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A B S T R A C T

Many Deep Learning approaches are based on variations of standard multi-layer feed-forward neural networks.
These are also referred to as deep networks. The basic idea is that each hidden neural layer accomplishes a data
transformation which is expected to make the data representation ‘‘somewhat more linearly separable" than
the previous one to obtain a final data representation which is as linearly separable as possible. However,
determining the optimal network parameters for these transformations is a crucial challenge. In this study,
we propose a Deep Neural Network architecture (Hidden Classification Layer, HCL) which induces an error
function involving the output values of all the network layers. The proposed architecture leads toward solutions
where the data representations in the hidden layers exhibit a higher degree of linear separability between
classes compared to conventional methods. While similar approaches have been discussed in prior literature,
this paper presents a new architecture with a novel error function and conducts an extensive experimental
analysis. Furthermore, the architecture can be easily integrated into existing frameworks by simply adding
densely connected layers and making a straightforward adjustment to the loss function to account for the
output of the added layers. The experiments focus on image classification tasks using four well-established
datasets, employing as baselines three widely recognized architectures in the literature. The findings reveal
that the proposed approach consistently enhances accuracy on the test sets across all considered cases.
1. Introduction

Nowadays, the success of Deep Learning (DL) approaches in several
Machine Learning tasks [1–4] has led to an increase in interest in Multi-
Layer Feed-Forward (MLFF) neural networks [5] insofar as a successful
class of deep neural networks consists of MLFF networks with more
than one hidden layer and possibly some specific architectural choices.
In the rest of the paper we will refer to such Deep Neural Networks
as DNNs. In a nutshell, DNN networks are computational architectures
organized as 𝐿 consecutive layers or levels of elementary computing
units, called neurons. The last layer 𝐿 is the output layer, and the
remaining layers are usually called hidden or internal layers.

In a DNN network each hidden layer 𝑙 performs a non-linear func-
tional map 𝛷𝜃𝑙

𝑙 from the output 𝐳𝑙−1 of the previous layer (and possibly
other previous layers) to the output of the layer itself, where 𝜃𝑙 are
the weights associated to the connections incoming into the layer 𝑙,
plus the biases of the layer. By contrast, the output layer may also
perform a linear transformation. In other words, the whole computation
of a DNN can be viewed as a non-linear parametric functional mapping
𝐲 = 𝑀(𝐱; 𝜃) from a 𝑑-dimensional space to a 𝑐-dimensional space, where
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𝑑 is the number of input variables and 𝑐 = 𝑚𝐿 is the number of neurons
in the output layer. The parameters 𝜃 are the weights and biases of the
network, and 𝐲 are the output values of the output layer.

Although from a theoretical point of view the DNNs capability of
being universal approximators has been extensively discussed [6–8],
together with the inducted feature representation spaces [8,9], it is im-
portant to notice that the difficult to effectively find the most suitable 𝜃
remains. In particular, when DNNs are applied in the context of classifi-
cation problems, one has to find the parameters 𝜃𝑙 such that the compo-
sition of 𝐿−1 non-linear transformations 𝐳𝐿−1 = 𝛷𝐿−1

(

𝛷𝐿−2
(

…𝛷1(𝐱)
)

)

maps each input 𝐱 from a non-linearly separable space into a linearly
separable one. In fact, in the context of classification problems, one of
the main goals is to find a suitable data representation which allows
to obtain a linearly separable classification problem. Plausibly, when a
DNN is used, each internal representation 𝐳𝑙 can be expected to make
the representations of 𝐱 ‘‘somewhat more linearly separable’’ than the
previous one 𝐳𝑙−1. We underline that the complexity of a classification
problem can be measured with respect different aspects, however class
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separability is a key aspect and different levels of class separabil-
ity can be quantified [10,11]. In particular, in [12] the Generalized
Discrimination Value (GDV) to measure the separability between two
dataset is introduced. The GDV is defined as the gap between the mean
intra-cluster and the mean inter-cluster distances, computed on a set
of labelled data represented in some space. More in detail, the GDV
compares in a quantitative way the degree of class separability between
two data representations. Since GDV can be computed on different
types of representations, it can be also used to compare the separability
of the same data represented in different spaces, such as the different
representations returned by different neural networks’ layers.

However, we again emphasize that how to determine the appro-
priate parameters 𝜃 from a data set by a supervised learning process

inimizing an error (or loss) function is still a critical problem. We
otice that error functions usually depend on the final network output
alues only, without taking care about the results obtained in the
idden layers. Thus, starting from the previous considerations, in this
aper we investigate the possibility to achieve a supervised learning
pproach which favours solutions where 𝐱’s representations at the

hidden levels have a higher degree of linear separability between the
classes with respect to standard approaches. To this aim, we propose a
DNN architecture which induces an error function involving the output
values of all the network layers. More specifically, as we will discuss in
more detail in Section 2, the output of each hidden layer 𝑙 is sent to an
additional linear output layer which is trained to classify the input 𝑥 on
he basis of the input representation encoding in the layer 𝑙 (see Fig. 1).

From now on, we named this architecture Hidden Classification Layer
network (HCL). We investigated the impact of this type of solution in
a series of experimental scenarios as we will discuss in more detail in
Section 3.

Although similar approaches have already been partially discussed
in the past literature (see, for example, [13]), here we propose both
a different version in terms of both neural architecture and error func-
tion, and a more extensive experimental analysis (see Sections 2 and 3).
In particular, in [13] the supervision of the hidden layer was made by
SVMs instead of linear neural layers as in our case. In [14] a cascade
of Convolutional Neural Networks (C-CNN) was proposed. C–CNN is
composed of hidden layers combined together through dilated convo-
lutions and trained using a proposed progress optimization algorithm.
Also in this case, our approach proposes a simpler architecture to favour
hidden representations with a higher degree of class separability. The
rest of the paper is organized as follow: in Section 2 the proposed
method is described; Section 3 describes the experimental setup and the
evaluation methods; in Section 4 the results are reported and discussed;
finally, Section 5 contains final remarks.

2. Model description

A neural network, as reminded before, is structured in L layers of
neurons. Each neuron 𝑖 belonging to the 𝑙-th layer, achieves a two-
tep computation (see [15], chapter 4): a linear combination 𝑎𝑙𝑖 of the

neuron’s inputs is computed first, and then the neuron output 𝑧𝑙𝑖 is
computed by an activation function 𝑓𝑙(⋅), i.e., 𝑧𝑙𝑖 = 𝑓𝑙(𝑎𝑙𝑖). Usually,
activation functions are non-linear function (see [16] for a review). The
activation function input 𝑎𝑙𝑖 is usually computed on the basis of real
values, said weights, associated with the connections coming from the
neurons belonging to the layer 𝑙 − 1 (and possibly from other previous
layers) and a bias value associated to the neuron 𝑖. Each layer 𝑙 is
composed of 𝑚𝑙 neurons, and the flow of computation proceeds from
the first hidden layer to the output layer in a forward-propagation
fashion.

In this research work, we focus on 𝐶-classes classification problems,
with 𝐶 ≥ 2. In this context, Cross-Entropy (CE) loss [17] is one of
70

the most common loss function to be optimized. Given a dataset of 𝑁 e
Fig. 1. A scheme of the proposed approach. Each hidden layer 𝑙𝑖 of the main branch of
the network produces an output 𝑣𝑒𝑐𝑧𝑖, and the final classification layer 𝑙𝐿 produces the
utput 𝑣𝑒𝑐𝑦. For each hidden layer 𝑙𝑖 , 1 ≤ 𝑖 < 𝐿, a further classification layer 𝑙𝐻𝐶𝐿

𝑖 is
dded. Each 𝑙𝐻𝐶𝐿

𝑖 is fed with the respective 𝐳𝑖, producing an output 𝐳𝐻𝐶𝐿
𝑖 . Therefore,

ll outputs 𝐳𝐻𝐶𝐿
𝑖 , ∀1 ≤ 𝑖 ≤ 𝐿 − 2, are used together with the network classification

output 𝐲 to compute the final WCE loss.

samples, DS = {(𝐱𝑛, 𝐭𝑛)}𝑁𝑛=1, CE for the 𝑛th sample can be expressed as
follows:

𝐶𝐸𝑛(𝜃; 𝐲𝑛, 𝐭𝑛) = −
𝐶
∑

𝑐=1
𝑡𝑛𝑐 log(𝑦

𝑛
𝑐 )

where 𝐭𝑛 ∈ {0, 1}𝐶 is the one-hot encoding representation of the class
label of the 𝑛th sample of the dataset, and 𝐲𝑛 = 𝐲(𝐱𝑛; 𝜃) is the output
of the neural network when it is fed with the input 𝐱𝑛. Finally, 𝜃
corresponds to all the network parameters. The total CE loss is equal
to the sum of the single 𝐶𝐸𝑛 over the dataset samples, i.e., 𝐶𝐸 =
∑𝑁

𝑛=1 𝐶𝐸𝑛. As previously said, this loss formulation takes into account
only the classification reported by the final layer of the network,
without considering how the intermediate network levels affect the
final classification scores. By contrast, in our model, HCL network, the
data representation corresponding to the output of each hidden layer is
used as input of a linear classifier so as to favour a data representation
for each level as separable as possible.

More formally, given a DNN composed of 𝑙1, 𝑙2,… , 𝑙𝐿−1 hidden
ayers and a final layer 𝑙𝐿 having 𝐶 neurons, we connect each hidden
ayer 𝑙𝑗 , 1 ≤ 𝑗 ≤ 𝐿− 2 with a new densely connected linear layer 𝑙𝐻𝐶𝐿

𝑗
cting as an independent linear classifier.

Adopting a proper loss function to train each classifier 𝑙𝐻𝐶𝐿
𝑗 , we

xpect that the features learned by the associate layer 𝑙𝑗 are the most
iscriminating as possible. In other words, additional 𝐿 − 2 layers
𝑙𝐻𝐶𝐿
1 , 𝑙𝐻𝐶𝐿

2 ,… , 𝑙𝐻𝐶𝐿
𝐿−2 } composed of 𝐶 neurons are added, and each

𝐻𝐶𝐿
𝑗 layer receives connections from the hidden layer 𝑙𝑗 only, making
ach 𝑙𝐻𝐶𝐿 as an independent linear classifier. Therefore, given a DNN
𝑗
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𝑀 , we obtain an HCL network 𝑀𝐻𝐶𝐿 which will be composed of
two distinct sets of layers: (i) the standard neural network layers
{𝑙1, 𝑙2,… , 𝑙𝐿}, composing the backbone model 𝑀 , and (ii) the Hidden
Classification Layers {𝑙𝐻𝐶𝐿

1 , 𝑙𝐻𝐶𝐿
2 ,… , 𝑙𝐻𝐶𝐿

𝐿−2 }, composing a set of layers
where each layer 𝑙𝐻𝐶𝐿

𝑗 favours more separable data representations
in the respective hidden layer 𝑙𝑗 , independently from the subsequent
layers. Each Hidden Classification Layer 𝑙𝐻𝐶𝐿

𝑗 leads to a model having
parameters’ set 𝜃𝐻𝐶𝐿

𝑗 composed of two distinct subsets of parameters,
the former corresponding to the connections incoming in the layer
𝑙𝐻𝐶𝐿
𝑗 , and the latter corresponding to the parameters of the backbone

DNN 𝑀 down to the layer 𝑙𝑗 . In Fig. 1 a general scheme of the proposed
approach is reported.

Denoting with 𝐳𝐻𝐶𝐿
𝑛,𝑗 the scores returned by the Hidden Classification

Layer 𝑙𝐻𝐶𝐿
𝑗 tied to the 𝑙𝑗 layer on the 𝑛-th input sample, we propose the

following Weighted Cross-Entropy (WCE) loss formulation:

𝑊𝐶𝐸𝑛(𝜃; 𝐲𝑛, 𝐭𝑛) = 𝐶𝐸𝑛(𝜃𝑀 ; 𝐲𝑛, 𝐭𝑛) +
𝐿−2
∑

𝑗=1
𝜆𝑗 ⋅ 𝐶𝐸𝑛(𝜃𝐻𝐶𝐿

𝑗 ; 𝐳𝐻𝐶𝐿
𝑛,𝑗 , 𝐭𝑛) (1)

where 𝐲𝑛 is the score returned by the final layer of the classifier 𝑀 , 𝜃𝑀
are the parameters of the backbone model 𝑀 , and {𝜆1, 𝜆2,… , 𝜆𝐿−2} is

set of regularization coefficients greater than or equal to 0. Setting
1 = 𝜆2 = ⋯ = 𝜆𝐿−2 = 0 results in standard CE loss applied to the final
lassification layer only, while different values give different weights
o the Hidden Classification Layers {𝑙𝐻𝐶𝐿

𝑗 }𝐿−2𝑗=1 .

. Experimental assessment

.1. Data and neural network models

The performance of the HCM network architecture is assessed on
mage classification tasks considering four well-known datasets:MNIST,
ashion MNIST, CIFAR-10, and CIFAR-100. The MNIST [18] dataset
onsists of 70,000 grayscale images at a resolution of 28 × 28 rep-

resenting 10 different classes (the digits from 0 to 9). It is divided
n two sets: the former composed of 60,000 images usually used as
raining samples and the latter of the remaining 10,000 images usually
sed as test samples. Fashion-MNIST is a dataset of images representing
ashion articles [19]. Fashion-MNIST was proposed as a replacement
or the original MNIST dataset for benchmarking machine learning
lgorithms, sharing the same image size and structure of training and
esting splits. Indeed, it provides a training set of 60,000 examples and

test set of 10,000 examples. Each example is a 28 × 28 grayscale
mage, representing one of the following items: T-shirt/top, Trouser,
ullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot. CIFAR-
0 dataset consists of 60,000 colour images of 10 different classes, that
re airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
he dataset provides 50,000 training images and 10,000 test images at
resolution of 32 × 32.

Concerning the neural network models which are used as baseline to
valuate the classification enhancement of HCL network architecture,
e considered LeNet-5 [18], Hinton network [20], and ResNet18 [21].
hey are among the most famous networks exploiting convolutional

ayers for image classification.
In its standard formulation, LeNet-5 is composed of a sequence of 3

onvolutional layers interspersed by 2 sub-sampling layers, followed by
final full-connected layers (the latest one for classification). Instead,
inton network is composed of three convolutional hidden layers in-

erleaved with three maxpooling layers. Finally, the main characteristic
f a ResNet is the presence of shortcuts between non-consecutive layers
hat allows deep networks to be easily trained. In this work, we use the
71

8 layer residual network (ResNet18) described in [21].
Table 1
Results of the evaluation stage. For each dataset, accuracy on the test set obtained on
both the vanilla models (baseline) and the proposed ones are reported. ResNet has not
been tested on MNIST dataset due to the already very high accuracies obtained with
the other models. For CIFAR10 and CIFAR100, performance was evaluated also using
augmented data (augmented) for ResNet.

Model Baseline Proposed

MNIST LeNet5 99.0 99.2
Hinton 98.7 99.4

FMNIST LeNet5 90.6 90.8
Hinton 92.1 92.6
ResNet 92.3 93.3

CIFAR10 LeNet5 66.2 71.5
Hinton 81.2 83.3
ResNet 86.3 89.0
ResNet (augmented) 94.4 94.6

CIFAR100 LeNet5 34.9 38.4
Hinton 52.5 53.3
ResNet 60.1 63.6
ResNet (augmented) 74.7 75.4

3.2. Evaluation

Each model is evaluated on both the original version (vanilla)
proposed in their respective works and on its modified instance as
described in Section 2. All the models were trained using the same ex-
perimental setup reported in their reference papers, except for Learning
Rate 𝐿𝑅, the number of Max Epochs 𝑀𝐸, and the Patience Epochs
𝑃𝐸, which can be strongly dependent by the network architecture.
𝑀𝐸 and 𝑃𝐸 are experimentally set to 1000 and 200 respectively,
since we experimentally noticed that these values are enough to con-
verge in all the analysed cases, while optimal 𝐿𝑅 and 𝜆 values are
ound through a grid-search approach. For the 𝐿𝑅, the search space
as 𝐿𝑅 ∈ [10−5, 10−1], instead different combinations are considered

or 𝜆 parameters. Experiments on ResNet involving CIFAR-10 and
IFAR-100 dataset were made both considering only original data and
ugmented data, using 4 pixels zero padding, corner cropping, and
andom flipping.

Importantly, in order to experimentally show that the proposed
ethod leads toward more easily separable data representations we

omputed Generalized Discrimination Value (GDV) measure [12] for
ach vanilla network’s layer and its corresponding version equipped
ith hidden classification layers. We expect that, as the depth of the
etwork increases, the data representations obtained with the proposed
etwork’s layout are more easily separable respect to the representa-
ions obtained by the respective models without additional layers. Note
hat GDV is a measure of how well different data classes separate. GDV
alues result 0.0 for data points with randomly shuffled classes, and
1.0 in the case of perfectly separable classes. More in detail, GDV on
data representation 𝐳 is defined as

𝐺𝐷𝑉 (𝐳) = 1
√

𝐷

( 1
𝐿

𝐶
∑

𝑐=1
𝑑𝑖𝑛𝑡𝑟𝑎(𝐳𝑐 ) −

2
𝐶(𝐶 − 1)

𝐶−1
∑

𝑐=1

𝐶
∑

𝑚=𝑐+1
𝑑𝑖𝑛𝑡𝑒𝑟(𝐳𝑐 , 𝐳𝑚)

)

here 𝑑𝑖𝑛𝑡𝑟𝑎(𝐳𝑐 ) is the mean intra-class distance on the representations
𝑐 of the data belonging to the class 𝑐, and 𝑑𝑖𝑛𝑡𝑒𝑟(𝐳𝑐 , 𝐳𝑚) is the mean
nter-class distance on the data representations 𝐳𝑐 , 𝐳𝑚 belonging to the
𝑐 and 𝑚 classes.

4. Results

In Table 1 the test set accuracy, which was obtained by both the
HCL network architecture and the vanilla networks, is reported. It is
shown that the adoption of the HCL architecture improves the accuracy
in all the cases, especially in the cases where a low accuracy for
vanilla networks was obtained. In these cases, in fact, HCL network

architecture appears to give a more significant improvement. In Figs. 2
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Fig. 2. GDV values obtained with the proposed approach (LAT) compared with the vanilla networks on the CIFAR10 dataset. On the 𝑥 axis, the layer of the model and on the 𝑦
axis the respective GDV value.
Fig. 3. GDV values obtained with the proposed approach (LAT) compared with the vanilla networks on the CIFAR100 dataset. On the 𝑥 axis, the layer of the model and on the
𝑦 axis the respective GDV value.
and 3 the GDV values for each layer of each model and for CIFAR10
and CIFAR100 dataset are reported.

In Fig. 4, we present the different terms of the Weighted Cross-
Entropy (WCE) during the training epochs (𝑥 axis). This includes the
CE loss calculated for the entire model (the first term in Eq. (1), solid
line in Fig. 4), as well as the CE loss values obtained from each HCL
(dashed and dotted lines), that are weighted and combined to form the
second term in Eq. (1).

A noteworthy observation is that the CE loss to the first HCL
is higher compared to all the subsequent HCL losses, for both the
CIFAR10 and CIFAR100 datasets. Despite this, we can notice that the
loss corresponding to HCL l3 performs relatively worse in the case of
CIFAR10, while it exhibits the best performance compared to all other
HCL layers for CIFAR100.

This difference in performance between layers can be linked to the
distinct types of layers present in LeNet5. Specifically, the first and third
layers are convolutional, whereas the second layer is a max-pooling
layer. This discrepancy potentially results in divergent optimization
outcomes. Therefore, despite achieving enhanced linear separability
across the layers (as indicated by the GDVs), we cannot make definitive
assumptions about the model’s performance beforehand, since it can be
affected by the data and the network’s layers. Therefore, the placement
of the HLC layers in the architecture should be approached with care
and considered as part of the Hyperparameter Optimization process.
Moreover, the Cross-Entropy (CE) computed on the model output (de-
picted by the solid line) for CIFAR 100 is lower than the CE values for
HCL layers 1, 2, 4, and 5, but higher than that of HCL layer 3 (which
72
is the lowest). This observation suggests that the primary output CE
benefits positively from the losses inducted by the HCLs.

In Fig. 5, CE losses on the validation sets observed during the train-
ing for both the baseline models and the proposed HCL architectures on
CIFAR 10 and CIFAR 100 datasets are reported. For brevity, we chosen
to show the results for LeNet5 and ResNet models; however, the same
observations apply to Hinton’s model as well.

A notable point is that, starting from a certain point during the
training, the CE of the proposed architecture consistently outperforms
the corresponding CE on the baseline models. This suggests that the
HCL model effectively acts as a regularization mechanism, selectively
filtering out information that may hinder the network’s ability to
generalize across its layers, thereby mitigating overfitting.

5. Conclusion

In this research work, we experimentally investigated the impact
of constraining the classification complexity of the intermediate input
representations with respect to their linear separability on the perfor-
mances of DNNs in classification tasks. To this aim, we proposed a novel
DNN architecture, which we named Hidden Classification Layer (HCL)
network, where the output of each standard hidden layer is sent to a
Hidden Classification Layer trained to classify the input 𝑥 based on
the 𝑥 representation given by the standard layer itself. HCL network
architecture allows obtaining solutions with input representations at
the hidden levels having a lower classification complexity with respect
to their linear separability. Note that our approach can be applied in
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Fig. 4. The different terms of the Weighted Cross-Entropy (WCE) during the training epochs (𝑥-axis) on LeNet-5 for CIFAR 10 (left) and CIFAR 100 (right) datasets. This includes
the CE loss calculated for the entire model (first term of Eq. (1), solid line), and the CE loss values obtained from each HCL (dashed and dotted lines), that are weighted and
combined to form the second term in Eq. (1).
Fig. 5. Cross-Entropy (CE) validation losses (𝑦 axis) observed during training (𝑥 axis) for both the LeNet5 (first row) and ResNet (second row) using CIFAR 10 (first column) and
CIFAR 100 (second column) datasets.
slightly different ways: (1) given an already known neural network
architecture, one can, first, augment it by Hidden Classification Layers
and, then, train the whole system from scratch; (2) given an already
trained neural network architecture, one can, first, augment it by
Hidden Classification Layers and, then, tune the whole system; (3) one
can design and train a new neural architecture equipped with Hidden
Classification Layers. In this study, we used the first approach to test
our proposal by considering three successful neural network models
(LeNet-5, Hinton network, and ResNet18). These models were trained
with and without Hidden Classification Layers to evaluate the impact
of HCL on the model performances experimentally. Each model was
trained and tested on four datasets (MNIST, fashion-MNIST, CIFAR-10
and CIFAR-100). The results show that the HCL network has a positive
impact uniformly (see Table 1). It is interesting that the proposed
approach leads to a GDV improvement in almost all cases, suggesting
that the HCL network architecture can help the model build more
separable inner representations. Moreover, it is worth noting that, in all
the cases and with and without Hidden Classification Layers, the GDV
73
values exhibit only a slight decrement for the initial network layers
or they have even a wavering behaviour. Just only for the last layers,
there is a sharp decrement (this decrease is particularly pronounced
for HCL networks). Thus, these results are consistent with [22], where
the authors show experimentally that, during the learning phase, the
loss derivatives with respect to the network parameters behave very
similarly to a random walk on the first weight layers. In fact, in our
case, data separability occurs mainly in the last layers of the network
at the end of the learning process.
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