

where n = 1− 1/n.

Remark 4.4 By definition, S is a diagonal double Kodaira structure of strong type
if and only if m1 = m2 = 1, that in turn implies b1 = b2 = b, i.e., f = f. In other
words, S is of strong type if and only if no Stein factorization as in (4.3) is needed
or, equivalently, if and only if the Galois cover f : S −→ $b ×$b induced by (4.1)
is already a double Kodaira fibration, branched on the diagonal	 ⊂ $b ×$b.

We can now specialize the previous results, by taking as G an extra-special p-
group and using what we have proved in Sect. 3. Let ω : N −→ N be the arithmetic
function counting the number of distinct prime factors of a positive integer, see [8,
p.335]. The following is [5, Corollary 3.18].

Theorem 4.5 Let $b be any smooth curve of genus b. Then there exists a double
Kodaira fibration f : S −→ $b × $b . Moreover, denoting by κ(b) the number of
such fibrations, we have

κ(b) ≥ ω(b + 1).

In particular,

lim sup
b→+∞

κ(b) = +∞.

Proof Given a prime number p dividing b + 1, every extra-special p-group G of
order p2b+1 admits a diagonal double Kodaira structure of strong type (b, p), see
Theorem 3.7, and this gives in turn a diagonal double Kodaira fibration f : S −→
$b × $b , see Remark 4.4. Two different prime divisors of b + 1 give rise to two
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non-homeomorphic double Kodaira surfaces, because the corresponding signatures
are different (use the last equality in Proposition (4.3) with n = p and note that, for
fixed b, the function expressing σ(S) is strictly increasing in p). Since the number
of distinct prime factors of b+ 1 can be arbitrarily large when b goes to infinity, the
last statement follows. ��

The case b = 2, p = 3 is particularly interesting. In fact, it provides (to our
knowledge) the first “double solution” to a problem (posed by Geoff Mess) from
Kirby’s problem list in low-dimensional topology ([10, Problem 2.18A]), asking
what is the smallest number b for which there exists a real surface bundle over a
surface with base genus b and non-zero signature, see [5, Proposition 3.19].

Theorem 4.6 Let S be the diagonal double Kodaira surface associated with a
diagonal double Kodaira structure of strong type (2, 3) on an extra-special 3-group
G of order 35. Then the real manifold X underlying S is a closed, orientable 4-
manifold of signature 144 that can be realized as a real surface bundle over a
surface of genus 2, with fibre genus 325, in two different ways.

This naturally leads to the following interesting problem, see [5, Question 3.20].

Question 4.7 What are the minimal possible fibre genus fmin and the minimum
possible signature σmin for a double Kodaira fibration S −→ $2 ×$2?

Note that Theorem 4.6 implies fmin ≤ 325 and σmin ≤ 144.
Let us show now how to use our methods in order to obtain double Kodaira

fibrations with slope strictly higher than 2 + 1/3. Fix b = 2 and let p ≥ 5 be a
prime number. Then every extra-special p-group G of order p4b+1 = p9 admits a
diagonal double Kodaira structure S of non-strong type (2, p) and such that m1 =
m2 = p2b , see Theorem 3.10. Setting b′ := p4 + 1, cf. Eq. (4.4), and using also
Proposition 4.3, we obtain the following particular case of [5, Proposition 3.12].

Theorem 4.8 Let f : S2, p −→ $b′ ×$b′ be the diagonal double Kodaira fibration
associated with a diagonal double Kodaira structure of non-strong type (2, p) on an
extra-special p-group G of order p9. Then the maximum slope ν(S2, p) is attained
for precisely two values of p, namely

ν(S2, 5) = ν(S2, 7) = 2+ 12

35
.

Furthermore, ν(S2, p) > 2+1/3 for all p ≥ 5. More precisely, if p ≥ 7 the function
ν(S2, p) is strictly decreasing and

lim
p→+∞ ν(S2, p) = 2+ 1

3
.

Remark 4.9 The original examples by Atiyah, Hirzebruch and Kodaira have slope
lying in the interval (2, 2+1/3], see [3, p. 221]. Our construction provides an infinite
family of Kodaira fibred surfaces such that 2+1/3 < ν(S) ≤ 2+12/35, maintaining
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at the same time a complete control on both the base genus and the signature. By
contrast, the “tautological construction” used in [4] yields a higher slope than ours,
namely 2+ 2/3, but it involves an étale pullback “of sufficiently large degree”, that
completely loses control on the other quantities.

Remark 4.10 By Liu’s inequality (see [13]), every Kodaira fibred surface S satisfies
ν(S) < 3. The value ν = 2 + 2/3 is the current record for the slope, in particular
it is unknown whether the slope of a Kodaira fibred surface can be arbitrarily close
to 3.

Finally, let us show that there exist double Kodaira fibrations that are not of
diagonal type.

Example 4.11 Take any double Kodaira fibration f : S −→ $b1 ×$b2 with b2 = 2
and ν(S) = 2 + 1/2, see for instance [12, Examples 6.3 and 6.6 of Table 3]. We
claim that such a f cannot be of diagonal type. In fact, assume by contradiction that
f is associated with a diagonal double Kodaira structure of type (b, n) on a finite
groupG. Then, by using the second equation in (4.4), we obtain 2−1 = m2(b−1),
hence b = 2. Substituting in the slope expression provided by Proposition 4.3, we
get

1

2
= 2n− n2

2+ n
,

or, equivalently, n2 − n+ 2 = 0, that has no integer solutions.

In fact, Example 4.11 is an instance of the following, more general result.

Proposition 4.12 Let f : S −→ $b1 × $b2 be a double Kodaira fibration of
diagonal type (b, n). Then we have ν(S) = 2 + s, where s is a strictly positive
rational number such that (s+2)2−8bs is a perfect square in Q. As a consequence,
we obtain s < 6− 4

√
2.

Proof By definition ν(S) is a rational number, and moreover ν(S) > 2 because of
Arakelov inequality, see [2] . So we can write ν(S) = 2 + s, with s > 0. Since we
are assuming that S is associated with a diagonal double Kodaira structure of type
(b, n), the slope identity in Proposition 4.3 yields

s = 2n− n2

2b − 2+ n
,

or, equivalently,

(2bs − s − 1)n2 − sn+ 1 = 0.
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The discriminant of this quadratic equation is (s + 2)2 − 8bs, and this quantity
must be a perfect square in Q because n is an integer number. In particular, we have
(s + 2)2 ≥ 8bs, that is,

2 ≤ b ≤ (s + 2)2

8s
.

From this we deduce the inequality (s + 2)2 − 16s ≥ 0; since Remark 4.10 gives
s < 1, we infer s < 6− 4

√
2. ��

Remark 4.13 Since 6 − 4
√

2 = 0.3431... and 12/35 = 0.3428..., we see that the
surfaces S2, 5 and S2, 7, described in Theorem 4.8, “almost maximize” the slope of
a double Kodaira fibration of diagonal type. In fact, the upper bound s < 6 − 4

√
2

shows that high slope examples, like Catanese-Rollenske’s one for which s = 2/3,
are out of reach of the methods of this paper.
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