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A B S T R A C T   

The circadian rhythm is regulated by an intrinsic time-tracking system, composed both of a central and a pe-
ripheral clock, which influences the cycles of activities and sleep of an individual over 24 h. At the molecular 
level, the circadian rhythm begins when two basic helix-loop-helix/Per-ARNT-SIM (bHLH-PAS) proteins, BMAL- 
1 and CLOCK, interact with each other to produce BMAL-1/CLOCK heterodimers in the cytoplasm. The BMAL-1/ 
CLOCK target genes encode for the repressor components of the clock, cryptochrome (Cry1 and Cry2) and the 
Period proteins (Per1, Per2 and Per3). It has been recently demonstrated that the disruption of circadian rhythm 
is associated with an increased risk of developing obesity and obesity-related diseases. In addition, it has been 
demonstrated that the disruption of the circadian rhythm plays a key role in tumorigenesis. Further, an asso-
ciation between the circadian rhythm disruptions and an increased incidence and progression of several types of 
cancer (e.g., breast, prostate, colorectal and thyroid cancer) has been found. As the perturbation of circadian 
rhythm has adverse metabolic consequences (e.g., obesity) and at the same time tumor promoter functions, this 
manuscript has the aim to report how the aberrant circadian rhythms affect the development and prognosis of 
different types of obesity-related cancers (breast, prostate, colon rectal and thyroid cancer) focusing on both 
human studies and on molecular aspects.   

1. Introduction 

The prevalence of overweight and obesity is increasing worldwide, 
and the evidence supporting the link between obesity and cancer is 
growing [1]. Indeed, numerous cohort studies, summarized in system-
atic reviews, have shown an association between obesity and cancer 
incidence overall and for selected cancer types (eg, postmenopausal 
breast, thyroid, prostate and colorectal). Several mechanisms have been 
hypothesized to explain the association between cancer and obesity, 
involving elevated lipid levels and blunted lipid signaling, inflammatory 

responses, insulin resistance, and adipokines. However, recent literature 
highlights a shared mechanism between cancer and obesity, i.e., 
disruption of circadian rhythm [2]. Indeed, an impairment of the bio-
logical clock has been detected in obesity, causing an increased 
expression of inflammatory cytokines, which is worsened by the disease 
itself [3]. In addition, the circadian rhythm disruption could contribute 
to the metabolic dysfunction of the adipose tissue, thus increasing the 
risk of developing obesity-related cardiometabolic diseases, as detected 
in the night shift workers [4]. 

The disruption of the circadian rhythm is also associated with an 
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increased susceptibility to tumors and to a worse response to anticancer 
treatment and prognosis [5]. Indeed, the circadian clock is an endoge-
nous timekeeper system that regulates biological processes, which are 
consistent with a master circadian clock and peripheral clocks and are 
controlled by various genes. Existing evidence indicates that the circa-
dian clock functions are a gate governing many aspects of the 
cancer-immunity cycle that is composed of seven major steps, namely 
cancer cell antigen release and presentation, priming and activation of 
effector immunity cells, trafficking, and infiltration of immunity to tu-
mors, and elimination of cancer cells [6]. The circadian clock is an 
endogenous timekeeper system that controls and optimizes biological 
processes, which are consistent with a master circadian clock and pe-
ripheral clocks and are controlled by various genes. Notably, the 
disruption of circadian clock genes has been identified to affect a wide 
range of ailments, including cancers. The cancer-immunity cycle is 
composed of seven major steps, namely cancer cell antigen release and 
presentation, priming and activation of effector immunity cells, traf-
ficking, and infiltration of immunity to tumors, and elimination of 
cancer cells. Existing evidence indicates that the circadian clock func-
tions as a gate that govern many aspects of the cancer-immunity cycle. 
Nocturnal shifts workers have a mildly augmented risk of developing 
breast cancer (BC) as well as prostate cancer (PCa), instead is less 
common in individuals which are usually more active during the 
morning and less active in the evening, thus living according to the 
circadian rhythm [7,8]. Also there is evidence of a higher prevalence of 
colorectal cancer (CRC) in shift workers, as demonstrated by a 
population-based case-control study carried out in Spain investigating 
the risk for CRC in relation to shift work history [8]. This analysis 
included 1626 incident CRC cases and 3378 randomly selected popu-
lation controls of both sexes, enrolled in 11 regions of Spain. Rotating 

shift work (morning, evening and/or night) was associated with an 
increased risk for CRC, as compared to day workers and OR increased 
with increasing lifetime cumulative duration of rotating shift work 
(P-value for trend 0.005) [8]. Further, it has been demonstrated on rats 
that forced alterations of the biological clock produce effects on the 
intestinal microbiota, causing a low-grade inflammation at the intestinal 
level potentially involved in carcinogenesis [9]. The disruption of the 
circadian rhythm, evidenced in the human CRC, has been reported also 
to have a role in accelerating the progression of this tumor [10]. 

A reciprocal link between circadian clock and thyroid disorders has 
been reported in both in vitro and in vivo studies [11,12]. Chronic sleep 
deprivation has been linked with derangements of rhythmic TSH 
secretion, which, in turn, is linked to an increased incidence of human 
thyroid cancer (TC) [11,12] (Fig. 1). Thus, the aim of our manuscript is 
to review the current evidence on the association of the disruption of 
circadian rhythm and obesity related cancer reporting both human and 
basic studies. 

2. Human studies on circadian rhythm disruption 

2.1. Breast cancer 

For some time now, “shift work involving circadian disruption” is 
classified as being probably carcinogenic in humans [13]. In the last 15 
years, the number of human studies investigating the connection be-
tween night work and BC has increased more than threefold [14]. 

A very recent systematic review and meta-analysis by Manouchehri 
et al. including 26 eligible studies with over one million participants has 
shown an increased risk for BC in both short-term and long-term night 
shift workers adjusted for family history and reproductive factors, while 

Fig. 1. Differences between disrupted and balanced Circadian Clock.  
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highlighting that flight attendants with long overnight flights are an 
especially vulnerable subgroup [15]. Prior to this research, conflicting 
results were reported [16]. A prospective sister study, following a cohort 
of BC-free women with a sister who was diagnosed with BC, investigated 
female work patterns, rotating shifts, and irregular work patterns, 
involving nighttime work. In the results, little evidence was observed in 
favor of night-time work as a major risk factor, however, compared to 
women who never worked at night, those who reported short-term night 
work (under 5 years) had a greater risk of BC [16]. In a consequent paper 
from the International Agency for Research on Cancer (IARC) group, it 
was highlighted that it is necessary to perform more research in relation 
to the impact of different shift schedules on circadian rhythm in 
real-world environments with a clearer definition of shift intensity, cu-
mulative exposure and shift systems [17]. A number of studies with 
different designs investigated sleep duration, quality and disturbance in 
relation to BC, showing that the beneficial effect of sleep increases with 
adequate alignment to circadian rhythms and exogenous light-dark 
cycle [18]. Data also showed that a decreased nighttime melatonin 
could promote tumor proliferation through elevated blood glucose 
levels [19]. This condition correlates with tumor size while also being 
lower in estrogen receptor positive (ER+) patients [20]. Chrono phar-
maceutical agents, timed lighting, and the use of biomarkers of circadian 
phase could help in proper circadian rhythm timing with scheduled 
radiation therapy [21]. Despite various factors contributing to 
discrepant results such as the healthy worker effect [22], and a vast 
coverage of non-modifiable risk factors for BC, research also tends to 
cover the role of modifiable factors such as diet and physical activity 
[23,24], smoking [25], alcohol consumption and folate intake [26] and 
many more with a considerable bidirectional link to sleep quality and 
circadian rhythm impairment. By modifying simple lifestyle and 
emphasizing the importance of primary prevention along with further 
studies in the field of chronobiology and BC, we can get closer to the goal 
of reducing the incidence of BC and timely management. 

2.2. Prostate cancer 

A large population-based case-control study estimating the associa-
tion between circadian gene single nucleotide polymorphisms in 31 
clock genes with PCa found that circadian genes may also play a role in 
PCa, with statistical significance for genes NPAS2 and PER1 at the gene 
level in the whole cohort and retinoic acid-related orphan receptor alpha 
(RORA) in aggressive tumor variants [27]. A variety of study designs and 
different methodologies in patient selection (subjects taking a range of 
therapies, various stages of cancer), as well as insufficient circadian gene 
variations are present in human circadian gene studies related to PCa 
[28]. The relationship between the circadian rhythm and rhythm shifts 
and PCa has also been explored, but to a lesser extent than BC or 
example. Due to emergence of new data in this field, there are vast ef-
forts to identify factors that are targetable by public health measures and 
could aid in reducing incidence of PCa. The results of these studies are 
somewhat conflicting but promise novel therapeutic directions in 
treatment. In a study performed by Barul et al., data concerning detailed 
work schedules taken from patients with PCa did not show any associ-
ation between PCa and nightshift work metrics such as work exposure, 
cumulative exposure, intensity, early morning shits and shift rotations, 
nor was the data significant for high or low-grade cancers [28]. This has 
been also reported in several other cohort studies, including a large 
prospective follow-up study on male twins [29]. In this study, despite 
not finding an association between sleep features (quality, duration), 
shift work and PCa, the chronotype of a worker has been shown to 
significantly modify their shift-work association to PCa [29]. On the 
contrary, in a meta-analysis with a large sample size, overall 
meta-relative risk of 1.24 has been demonstrated in night-shift workers 
for PCa [30]. Similar supportive findings were reported in several other 
studies [31–33]. Nevertheless, such as in BC, they must be taken in ac-
count the possibility of recall bias and the difficulty of defining the 

exposure and the confounding factors [34,35]. In addition, different 
ethnicity and cohort selection could contribute to the variation and 
significance of the results [34,35]. African American men (AA) are 
diagnosed with PCa 1.6 times more often than Caucasian men and are at 
2.6 times higher risk of PCa-related mortality [34,35]. They are also 
more likely to be exposed to various negative environmental factors 
(pollution, low daytime light levels, worse food choices, poverty and 
access to healthcare) as well as chronic conditions and diseases 
contributing to PCa [36–38]. An occupational component to PCa related 
to night shifts has also been established in healthcare workers, fire-
fighters, policeman and other professions requiring a degree of 
night-shift work [39,40]. Furthermore, exposure to other factors such as 
artificial light at night (ALAN) can alter melatonin levels, contributing to 
one of the supposed mechanisms of PCa development [41]. The pro-
longed exposure to ALAN increased the risk of PCa in long-term 
night-shift workers irrespective of chronotype and especially in those 
with worse prognosis [42]. Melatonin supplementation and chrono-
therapy could be proposed as a significant addition to chemotherapeutic 
drugs in order to reduce adverse effects and enhance survival [43]. 
Stress, circadian rhythm disruption and metabolic components act in 
synergy trough androgen receptor signaling pathway resulting in 
disruption of the PCa tumor microenvironment [41]. For this reason, 
targeting these mechanisms could also aid in tumor growth reduction 
and a better therapeutic response [41]. Controlling all the aforemen-
tioned factors and maintaining a healthier lifestyle with regular 
screening is one of the best ways for primary prevention in both BC and 
PCa, but further randomized prospective studies will help elucidate the 
crucial factors and targets for novel therapy. 

2.3. Colorectal cancer 

Abnormal eating time (during or around physiologic rest time) 
caused circadian rhythm disruption in mice by shifting the phase of the 
colon rhythm, and interacted with alcohol exposure in promoting colon 
carcinogenesis, by inducing a proinflammatory profile, and by changing 
the colon microbiota and butyrate signaling [44]. Disrupting the circa-
dian clock of cells thought shift work may increase the risk of CRC, and 
several studies have evaluated this risk [8,45]. Two German and a 
Spanish population-based cohort studies have not found an association 
between exposure to night shift work and risk of CRC (incidence rate 
ratios: 1.03 [95% CI: 0.62; 1.71], and OR=0.79 [95% CI: 0.62–1.00], 
respectively), but the rotating shift work significantly increased the CRC 
risk (IRR=1.45 [95% CI: 0.72; 2.92], and OR=1.22 [95% CI: 
1.04–1.43]) compared with day work [8,45]. In contrast, two prospec-
tive female cohort studies did not find and association between the 
rotating night shift work and CRC risk [46]. However, this correlation 
was seen for the rectal cancer. The risk increased with the shift work 
duration, implying a role of long-term circadian disruption in rectal 
cancer [46]. Another case-control study from Australia found no evi-
dence of an increased risk of CRC with long-term exposure (>7.5 years) 
to shiftwork [47]. Nevertheless, a meta-analysis (n = 6 studies) that 
quantitatively evaluated the correlation between the risk of CRC and 
night shift work not only confirmed this association (OR=1.318 [95% 
CI: 1.121–1.551], although with heterogeneity), but it also reported a 
dose-response relationship, as for every 5 years increase in night shift 
work the rate of CRC raised by 11% (OR=1.11 [95% CI: 1.03–1.20]) 
[48]. The association has been found for both for colon and rectal can-
cer, both in female and male subjects [48]. 

Moreover, the circadian disruption, as evidenced by both extreme 
long (≥ 9 h) and short (≤5 h) sleep duration, was shown to be associated 
with a higher risk of CRC in postmenopausal women (HR: 1.47 [95% CI: 
1.10–1.96] and 1.36 [95% CI: 1.06–1.74], respectively, versus 7 h sleep 
duration) [49]. In addition, the exposure to ALAN, particularly the blue 
light spectrum, was shown in a Spanish case-control study to be posi-
tively associated with CRC risk (OR=1.6 [95% CI: 1.2–2.2] for highest 
vs. lowest tertile), even after adjustment for various other risk factors 
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[50]. 

2.4. Thyroid cancer 

Several studies evaluated the association between sleep disorders 
and the risk of TC, but the results are controversial. In a study including 
about 6000 female flight attendants no consistent evidence was found 
regarding the correlation between the risk of TC and circadian disrup-
tion/ time zones crossed [51]. Similar results have been shown by a 
systematic review and meta-analysis (n = 3334,114 person-years of 
follow-up), indicating a similar standardized incidence ratio of TR for 
cockpit crew (1.21 [95% CI: 0.75–1.95]; p = 0.383) and for cabin crew 
(1.00 [95% CI: 0.60–1.66]; p = 0.646) compared to the general popu-
lation [52]. On contrary, data from the Women’s Health Initiative that 
enrolled 142,933 postmenopausal women (n = 295 TC) suggested that 
those with sleep disturbance (insomnia) had higher risk of TC (HR=1.44 
[95% CI: 1.01, 2.05]), and this association was rather seen in women not 
affected by obesity (pinteraction=0.07) [53]. A large US cohort study 
(n = 464,371 participants) has also found a positive association be-
tween LAN, which may cause circadian disruption, and the risk of TC 
(HR=1.55 [95% CI: 1.18–2.02] for the lowest versus highest quintile), 
and the association was stronger in women [54]. Thus, more clinical 
data is needed in order to clarify the association between the circadian 
clock alterations and the TC risk. 

3. Molecular bases of the links between genetic changes in 
circadian clock machinery and cancer 

The 24-hour rotation of the Earth has been a driving force in 
developing intrinsic circadian clocks in all living organisms as an 
adaptation to the light/darkness pattern [55]. The rhythmicity of the 
circadian cycle is a consequence of a transcriptional/post-translational 
positive and negative feedback loop triggered by the brain in response 
to light cues [55]. The circadian clock is an intrinsic time-tracking sys-
tem, composed both of a central and a peripheral clock [56–58]. In 
detail, there is a central clock pacemaker in the suprachiasmatic nucleus 
(SCN) of the hypothalamus [59], composed of a gene set named “clock 
genes” which controls the cycling expression of downstream genes, 
called “clock-controlled genes” (CCGs), resulting in daily oscillations of 
proteins synthesis [60]. At the molecular level, the circadian rhythm 
begins when the BMAL-1 (Brain and Muscle ARNT-Like 1) and CLOCK 
(Circadian Locomotor Output Cycles Kaput), two bHLH-PAS (basic 
helix–loop–helix/Per-ARNT-SIM) proteins, interact with each other to 
produce BMAL-1/CLOCK heterodimers in the cytoplasm [61–64]. These 
heterodimers translocate to the nucleus, where they act as transcription 
factors and bind the E-box regions on the promoters of their target genes. 
The BMAL-1/CLOCK target genes encode for the repressor components 
of the clock, cryptochrome (Cry1 and Cry2) and the Period proteins 
(Per1, Per2 and Per3) [61–64]. Next, the protein products of these genes 
dimerize and form complexes between themselves, which allows them 
to translocate into the nucleus, where they inhibit the BMAL1-CLOCK 
complex activity, thereby repressing their own expression. This gives 
rise to a new cycle of transcription by BMAL-1/CLOCK, closing the cycle 
[61–64]. Thus, at the start of the circadian day, the BMAL1-CLOCK 
complex begins the circadian system, causing the accumulation of 
CRY and PER transcripts and proteins during the second part of the day. 
During the nighttime, PER and CRY enter the nucleus to inhibit 
BMAL-1/CLOCK activity, while post-translational modifications of CRY 
and PER allow their own degradation by the proteasome, thus creating 
the first negative feedback loop to control the clock genes expression 
[61–64]. This auto-regulatory feedback loop is also sustained by the 
orphan nuclear receptors, REV-ERBs and RORs (retinoid-related orphan 
receptors) [65,66]. Both receptors are activated by BMAL-1/CLOCK but, 
while REV-ERBs repress BMAL-1 expression, RORs induce BMAL-1 
transcription, promoting the restarting of the clock [65,66]. 

Remarkably, this molecular oscillator not only regulates the 

expression of the core clock genes, but it also drives the rhythmic 
expression of many genes in the peripheral tissues (e.i., liver, kidney, 
skin, intestine, lung, pancreas, ovary, and heart), that have their own 
intrinsic circadian oscillations, but are dependent on the central clock 
and tissue-specific factors for synchronization [67–69]. 

In recent years, the impact of circadian disruption on human health 
has attracted increasing attention [70,71]. Several pieces of evidence 
highlighted that the environment changes, the mutation in clock genes 
or alteration of their expression leads to a disruption of circadian clocks 
and this condition has been associated with the increased risk of 
developing several diseases or be the leading cause of the worsening of 
pre-existing pathologies: cardiovascular diseases, cognitive impairment, 
premature aging, obesity and metabolic syndrome (Fig. 1) [70,71]. 
Furthermore, in humans, a strong relationship has been observed be-
tween the alteration of the circadian timekeeping system and the 
increased incidence and progression of certain types of cancer [72–75]. 
Indeed, the deregulation of circadian rhythms is a common condition 
identified in different cancer cell lines [76,77] and advanced-stage tu-
mors [78]. It is interesting to note that in some types of cancer, the 
rhythm recovery is linked to a better quality of life, better response to 
chemotherapy and longer survival [79]. 

Although different evidence supports this observation, the molecular 
connections between rhythm disruptions and oncogenesis are still not 
well understood. 

3.1. Disruption of circadian rhythm in cancer 

The healthy cells normally proliferate with a division rate of ~24 h, 
due to the direct control of cell cycle checkpoints by the intracellular 
circadian clock machinery [80,81]. In contrast, tumor cells are charac-
terized by uncontrolled cell proliferation resulting in abnormal and 
accelerated tissue growth [78,81]. The increase in the proliferation rate 
of cancer cells is due to circadian rhythm disruption, since tumor sup-
pressors and key cell cycle genes are under the control of the clock genes 
[78,81]. Several studies have demonstrated that many factors, such as 
drugs and radiation, can disrupt the circadian clock [82]. Moreover, the 
deregulated expression of the clock-related genes is a common feature of 
tumor cells and mutations of single clock genes, such as PER2 or 
BMAL-1, accelerate tumor growth [76,83] or even the whole carcino-
genesis process [84–86]. Keeping the synchronicity of the circadian 
clock is important for the coordination of various physiological and 
behavioral activities [87]. The circadian desynchrony affects all aspects 
of human health, and increases the risk of different human diseases, 
including obesity, depression, metabolic diseases and cancer [88–90]. 
Circadian clocks can be disturbed by irregular shift work, and repeated 
periods of jet lag; these conditions can promote the susceptibility to 
certain diseases and directly drive others [91–93]. 

The neoplastic formation and progression is a very intricate and 
complex process since, besides inducing profound cell cycle changes, it 
requires the occurrence of several steps including the blockage of 
apoptotic events caused by the tumoral cell contact, the initiation of 
tumor vascularization, which is fundamental in the transition of tumors 
from a benign state to a malignant one, and the acquisition of the 
migration and invasion ability [91–93]. These processes are all regu-
lated by different crucial genes that appear to function as CCGs [94]. 
Indeed, clock genes can participate in tumor development, directly or 
indirectly, by altering the expression of downstream CCGs involved in 
cell cycle regulation, DNA damage repair, cell proliferation and 
apoptosis, and tumor immunity [94]. Concerning tumor immunity, 
many studies have underlined an important regulation of the immune 
system CGs-mediated, that allows an ordinary function of various pop-
ulations of immune cells [95]. With a disturbance of the circadian 
clockwork, an alteration of immune system functioning ensues that in-
volves all the immune cells, leading to immune suppression that impacts 
tumor onset and progression. The central mediator of the circadian 
control of the immune system is BMAL-1, able to also promote an 
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anti-inflammatory state [95]. Indeed, in hematologic diseases such as 
large B-cell lymphoma, chronic lymphocytic leukemia, and acute 
myeloid leukemia the expression of BMAL-1 is strongly downregulated 
compared to healthy patients, reinforcing the concept of crosstalk be-
tween the circadian clock and cancer-immunity [96,97]. 

Several studies have demonstrated the existence of links between 
altered circadian clocks and high incidence of cancers, such as lung, BC, 
ovarian, PCa, pancreatic, CRC, endometrial cancers, hepatocellular 
carcinoma, osteosarcoma, acute myeloid leukemia, non-Hodgkin’s 
lymphoma, and head and neck squamous cell carcinoma (HNSCC) [75, 
90,98,99]. Moreover, the microenvironmental changes caused by 
growing tumors may disrupt the circadian rhythms in surrounding cells, 
inducing the acquisition of different clock phenotypes among cells in the 
same tumor [100]. Circadian disruption not only correlates with the 
onset of neoplastic disease, but it also affects the cancer progression, 
prognosis, and the treatment outcomes of cancer patients [5]. Thus, 
restoration of circadian rhythms could potentially improve patients’ 
prognosis. 

Dissecting the link between disruption of circadian rhythm and 
cancer, and understanding the influence of circadian rhythms on 
neoplastic transformation, would provide an insight for developing 
novel circadian clock–based strategies for cancer prevention and for the 
development of more efficacious therapies or novel adjuvant strategies 
to improve patient outcomes. 

Considering that the perturbation of circadian rhythm has adverse 
metabolic consequences (e.g., obesity) and that the core clock genes 
exert tumor promotive functions, here we describe how the aberrant 
circadian rhythms affect the development and prognosis of different 
types of obesity-related cancers. 

4. Clock genes in obesity-related cancers 

4.1. Breast cancer 

BC is the most frequent cancer in females worldwide [101,102] with 
a high incidence in the developed world. Indeed, the onset frequency of 
BC is much higher in Western Europe than in Middle Africa and Eastern 
Asia, suggesting that the modern western lifestyle may contribute to the 
occurrence and progression of BC [103]. Women affected by overweight 
and obesity have a higher risk of developing BC than women who 
maintain a healthy weight [103]. Moreover, growing evidence has 
demonstrated a strong connection between circadian clock interruption 
and BC [104]. Manipulating circadian patterns could be a prominent 
approach to preventing or treating this type of cancer [105]. 

Clock genes are expressed in normal breast tissue and their levels are 
finely regulated by the cellular microenvironment and the develop-
mental stage of the tissue. Since circadian genes have central roles in 
normal breast biology, disrupting the normal light/dark cycle can in-
crease BC risk. Several data confirm the importance of clock genes in BC 
etiology: indeed, PER1 and PER2 mutations have been demonstrated to 
be common in both sporadic and familial BC [105]. PER2-deficient mice 
showed a higher incidence of BC and exhibited reduced p53 expression 
with an elevated level of c-Myc and its target cell-cycle genes Cyclin D1, 
thus boosting cancer cell proliferation [84,106,107]. Both PER1 and 
PER2 also promote apoptosis, therefore the loss of PER leads to a 
decrease in the apoptotic rate and to the accumulation of damaged cells 
as a result of p53 alterations [91,108]. Moreover, the inhibition of PER1 
alters the expression of checkpoint proteins ATM and Chk2 (checkpoint 
kinase 2), necessary to control the G1 checkpoint during DDR [109]. 

Also, Cry affects tumorigenesis via the cell cycle, since is a key 
regulator of the cell cycle [110]. Indeed, the loss of Cry leads to dis-
rupted cell cycle regulation as a consequence of the alteration of Wee-1 
and Cyclin D1 [110]. The clock genes in BC can also influence the 
epithelial-mesenchymal transition (EMT), driving the formation of le-
thal metastases [106]. In normal breast tissue, PER2 recruits a core-
pressor complex to the promoters of the EMT genes Twist1, Slug and 

Snail, through the interaction with OCT1; thereby the lack of PER2 fa-
cilitates invasion and metastasis [106]. Lastly, a recent work has re-
ported that the expression of BMAL-1 in BC is also altered by tumor 
hypoxia-induced acidosis and the authors demonstrated that targeting 
the microenvironment acidosis (i.e., by using a buffering solution as 
NaHCO3 or inhibiting anaerobic glycolytic enzymes) might help to treat 
BC through restoring the expression of the circadian gene BMAL-1 [59]. 
Therefore, clock genes defects in mammary epithelium cause a 
down-regulation of growth control genes, enhanced susceptibility to BC 
onset, and lead to the appearance of more aggressive tumors. 

4.2. Prostate cancer 

PCa is the most diagnosed cancer in men and the second most 
common cause of cancer-related death [111]. The main leading cause of 
PCa is the up-regulation of the androgen receptor (AR), which contrib-
utes to the development, growth, and progression of PCa [112]. 
Accordingly, the current therapy for PCa is the androgen deprivation 
(ADT), however, a large proportion of treated tumors become inde-
pendent from the AR signaling axis, resulting in the so-called “castra-
tion-resistant prostate cancer (CRPC)” [113,114]. This reduces 
dramatically the therapeutic possibilities, and about 19.5% of patients 
die of metastatic-CRPC [115]. Furthermore, obesity further increases the 
risk of relapse after therapy, progression to advanced cancer, and mor-
tality for PCa [116–118], but, in the last years, epidemiological studies 
have also reported an interesting association between altered circadian 
rhythmicity and increased risk of PCa [119]. To date, different clock 
genes have been associated with prostate tumorigenesis; a recent study 
has demonstrated that PER2 and Clock are downregulated in PCa, 
whereas BMAL-1 is significantly up-regulated compared with normal 
prostate tissue. In vitro studies using three different prostate cancer cell 
(PCa cells) lines, have shown that the PER2 overexpression reduces the 
cellular viability driving apoptotic events. Furthermore, the same study 
has demonstrated that the treatment of PCa cells with melatonin, a pi-
neal gland hormone able to affect the modulation of sleep patterns in the 
circadian rhythm, increased PER2 and Clock. Also, melatonin treatment 
reduced BMAL-1 levels, promoting a resynchronization of oscillatory 
circadian rhythm genes, thus operating as a tumor suppressor in PCa 
cells [119]. 

Besides, CRY1, a known regulator of cell proliferation and DNA 
repair, has an increased expression in PCa tissue and this up-regulation 
is associated with a poor outcome for metastatic-CRPC [120]. 

Other studies found that PER1 levels are significantly down- 
regulated in PCa samples compared with normal samples and the 
overexpression of PER1 in PCa cells induces strong growth inhibition 
and apoptosis [99]. Briefly, Cao and colleagues demonstrated that PER1 
interacts with the promoter of the AR and appears to be a negative 
regulator of AR in PCa cells. Also, AR may stimulate PER1 transcription 
as a feedback pathway. Indeed, the authors reported that the expression 
of PER1 inhibits the AR transcription, thereby reducing the expression of 
known androgen-sensitive genes. This research has underlined that in 
the normal prostate tissue, PER1 is regulated by the AR signal and in 
turn, PER1 attenuates AR activity contributing to the maintenance of the 
hormonal homeostasis, while the disruption of circadian-AR connec-
tions may contribute to the onset of prostate tumorigenesis [99]. 

4.3. Colorectal cancer 

CRC accounts for almost 1.4 million new cancer cases diagnosed 
each year and is the third most frequent cancer in humans, with a high 
mortality rate worldwide [121]. Different risk factors underlie the CRC 
etiology, such as smoking, alcohol consumption, unhealthy dietary 
habits and increased body mass index (BMI) [122]. 

During the past decades, several studies suggested that the circadian 
clock genes are important regulators of different molecules involved in 
the DNA damage response (DDR), such as ATM, CHK2 [109] and BRCA1 
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[123], in the cell cycle progressions, such as c-Myc and p21 [83,124] 
and Wnt/β-catenin pathway [125]. Considering that mutations of these 
pathways lead to CRC, it is not surprising that, among the well-known 
factors associated with higher CRC risk, some studies have revealed a 
strong relationship between the dysregulation of the circadian system 
and, not only the pathogenesis of CRC, but also the development of 
resistance to cancer chemotherapeutic treatment [126–128]. Indeed, 
clock genes play an essential role in the gastrointestinal physiology, so 
they are often altered in CRC and affect the phenotype of colon 
neoplastic cells, cancer progression, survival rate, and chemotherapy 
responses. Interestingly, multiple studies have demonstrated that PER1, 
PER2, PER3 and CRY2 act as tumor suppressors in the intestinal mucosa 
[126–128]. In detail, PER proteins regulate β-catenin activation and are 
involved in maintaining genomic integrity by controlling cell cycle 
progression. In the CRC tissue, a marked downregulation of these clock 
genes compared to adjacent normal tissue was found, as well as the 
association between the downregulation of PER1 and PER3 and poorer 
survival rates and metastatic disease [126–128]. Furthermore, another 
important study has shown that Clock and BMAL-1 are upregulated in 
the CRC tissue and this was strongly associated with poor clinical out-
comes [129]. 

4.4. Thyroid cancer 

TC is the most common endocrine cancer, but only in 5% of cases it is 
malignant [130]. The incidence of TC is increasing rapidly, but mortality 
has remained stable [131]. Thyroid tumors are divided into 
well-differentiated papillary (PTCs) and follicular thyroid carcinomas 
(FTCs), poorly differentiated (PDTCs) and undifferentiated thyroid 
cancers (ATCs), with the latter two representing the less common sub-
types [131]. 

Over the past decade, several studies have suggested that environ-
mental drivers and lifestyle changes are responsible for the increase in 
TC impact [132,133]. Among these, the analyses of some anthropo-
metric evaluations suggested a correlation between excessive weight 
and thyroid malignancies. Indeed, studies on euthyroid subjects have 
demonstrated that regional obesity and the tendency to be overweight 
are associated with slight variations in thyroid function [132,133] until 
a higher risk of developing TC in patients affected by severe obesity 
[134]. 

Several authors have recently reported a relationship between the 
misalignment of the circadian clock and malignant transformation of the 
thyroid nodules [135–140]. The mechanisms linking circadian clock 
disruption and TC could be represented in part by insulin resistance 
[141]. Indeed, insulin resistance might influence TC development and 
progression, and often insulin resistance is a consequence of both the 
circadian clock interruption and increased levels of TSH, which in turn 
are partly controlled by the central circadian pacemaker in the SCN 
[141]. The daily rhythmicity of TSH levels is mediated by an intrinsic 
timekeeping machinery, which includes the central circadian pace-
maker as well as a peripheral clock [141,142]. The peripheral clock, in 
turn, via the rhythmic TSH secretion, also defines the daily rhythm of 
thyroid hormone release from the thyroid gland [141,142]. In detail, 
TSH plasma concentration reaches a peak during the nighttime and, 
afterwards, the secretion of TSH declines during the rest of the sleep 
period, maintaining low daytime levels [143,144]. Therefore, the daily 
rhythmicity of TSH and of circulating thyroid hormones are influenced 
by sleep-wake homeostasis [144] and the thyroid hormone deficiency or 
excess might affect the clock genes expression and metabolic CCGs in 
several peripheral tissues [145–150]. 

Various studies found a possible relationship between the circadian 
clock and thyroid tumorigenesis [145–150]. Changes in the BMAL-1 and 
CRY2 levels have been detected in TC, with a significant upregulation of 
BMAL-1 in PTC and FTC samples and a decrease of CRY2 expression, 
compared to healthy thyroid tissue and radically modified circadian 
oscillations have been reported in PDTCs [138], linking the TC 

transformation and changes in the circadian clock machinery [149]. 
Considering that the alteration of circadian rhythm contributes to thy-
roid transformation, the study of clock gene expression could improve 
thyroid nodules diagnosis and therapy. 

4.5. To date: role of circadian rhythms in other obesity-related cancer 
types 

Genetic and epigenetic alterations of clock genes can also drive 
carcinogenesis of other obesity-related cancer types, but clear evidence 
of their biological role is still needed [150–152]. The expression of 
PER2, CRY1 and CRY2 appears to be critical for hepatic carcinogenesis 
and potentially involved in its development. A detailed analysis has 
revealed that the expression of PER and CRY is significantly altered in 
HCC samples compared to corresponding adjacent normal tissue 
[150–152]. Therefore, the alteration of CLOCK function can predispose 
to liver cancer development [153]. Indeed, analysis of miRNA profiles in 
CLOCK mutant mice has demonstrated that CLOCK-regulated miRNAs 
can also promote the initiation or progression of hepatic cancer by 
regulating genes related to cell proliferation, invasion or metabolism in 
the mouse liver [153]. Moreover, in HCC, the expression of the neuronal 
PAS domain protein 2 (NPAS2), a core circadian molecule analogue of 
CLOCK, is strongly upregulated and promotes cancer cell survival [154]. 
The increase of NPAS2 levels in tumoral samples is associated with HCC 
a poor prognosis and may constitute a potential therapeutic target in 
HCC patients [155]. 

In epithelial ovarian cancer the expression levels of PER1, PER2, 
CRY2 and CLOCK are lower than in normal tissue, while CRY1 is higher, 
except for mucinous adenocarcinomas (a rare subtype of ovarian can-
cer), in which it is reduced. Also, the BMAL-1 expression is low in 
mucinous adenocarcinomas [155]. The methylation of the promoters’ 
CpG-island in PER1, PER2 or CRY1 circadian genes, is possibly involved 
in the development of endometrial cancers [156]. Furthermore, a recent 
study has demonstrated a strong association between the expression of 
CLOCK in ovarian cancer and cisplatin resistance: in particular, this 
study has revealed that CLOCK mRNA and protein expression is lower in 
cisplatin-sensitive ovarian cancer cells compared with cisplatin-resistant 
cells [157]. Thus, the increase in the expression of circadian gene CLOCK 
may reduce the sensitivity to cisplatin treatment in ovarian cancer cells 
[157]. 

D. Relles et al. have shown the influence of circadian clock genes on 
the biology of pancreatic cancer (PC) development [158]. Patients with 
pancreatic adenocarcinoma revealed a lower expression of the different 
circadian genes in cancer tissue compared to adjacent normal tissue. 
Furthermore, the results revealed that the low expression levels of the 
clock genes are also correlated with poor overall survival of patients 
with PC [158]. Moreover, an in vitro study has demonstrated that the 
overexpression of BMAL-1 reduced cell growth and induce cell-cycle 
arrest, whereas the silencing of BMAL-1 promoted cell proliferation 
[159]. Thus, the authors suggested that BMAL-1 may act as an 
anti-oncogene in PC through the binding to the p53 gene promoter, 
thereby promoting the activation of the tumor suppressor pathway 
[159]. 

Regarding the renal carcinoma (RC), some studies highlighted an 
association between the clock system imbalance with the alteration of 
the cell cycle, apoptosis, and DDR pathway [160]. In agreement with 
these, an earlier study suggested that the dysregulation of clock genes 
might mediate an increase in cancer susceptibility through the variation 
of several biological behaviors, including DNA damage, repair mecha-
nisms and apoptosis [140]. Moreover, Mazzoccoli G. and co-authors 
[161], have demonstrated a down-regulation of the clock gene PER2 
in renal cancer by comparing tumor tissue with nontumorous tissue [84, 
162]. This dysregulation led to dysfunction of cell cycle checkpoints and 
susceptibility to DNA damage, while in vitro experiments evidenced that 
the overexpression of PER2 reduced cell growth and promoted apoptotic 
events [84,162]. 
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The disturbance of the normal circadian rhythm is an important risk 
factor also for lung cancer [163]. Recently, by using a mouse model of 
lung adenocarcinoma, the effects of rhythm disruption on lung tumor-
igenesis have been characterized. Both physiologic perturbation (jet lag) 
and genetic mutation of the clock genes decreased survival and pro-
moted lung tumor growth and progression [163]. Notably, in line with 
prior studies, the authors verified that PER2 and BMAL-1, by competing 
with oncogenic c-Myc, have tumor-suppressive roles in transformation 
and lung tumor progression [164]. Thus, the downregulation of these 
central clock components contributes to the occurrence and develop-
ment of lung cancer following the increase of c-Myc expression. More-
over, TCGA analysis have elucidated that high expression levels of 
CRY2, BMAL-1 and RORA positively correlated with the lung adeno-
carcinoma prognosis, whereas the increased levels of Timeless and 
NPAS2, two lesser-known circadian genes, negatively correlated with 
lung cancer prognosis [164]. 

All these data indicate that circadian clock genes are pivotal regu-
lators for the development and progression of various cancers. 

5. From circadian rhythms to cancer chronotherapeutic 

Two different preventive and/or therapeutic approaches for chronic 
circadian rhythm-related diseases have been defined: direct targeting of 
the clock genes or the modulation of their regulators, by using small 
molecules able to adjust the core components of the circadian clock 
[165]. Considering that most of the core clock genes are transcriptional 
factors, such as BMAL-1 and CLOCK, it is laborious to directly target 
these genes [166,167]. Therefore, in the last years, new strategies have 
emerged to pharmacologically target proteins responsible for the phos-
phorylation or degradation of clock components, hence, agonists or 
antagonists capable to control the circadian network [166,167]. 

Since many antitumor agents may act against tumoral cells as well as 
normal cells, it is important to establish a correct balance between the 
maximization of the antitumor effects against malignant cells and the 
minimization of the toxicity to host cells [168–170]. Most antineoplastic 
therapies are focused on reinforcing the cytotoxic activity against cancer 
cells and avoiding drug resistance, rather than limiting their side effects 
on healthy host tissues [171–173]. To reach this aim, more attention has 
been paid to chronotherapy, which is a strategy that exploits the 
rhythms and cycles of physiological and biochemical processes to treat a 
disorder [171–173]. Circadian timing of anticancer agents often can 
induce pharmacokinetic variations of antineoplastic drugs improving 
the treatment outcomes [78,174]. For example, the administration of 
5-fluorouracil (5-FU) at a constant rate for 5 days in cancer patients, has 
led to the observation that the highest plasma concentration of 5-FU is 
reached at 4:00 a.m., which is also the best-tolerated moment for 
chemotherapy [78,174]. 

Interestingly, several studies underlined that chronotherapy signifi-
cantly reduced the cytotoxic effects of various anticancer drugs and 
improved the life quality and survival rate of cancer patients [175–177]. 
Moreover, many chemotherapeutic agents showed increased cytotoxic 
effects, especially during a specific cell-cycle phase, so this suggests that 
the circadian chrono-modulated drug delivery systems might translate 
into better treatment outcomes [178,179]. 

In addition, the timed infusion of oxaliplatin, 5-FU, and chronoFLO 
(chronomodulated 5-fluorouracil-leucovorin-oxaliplatin) in patients 
with metastatic CRC minimized the rate of severe mucosal toxicity and 
reduced for about 50% the functional impairment from peripheral 
neuropathy compared to conventional drug delivery [180]. Besides, in 
31 patients treated with irinotecan, an antineoplastic enzyme inhibitor 
primarily used in the treatment of CRC, the chrono-modulated infusion 
from 2:00 a.m. to 8:00 a.m. reduced the acute and persistent diarrhea 
and thus improved patients’ quality of life [181]. 

A recent clinical study has demonstrated that immunotherapy is less 
efficient when infused in the evening than in the daytime, so the 
application of chronotherapy for immunotherapy has improved the 

survival of patients with advanced melanoma [182,183]. Successful 
developments of chrono-therapeutics have been achieved also in the 
treatment of hepatic carcinoma [184,185]. Indeed, the 
chrono-modulated infusion of anticancer drugs directly into the hepatic 
artery has shown a beneficial impact, contributing to improvements in 
both toxic tolerability and drug effects [184,185]. 

Numerous chemotherapic agents show their cytotoxic effects at 
specific phases of the cell division cycle, for example, cells during DNA 
synthesis are more susceptible to 5-FU [186] and irinotecan treatment 
[187]. Therefore, the best-tolerated circadian time is during the light 
period, that is, when the number of G0/G1 cells predominates 
[188–191]. Moreover, some in vivo studies using mouse models, have 
shown that the chrono-modulated infusion of 5-FU, irinotecan, doce-
taxel and gemcitabine have beneficial effects during the early light 
period, in which the antiapoptotic BCL2 expression is high, and proap-
optotic BAX expression is low [188–191]. For these reasons, is important 
to know the cancer cells timing, to define when tumor exhibits prolif-
erative targets relevant to cancer cell DNA synthesis or cancer cell 
division. 

Together, these findings support the application of chronotherapy in 
cancer treatment to improve therapeutic efficiency and prolong the 
survival of cancer patients. However, further clinical trials are necessary 
to use chronotherapy as an adjuvant treatment for different types of 
cancer. 

6. Conclusions 

Both experimental data and studies in humans show large evidence 
that the circadian disruption favors the incidence and growth of obesity- 
related tumors. 

It is conceivable that not only the maintenance of a healthy state 
must include the circadian rhythm homeostatic control, but also that 
reestablishment of a correct day-night time balance can be view as a 
novel intervention in combination with cancer therapy. Thus, based on 
the vast observation reported, these new concepts can have implications 
for therapeutic approaches, and to set the possible design up of chrono- 
pharmacological strategies in obesity-related cancers. 
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