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Preface

The development of large-scale data analysis and statistical learning methods for data science is
gaining more and more interest, not only among statisticians, but also among computer scientists,
mathematicians, computational physicists, economists, and, in general, all experts in different fields
of knowledge who are interested in extracting insight from data. Cross-fertilization between the
different scientific communities is becoming crucial for progressing and developing new methods
and tools in data science. In this respect, the Statistics & Data Science group of the Italian Statistical
Society has organized its 3rd international conference held in Palermo on the 11st and 12nd of April
2024, attended by over 100 researchers from different scientific fields. A collection of the presented
papers is available in the present Proceedings showing a huge variety of approaches, methods, and
data-driven problems, always tackled according to a rigorous and robust scientific paradigm.

The Statistics & Data Science group

Palermo, April 11st and 12th, 2023
Antonella Plaia - Leonardo Egidi - Antonino Abbruzzo
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Determining the optimal number of clusters 
through Symmetric Non-Negative Matrix 
Factorization 
 

Stavolo Agostino1, Grassia Maria Gabriella, Marino Marina, Mazza Rocco, Paesano 
Simone, Sacco Dario   

Abstract Cluster analysis, as a form of unsupervised learning, has been developed 
to group observations by leveraging application-specific similarity measures. This 
study investigates matrix factorization techniques, with a specific focus on analyzing 
lexical tables within the framework of term-document matrices. Symmetric Non-
Negative Matrix Factorization (SNMF) takes center stage as an effective tool for 
clustering operations. The primary challenge addressed is the automated 
determination of the optimal number of clusters.  
 
Key words: clustering, symmetric non-negative matrix factorization 

1 Introduction 

The transition from analog to digital data, driven by advancements in information 
technology and the Internet's growth, has generated vast data volumes across 
domains. Textual datasets pose challenges due to high dimensionality and sparsity, 
demanding significant computational resources and impacting result 
generalizability. Analyzing large corpora faces high dimensionality issues, as lexical 
tables form large, sparse matrices. This data noise must be minimized to reduce 
computational complexity and ensure reliable results in associative text relationship 
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analyses. Various approaches exist for matrix dimensionality reduction and 
automatic information extraction from document collections.  

Factorial-based Approach: Utilizes factorization techniques like LCA [9] and 
LSA [3] based on GSVD to minimize the number of terms needed for describing 
documents in a low-rank vector space. 

Network-based Approach: Represents matrices as graphs to visualize contextual 
relationships between terms [12], overcoming Bag-of-Words encoding limitations. 
Community detection methods are commonly used [5]. 

Probabilistic Approach: Addresses dimensionality reduction through 
probabilistic models such as topic modeling (pLSA [6] and LDA [1]), enabling the 
discovery of underlying topics within a corpus. 

Non-Negative Factorization (NMF): Utilizes NMF to achieve reduced 
dimensionality through additive combinations of original terms, with applications in 
various fields [10]. However, its effectiveness in clustering is limited for nonlinear 
cluster structures, leading to the introduction of symmetric Non-Negative Matrix 
Factorization (SNMF).  
The contribution suggests utilizing consensus clustering to determine the ideal 
number of semantic clusters for delineating the primary themes within Ursula von 
der Leyen's communication, employing Symmetric Non-Negative Matrix 
Factorization.  

2 Symmetric Non-Negative Matrix Factorization 

 
The objective of Symmetric Non-Negative Matrix Factorization (SNMF) is to 
approximate a non-negative symmetric matrix A by expressing it as the product of a 
non-negative matrix H and its transpose HT, resulting in A ≈ HHT.  

During clustering operations, outcomes are obtained directly by marking the 
number of columns corresponding to the maximum value in each row of H [15], 
making H also known as the clustering assignment matrix. SNMF, falling under the 
category of soft graph clustering, relaxes the orthogonality constraint on the H 
matrix, resulting in approximately orthogonal matrices and fuzzy clustering results, 
distinguishing it from traditional hard graph clustering methods. Due to its 
advantages in data clustering, SNMF has gained significant attention, leading to the 
development of various algorithms. Researchers have recognized SNMF's superior 
performance in clustering tasks [14] [2], and it has been noted for its effectiveness in 
extracting topics from lexical matrices [18]. Recent studies [16], have shown that 
SNMF outperforms both k-means and spectral clustering methods, indicating its 
potential in diverse applications. SNMF has found success not only in clustering 
tasks but also in community detection within graphs, as demonstrated [11]. The 
formalization of SNNMF in the following equation: 

 

 (1) 
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It is considered a generalized form for solving clustering objectives [7]. Involving 
the minimization of the Frobenius norm, the non-negative matrix H plays a crucial 
role, with dimensions n × k, where k is the number of required clusters. It is 
essential for capturing the cluster structure. SNMF is essentially a form of clustering 
on graphs, demonstrating similarities to kernel k-means and spectral clustering, 
given its relaxation of non-negativity orthogonality on H. The performance of 
SNMF clustering relies on the construction of the similarity matrix A. Various 
methods, proposed by [8], include considering the affinity matrix Ã, where elements 
represent weights of edges between data points, and constructing A based on ratio 
correlation or normalized cut. The SNMF algorithm is designed for decomposing 
completely positive similarity matrices, presenting challenges when negative 
eigenvalues are involved. To address this, the single-loss weight SNMF model was 
developed by [4]. 

3 Automatic number of clusters in SNMF 

A significant challenge for clustering methods is determining the number of clusters 
in the data. For the SNMF we use the consensus clustering to define the automatic 
number of k clusters [13]. Consensus clustering formalizes the concept of 
amalgamating diverse clusters into a unified representative, or consensus, to 
highlight shared structures across various datasets and unveil substantial differences 
among them. The objective of consensus clustering is to identify a representative 
consensus that reflects the provided cluster of a particular dataset.  

Formally, the vector IDq comprises labels, IDqj ∈ [1, ..., k], indicating the cluster 
memberships for each row in X. The binary connectivity matrix, Bq, is derived from 
the values in the IDq vector, where Bij equals 1 if the ith and jth elements belong to 
the same cluster and 0 otherwise. Formally, B(q) (i, j) = {1 if xi and xj belong to the 
same cluster, 0 otherwise. The consensus matrix M(k) is computed for a fixed 
number of clusters k by averaging all binary connectivity matrices:  
 

 
(2) 

 
Each element in M(k) (known as the consensus index), indicates how frequently 

the ith and jth elements are clustered together and r is the number of resamples. A 
perfect clustering results in a consensus matrix with only 0 or 1 values. Deviations 
from these values quantify the stability of clusters for a given number of clusters, 
and by comparing consensus matrices M(k) for various k ∈ [kl, ku], the number of 
clusters corresponding to the minimum deviation from a perfect consensus is 
identified as the potential number of clusters in the actual data. 
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4 Empirical study 

To empirically showcase the practical value of consensus clustering in automatically 
identifying the optimal number of clusters in the SNMF, we conducted an analysis 
on Instagram posts made by Ursula von der Leyen, the President of the European 
Commission. Our objective was to delineate the primary topics of discussion 
spanning from her inauguration year in 2018 to January 1, 2024. We use Crowd 
Tangle to extract 708 posts by the official profile of the European President. The 
preprocessing phases of cleaning textual data involve several essential steps to 
prepare the text for analysis. Firstly, normalization ensures consistency by 
converting text to a standard format. This may involve converting all letters to 
lowercase and removing punctuation marks. Next, tokenization breaks the text into 
individual words or tokens, separating them into distinct units. Removing stopwords 
is another crucial step, where common words that don't carry significant meaning, 
such as "the" or "and" are eliminated to reduce noise. Lemmatization helps further 
refine the text by reducing words to their root form. Stemming removes affixes from 
words, while lemmatization maps words to their base form [12]. After that we create 
the vocabulary, and we apply the cosine similarity to create a term-term matrix. In 
Figure 1 we use the consensus clustering to cosine similarity matrix and identify five 
topics (Table 1), according to the lower value of the consensus measure.  
 
Figure 1: Optimal number of clusters 
 

 
 
Table 1: Semantic clusters of Ursula von der Leyen communication 
 
 

Clusters  Words 
Balkan policies Albania, Machedonia, Heads_state, implement, 

government, earthquake, solidarity, balkan, call, trip 
Ukrainian war Respond, dependency, consumer, russian, belarus, 

propose, attack, sanction, diplomatic, Ukraine 
Green economy Green, plan, invest, digital, resilience, hydrogen, 

recovery, project, next_generation, sustainable 
Refugees Foster, family, housing, child, lose, house, damage, 

home, responsibility, refugee,  
Covid-19 Vaccination, vaccine, pandemic, Europe, order, dose, 

announce, test, safe_vaccine 
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Considering the top ten terms appearing in the cluster, the first topic delves into 
Balkan support policies, specifically focusing on the comparison between 
Macedonia and Albania, alongside the management of earthquake funds. The 
discussion likely centers around the initiatives and strategies implemented by 
international organizations and governments to provide support and assistance to the 
Balkan region, with a specific focus on Macedonia and Albania. The second topic 
involves the ongoing conflict between Ukraine and Russia and the role of Europe in 
maintaining stability and balance in international relations. The conflict has been a 
significant geopolitical issue, with implications for regional security and global 
politics. Europe, as a key player in international affairs, has a vested interest in 
resolving the conflict peacefully and preventing further escalation. Europe's role 
may include diplomatic efforts, economic sanctions, peacekeeping initiatives, and 
support for Ukraine's sovereignty and territorial integrity. The third theme pertains 
to government policies and initiatives aimed at promoting a green economy and 
transitioning to renewable energy sources. A green economy focuses on sustainable 
development, environmental protection, and reducing carbon emissions to combat 
climate change. Policies related to this may include incentives for renewable energy 
production, investments in clean technologies, regulations to reduce greenhouse gas 
emissions, and support for sustainable practices in various sectors such as 
transportation, agriculture, and industry. The use of renewable energies, such as 
solar, wind, hydroelectric, and geothermal power, is a key component of 
transitioning to a green economy, as it reduces reliance on fossil fuels and mitigates 
environmental impacts. The last topic defines the vaccination strategy of Covid-19 
pandemic. The focus is on vaccination efforts in Europe, encompassing discussions 
on vaccine procurement, distribution, and the scientific campaign to support 
vaccination efforts. 

5 Conclusions and limitations 

The paper delves into various matrix factorization techniques, with a specific focus 
on utilizing lexical tables to unveil latent themes within textual data. Its primary 
objective is to effectively decompose these matrices, with a particular emphasis on 
symmetric non-negative matrix factorization (SNMF), renowned for its 
effectiveness in clustering tasks. The central aim of the study is to develop an 
automated method for determining the optimal number of clusters within a lexical 
matrix. Among the methodologies investigated, consensus clustering emerges as a 
promising approach, backed by the analysis results, supported by the results of the 
analysis, which showed the main themes of Ursula von der Leyen's communication 
on Instagram. However, the paper recognizes the computational challenges 
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associated with consensus clustering, especially when handling large datasets or a 
high number of resamples, as it can lead to a substantial computational burden.  
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