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ABSTRACT
Nematic liquid-crystal devices are a powerful tool to structure light in different degrees of freedom, both in classical and in quantum regimes.
Most of these devices exploit the possibility of introducing a position-dependent phase retardation either with a homogeneous alignment of
the optic axis—e.g., liquid-crystal-based spatial light modulators—or, conversely, with a uniform but tunable retardation and patterned optic
axis, e.g., q-plates. The pattern is the same in the latter case on the two alignment layers. Here, a more general case is considered, wherein
the front and back alignment layers are patterned differently. This creates a non-symmetric device, which can exhibit different behaviors
depending on the direction of beam propagation and effective phase retardation. In particular, we fabricate multi-q-plates by setting different
topological charges on the two alignment layers. The devices have been characterized by spatially resolved Stokes polarimetry, with and
without applied electric voltage, demonstrating new functionalities.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0191411

INTRODUCTION

When nematic liquid crystals are placed between parallel glass
plates with differing alignment directions, the bulk will twist in
order to match the boundary conditions.1 This phenomenon of a
twisted nematic liquid-crystal (TNLC) cell—in particular with 90○

twists—has been used extensively for the development of everyday
liquid-crystal displays.2–4 With properly chosen birefringent liquid
crystals and fabrication techniques, incident linearly polarized light
will rotate through the cell, following the twist structure. When a
sufficiently strong voltage is applied across the cell, the twist struc-
ture disappears as the liquid crystals are aligned in the field direction,
negating any polarization rotation. However, there has been lim-
ited study of the twisted cell beyond the 90○ twist case for general
polarization manipulation.5,6

Meanwhile, in the context of experimental optics, spatially
patterned liquid-crystal-based devices are an efficient and com-
pact method for structuring the polarization and spatial degrees
of freedom of light, but studies have been limited to symmetric
elements, i.e., the front and back patterns on the alignment lay-
ers are identical. For example, q-plates—part of the general class
of Pancharatnam–Berry phase optical elements (PBOEs)—are such
that the liquid-crystal layer is aligned to have a semi-integer topo-
logical charge of q—note that such a topological structure, similar to
q-plates, may be formed by liquid crystal droplets.7 This allows for

the coupling of photonic spin to orbital angular momentum. q-plates
have found applications in both classical and quantum optics,8,9 in
particular STED microscopy,10 metrology,11 high-dimensional clas-
sical12 and quantum communication,13 and quantum simulations.14

For the case of non-symmetric spatially patterned devices, there have
been only a few implementations, including polarization converters,
which convert linear polarization into vector vortex modes,15 a func-
tionality still achievable via standard q-plates.16 However, these spa-
tially twisted elements operate with no externally applied field. Only
recently, the voltage-dependent behavior of non-symmetric devices
patterned with different gratings has been observed.17–19 Similar
investigations have been reported for other classes of materials.20–22

This article aims to bridge the above gaps by investigating the
behavior of liquid crystals with the full range of possible twist angles
from −90○ to 90○, under the influence of externally applied elec-
tric fields. We first analyze the derived Jones matrix for a static
TNLC cell, i.e., with no applied field, and discuss its expected behav-
ior in the so-called adiabatic following regime for different effective
phase retardations Γ. There is a potential dual behavior that a TNLC
cell exhibits—which has not previously been reported—and it has
wide-reaching implications for their spatially varying extensions.
An incident circularly polarized beam may acquire three unique
phase distributions from, respectively, Γ = 0, Γ = π, and Γ = 0 with
reversed-plate orientation. Dual-plates (DPs), as we will call them,
thus promise a switch-like capability between phase distributions.
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Moreover, an externally applied electric field ultimately enables a
transition in the effective topological charge of generated polar-
ization patterns. Proof-of-principle spatially twisted liquid-crystal
devices are fabricated and compared with the above two case studies.

RESULTS
No applied field

A TNLC cell of thickness L without any externally applied field
can be modeled as a stack of infinitely thin waveplates, which are
gradually twisted from one to the next. With a total twist angle of α,
and assuming strong anchoring, the twist distribution with propa-
gation is linear, ϕ(z) = αz/L, where z is the axis normal to the cell.23

For positively uniaxial nematic liquid crystals with extraordinary
and ordinary refractive indices ne and no, respectively, we can define
the parameter Γ = 2π(ne − no)L/λ (λ is the wavelength of the inci-
dent light), which corresponds to the total phase retardation for a
zero-twist cell. The Jones matrix describing the TNLC configuration,
shown in Fig. 1(a), can be modeled as a stack of N thin waveplates,
each possessing a phase retardation of Γ/N; the nth waveplate is
rotated to be at an angle of nα/N. By matrix multiplication, the total
Jones matrix T0(α, Γ) is

T0(α, Γ) =
N

∏
n=1

R(−nα/N)W0(Γ/N)R(nα/N)

= R(−α){W0(Γ/N)R(α/N)}N , (1)

where

W0(Γ) =
⎡
⎢
⎢
⎢
⎢
⎣

e−i Γ2 0
0 ei Γ2

⎤
⎥
⎥
⎥
⎥
⎦

, (2)

and the rotation matrix R(⋅) is

R(⋅) = [
cos (⋅) sin (⋅)
− sin (⋅) cos (⋅)

]. (3)

The closed form of Eq. (1) in the limit as N →∞ simplifies to23,24

T0(α, Γ) = R(−α)
⎡
⎢
⎢
⎢
⎢
⎢
⎣

cos X −
iΓ
2X

sin X
α
X

sin X

−
α
X

sin X cos X +
iΓ
2X

sin X

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=: R(−α)M0(α, Γ), (4)

with X =
√

α2
+ (Γ/2)2. For the case where the fast axes of the front

and back layers are aligned at angles ϕ f and ϕb, respectively, the
general twisted matrix, after setting α = ϕb − ϕ f , becomes

Tϕ f (α, Γ) = R(−ϕ f )[R(ϕ f − ϕb)M0(α, Γ)]R(ϕ f )

= R(−α)Mϕ f (α, Γ), (5)

with Mϕ f (α, Γ) = R(−ϕ f )M0(α, Γ)R(ϕ f ).
The optical action associated with Eq. (3) can be conve-

niently visualized on the Poincaré sphere (PS). We recall that the
positive (negative) points of the three principal axes Ŝ1, Ŝ2, and
Ŝ3 on the PS correspond to horizontal (vertical), diagonal (anti-
diagonal), and right-hand circular (left-hand circular) polarization
states. Figure 1(b) demonstrates the action of a TNLC cell on a hor-
izontally polarized input for twist angles between −π/2 and π/2 and
a global phase retardation of Γ = π. In this case, the output is always
elliptical, wherein the handedness is determined by the sign of α.

Remarkably, if Γ≫ α, then M0(α, Γ) simplifies to a waveplate
W0(Γ) with its fast axis along the horizontal, and Eq. (5) becomes

Tϕ f (α, Γ) ≈ R(−α)Wϕ f (Γ), (6)

where Wϕ f (Γ) = R(−ϕ f )W0(Γ)R(ϕ f ) is a typical waveplate of
retardance Γ, with fast axis oriented at ϕ f . Consequently, an input
beam that is linearly polarized either parallel or orthogonal to ϕ f will
be rotated by α in the counterclockwise direction. This is referred
to as adiabatic following or the Mauguin limit. Figure 1(c) demon-
strates this behavior for a horizontally polarized input state for a
range of twist angles, wherein the output states are calculated via
Eq. (3) with Γ = 1001π. The horizontal input—parallel to the input

FIG. 1. Twisted nematic liquid-crystal cells. (a) Illustration of liquid crystals twisting between two glass plates, uniformly aligned at 0○ and α for the front and back layers,
respectively, spaced apart by a distance of L. The action of this configuration is shown on the Poincaré sphere on a horizontally polarized input state (black dot) for varying
twist angles α between −π/2 and +π/2, with a birefringence of (b) Γ = π and (c) Γ = 1001π in the adiabatic following regime.
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alignment layer—is rotated by α toward other linear states along the
equator of the PS.

Furthermore, the effective phase retardation is defined modulo
2π [see Eq. (5)]. Accordingly, Eq. (6) simplifies further for two cases:
Γ (mod 2π) = 0 and Γ (mod 2π) = π. For Γ (mod 2π) = 0, Wϕ f (0)
reduces to the identity matrix, leaving

Tϕ f (α, 0) = [
cos α − sin α
sin α cos α

]. (7)

The left-handed (L) and right-handed (R) circular polarizations are
rotation-invariant states (up to a global phase), so explicitly acting
this on the circular basis yields {∣L⟩, ∣R⟩}→ {e−iα

∣L⟩, eiα
∣R⟩}, where

we have adopted the bra–ket notation to denote the complex polar-
ization spinor. For the case where Γ (mod 2π) = π, Eq. (6) simplifies
to

Tϕ f (απ ,π) = [
cosαπ sinαπ
sinαπ − cosαπ

], (8)

with απ = ϕb + ϕ f . This is the Jones matrix for a half-wave plate ori-
ented at απ/2, yielding {∣L⟩, ∣R⟩}→ {eiαπ ∣R⟩, e−iαπ ∣L⟩}. Of course, we
can also consider the case for an arbitrary Γ. In this case, Eq. (6) can
be rewritten explicitly as follows:

Tϕ f (α, Γ) =
(1 + eiΓ

)

2
Tϕ f (α, 0) +

(1 − eiΓ
)

2
Tϕ f (απ ,π). (9)

The general case is, therefore, a superposition of the cases
Γ (mod 2π) = 0 and Γ (mod 2π) = π, and the relative amplitudes
are determined by the phase retardation.

In the following, we extend this analysis to spatially vary-
ing dual-plates, allowing for a spatial distribution of the fast-axis
orientation of the front and back plates in the transverse plane,
Φ f (r,φ) and Φb(r,φ), respectively, described in cylindrical coordi-
nates. An incident circularly polarized beam will acquire a spatially
varying phase proportional to either α(r,φ) = Φb(r,φ) −Φ f (r,φ)
or απ(r,φ) = Φb(r,φ) +Φ f (r,φ), i.e., the difference or sum of the
two fast axis distributions, depending on if Γ (mod 2π) = 0 or
Γ (mod 2π) = π. Therefore, we can use the phase retardation of a
dual-plate to toggle between two different behaviors. In addition,
for a given dual-plate, if the front and back layers are reversed—i.e.,
the orientation of the plate is flipped, or the beam enters from the
back—a distinct third phase pattern could be acquired at Γ (mod 2π)
= 0, defined by α(−)

= Φ f −Φb = −α. Of course, we could also con-
sider the inverse problem wherein we desire a particular twist
distribution; in this case, Φb = (απ + α)/2 and Φ f = (απ − α)/2.

One potential challenge that arises when dealing with the gen-
eral class of non-symmetric inhomogeneous liquid-crystal plates is
that nematic liquid crystals only favorably twist between −90○ and
90○. For example, if ϕ f = 22.5○ and ϕb = 157.5○, then α = −45○, and
not 135○, in order to achieve the lowest possible twist. At locations
where ϕ f and ϕb are orthogonal, there is an ambiguity as to whether
α = +90○ or −90○. This leads to discontinuities in the twist distribu-
tion, which results in π-phase jumps appearing in these locations.
Consequently, a spatially varying global phase distribution will be
imparted to any input beam, regardless of the birefringence setting.

An interesting example of a spatially varying dual-plate is the
multi-q-plate. The functionality of a q-plate is equivalent to that of
a half-wave plate with a fast-axis distribution of ΦQP(φ) = qφ + φ0,
where q, the topological charge of the plate, is either a full- or
half-integer, and φ0 is an offset angle. Its Jones matrix is iden-
tical to Eq. (8) with απ = 2Φ, and the circularly polarized input
will experience spin-to-orbital angular momentum coupling. For
example, an input photon with a spin of +(−)h along the axis of
propagation will gain +(−)2qh units of orbital angular momentum
(OAM), where h is the reduced Planck constant, at the expense
of switching the spin to be −(+)h. We have adopted the con-
vention that a spin of +(−)h corresponds to left (right) circularly
polarized light. A q-plate can thus span the two-dimensional vec-
tor space {∣R, 2q⟩, ∣L,−2q⟩}, where we have used the Dirac notation
with the labels corresponding to a photon’s polarization and OAM,
respectively.

However, in order to have access to states created from a
−q-plate—thus accessing a four-dimensional vector space—it is nec-
essary to place a half-wave plate, or an equivalent device, to impart
a λ/2 retardation, after the original q-plate. In addition, it is impos-
sible to modify the topology of a q-plate once this is fabricated. An
appropriately patterned dual-plate is capable of performing both of
these tasks without the aid of additional optical elements. For exam-
ple, define the front and back distributions to be Φ f (φ) = q fφ and
Φb(φ) = qbφ, respectively (we have dropped the offset angles with-
out loss of generality). If q f = qb, we straightforwardly recover the
behavior of a regular q = qb-plate so that we will assume q f ≠ qb, and
we get the following cases:

(1) If q f = 0, then α = απ = qbφ, and we lose the dual behavior of
the dual-plate.

(2) However, if qb = 0, then α = −q fφ and απ = q fφ; we can
thus use the phase retardation of the dual-plate to toggle
between the behavior of oppositely charged q f -plates. We
note that cases (1) and (2) are the same dual-plates; how-
ever, the orientation of the device—or equivalently the beam
propagation—is reversed. So, while we obtain two distinct
behaviors through α and απ , we do not gain a third behavior
since α(−)

= α in case (2).
(3) In general, if ∣q f ∣, ∣qb∣ > 0, then α ≠ απ and α(−)

≠ α, thus cre-
ating a multi-q-plate with three possible behaviors. We note
that the same concept can be applied to any phase distri-
bution. Indeed, we are not limited to Φ f and Φb being of
the same class of phases. In this way, we can create arbitrary
dual-functionality dual-setting devices.

To explore the validity of the TNLC model, several dual-plates
are fabricated and then characterized using a 635-nm diode laser (see
Materials and Methods). The first device is a discretized multi-q-
plate DP(qb = 0, q f = 1/2), with ∼35 μm spacers, where DP stands
for dual-plate, and the labels are the topologies of the front and
back plate. Figure 2(a) shows the fabricated sample as it appears
between crossed polarizers. The q = 1/2 topology is discretized into
16 slices such that a range of twist angles from [−90○, 90○] can be
efficiently characterized with enough room in each slice to average
imperfections from the assemblage. The second sample fabricated
and tested is a DP(1, 2), as shown in Fig. 2(b). The experimen-
tally calculated average Stokes vectors for each of the 16 slices of
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FIG. 2. Fabricated samples. False color images of (a) discretized DP(0, 1/2) and (b) DP(1, 2) between crossed polarizers under a microscope illuminated with white light. The
topological pattern on each glass plate is also shown. Note that the q = 1/2 pattern is discretized into 16 slices for the patterning process.

DP(0, 1/2) with different input polarized light are plotted on the
Poincaré sphere, along with theoretical fits [see Fig. 3(a)]. The results
for DP(1/2, 0) are shown in Fig. 3(b). Figures 4(a) and 4(b) show the
locally reconstructed Stokes vectors for horizontally polarized input
light on DP(1, 2) and DP(2, 1), respectively. A very nice agreement
is observed for the two cases, despite the singularity misalign-
ment deriving from the fabrication process (see the supplementary
material figures for a cross-sectional plot around the singularity).

The diameters of the spacers placed between the glass plates of
the cell range from 32 to 38 μm, with an average of 35 μm. This gives
our sample an average phase retardation of Γavg = 51.7 for 6CHBT
liquid crystals with Δn = 0.151.25 This Γavg is used when plotting the
theoretical fits using the TNLC Jones matrix Tϕ f (α, Γ) of Eq. (4) in
Figs. 3(a) and 3(b). As a measure of good fit, the average state over-
lap across all twist angles for a given input polarization is used. The
overlap is calculated as (1 + Sexp ⋅ STNLC)/2, where Sexp and STNLC
are the experimentally reconstructed and theoretical Stokes vectors,
respectively. The uncertainties on each average Stokes vector are the
standard deviations from the area used for averaging, which are less
than 10% for each Stokes parameter in all cases. The theoretical fits
using Γavg = 51.7 imitate the experimental data for all input polar-
izations and the two orientation cases very well, with total average

overlaps of 89% and 87% for DP(0, 1/2) and DP(1/2, 0), respectively.
Deviations from theoretical predictions are mainly ascribed to fab-
rication defects. Higher-quality samples could be fabricated with the
aid of microscopes and precision controls.

Externally applied field

When an electric voltage is applied across the DP(0, 1/2)
sample, the resulting effect on polarized light can be surprising.
Figure 5(a) shows the reconstructed local Stokes vectors at differ-
ent voltages from a horizontally polarized input state. The color
is encoded to show the azimuthal angle ψ = arctan(S2/S1) of the
Stokes vectors on the Poincaré sphere. We experimentally observe
that the overall topological charge can be tuned from q ∼ 1/2 to q ∼ 1
to q ∼ 0 and back to q ∼ 1 as we increase the field strength. While
detuning to q = 0 is observed with standard q-plates, this apparent
charge-doubling is never observed nor achievable. This behavior is
also not accounted for by simply varying Γ in Tϕ f (α, Γ), and we
must, therefore, extend our model.

Liquid crystals may be regarded as a continuous medium with
a set of elastic constants. As such, the elastic continuum theory,1
which we briefly review in Materials and Methods, has been an

FIG. 3. Stokes vector reconstruction. Reconstructed average Stokes vectors in each of the 16 slices (colored points) for the cardinal input states (black points)—horizontal
(H), vertical (V), diagonal (D), anti-diagonal (A), left-hand circular (L), and right-hand circular (R)—and theoretical fit (line) using the TNLC Jones matrix with Γfit = 51.7 for (a)
DP(0, 1/2) and (b) DP(1/2, 0). The experimental Stokes vectors plotted are the average values in each slice of the discretized sample.
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FIG. 4. Stokes vector reconstruction. For horizontally polarized input light, the
theoretical and experimentally reconstructed local Stokes vectors (arrows) for (a)
DP(1, 2) and (b) DP(2, 1). The arrow color is a measure of the local polarization’s
ellipticity, with left-hand circular as red, right-hand circular as blue, and linear as
green.

excellent way to describe the influence of boundary conditions
and externally applied fields—whether electric or magnetic—on
these systems. Since liquid crystals are electrically polarizable, dia-
magnetic, and anisotropic in their electric/magnetic properties, an
applied field will cause the molecules to align with the field direc-
tion. In general, the tilt and twist distributions of the liquid-crystal
directors within the bulk become non-trivial and typically non-
analytical. These are determined by minimizing the Frank–Oseen
free-energy density of the system.26 The solution that arises is a cou-
pled set of highly singular integrals to be solved simultaneously. In
the high-voltage limit (V/VT0 ⩾ 4), certain approximations can be
made to simplify solving these integrals around their singularities,
with some analytical approximations when V ≫ VT0.27 VT0 is the
characteristic threshold voltage, or Freedericksz threshold, of the

system, dependent on material parameters; here, VT0 = 0.966 V or
Vpp = 2.733 V. To analyze more general cases, we have opted to use
a numerical minimization approach based on evolutionary meth-
ods, specifically a genetic algorithm, to also look at the response of
the system for field strengths below the high-voltage limit. Remark-
ably, this method does not require any a priori hypothesis on the
applied field. The details of our numerical approach will be found in
a separate technical paper.28

With the numerically calculated tilt and twist distributions, the
overall Jones matrix Jϕ f

(α, V) is derived by multiplying together the
N twisted liquid crystal cells of thickness d using the form of Eq. (4),

Jϕ f
(α, V) = R(−ϕb)

⎡
⎢
⎢
⎢
⎢
⎣

N

∏
j=0

M0(α′(zj), Γ(zj))

⎤
⎥
⎥
⎥
⎥
⎦

R(ϕ f ), (10)

where α′(zj) = ϕ(zj+1) − ϕ(zj), zj = jd, ϕ f = ϕ(0) and ϕb = ϕ(L) are
the front and back alignment angles, respectively, and α = ϕ(L)
− ϕ(0) is the total twist angle. The phase retardation Γ(zj) within
the jth slice is calculated from the tilt distribution θ(z) using the
trapezoidal rule in favor of left or right Riemann sums for a better
estimate,

Γ(zj) =
πΔnd
λ
[cos2 θ(zj+1) + cos2 θ(zj)]. (11)

A cell thickness of L = 35 μm is used, with N = 100 slices for d = L/N.
Figure 5(b) compares the experimentally reconstructed Stokes data
for DP(0, 1/2) and horizontally polarized input light with numerical
predictions (see the supplementary material figures for a 2D plot of
this comparison).

This model reproduces quite accurately the experimental
results. This would not be possible by simply assuming a linear
twist distribution and varying Γ. In particular, the non-linear twist
distributions account for the peculiar phenomenon of the evolving
topological charge shown in Fig. 5(a). Further investigations will

FIG. 5. Externally applied voltage on DP(0, 1/2). (a) Reconstructed local Stokes vectors (arrow) from a horizontally polarized input for voltage: Vpp = 3.00, 6.00, 8.00, and
12.00 V. The color corresponds to the polarization ellipse angle ψ with respect to the horizontal. (b) The experimental data (dots) are the output Stokes vectors, and the fits
(lines) correspond to the theoretical curves obtained from the nematic liquid crystal twist and tilt distributions extracted from our genetic algorithm.
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be required to determine if we achieve an actual evolution of the
topological charge for the continuous version of DP(0, 1/2).

DISCUSSION AND CONCLUSIONS

We have shown the versatility of patterned twisted nematic
cells, focusing on the action of dual q-plates on polarized light.
The case in which no external field is applied has been analyzed in
detail, and an analytic Jones matrix description of the dual-plates
has been derived. We demonstrated that one can observe different
functionalities depending on the effective retardation Γ or the plate
orientation. It must be noted that Γ can either be fixed or tuned
by means of temperature control.29 Another way of controlling the
effective retardation is via an applied field. However, in the case of
dual-plates, an external field introduces additional deformations in
the liquid-crystal medium, which affects the overall distribution of
the molecular director. As a consequence, the resulting Jones matrix
can be much more complicated.

At the same time, this can lead to intriguing unexpected effects,
for instance, the generation of polarization patterns with apparent
topologies, which depend on the applied voltage. Typically, a change
in topology induced by a continuous parameter is associated with the
existence of an intermediate critical point. However, we observe that
dual q-plates always exhibit singular lines in the liquid-crystal orien-
tation pattern, which are transferred to the polarization distribution
of the transmitted light. Accordingly, no topological charge can be
rigorously associated with the polarization distribution. Neverthe-
less, the observed patterns display distinguishable features, such as
lemon and azimuthal patterns.

The main advantage of this technology is the possibility
of accessing an entire family of vector beams through a single
spin–orbit liquid-crystal device, contrary to the standard approach
requiring multiple cascaded plates. Dual-plates thus provide a com-
pact and efficient solution to the generation of complex vector
beams, which proved to be a powerful resource for metrological11,30

and high-dimensional quantum information protocols.31 Dual-
plates open a new avenue for optical functionalities based on
liquid crystals. Here, we focused on plates with different topo-
logical structures patterned on the two alignment layers. Other
possibilities will include dual Fresnel lenses, axicons, gratings, and
magic windows. The use of these structures will also allow novel

studies and realizations of devices introducing 3D geometric
phases.32 In principle, the technology of dual-plates is not limited
to liquid crystals. Femtosecond-laser writing in glass,33–35 cascaded
metasurfaces,36 and two-photon polymerization37 have all demon-
strated the ability to create three-dimensional birefringent struc-
tures, which could potentially expand the application of dual-plates
to smaller integrated systems.

MATERIALS AND METHODS
Fabrication

The process to fabricate dual-plates is similar to that for
q-plates.9,38 First, we start with two glass substrates, each with a con-
ductive layer of indium tin oxide (ITO). A drop of an azobenzene-
based dye (PAAD-22, provided by BEAM Co.) is deposited on top
of the ITO; the sample is then spin-coated for 30 s at 4000 rpm and
baked at 120○ for 5 min. When exposed to the light of a wavelength
around the peak of the azodye’s absorption spectrum, the molecules
will photoalign themselves according to the light linear polarization.
Here, we use a 430-nm laser. Figure 6(a) shows the setup to pattern
the sample. In particular, a digital micromirror device (DLP3000
DLP® 0.3 WVGA Series 220 DMD) is programmed to reflect a tai-
lored intensity pattern. The resolution of the DMD is 608 x 684 with
a micromirror pitch of 7.6 μm. A HWP can then be rotated to adjust
the polarization to the required orientation. When fabricating q-
plates, the two glass substrates are first glued together—with spacers
between them to create a uniform cavity for the liquid crystals—and,
then, the sample is exposed with the desired pattern. For dual-plates,
each substrate is separately exposed with the front and back plate
patterns, respectively. First, one substrate is laid flat, polymer layer
up; next, the spacers are placed across the surface, followed by a drop
of nematic liquid crystals (here, 6CHBT) in the center. For the sam-
ples presented here, silica microspheres with diameters between 32
and 38 μm are used as the spacers. The second substrate is laid on
top, polymer layer down, and a fast-drying epoxy is applied to two
edges. Note that the two substrates are glued with a lateral offset such
that wires can be soldered to the conductive ITO layer; this will allow
for a voltage to be applied across the sample. While the epoxy glue
dries, the intensity pattern is observed between crossed polarizers
while illuminated with white light. During this time, ∼10–15 min, it
is possible to alter the intensity pattern by gently sliding the glasses

FIG. 6. Experimental setups. (a) Setup to pattern the glass plates for fabricating liquid-crystal devices. The inset shows the cross section of the constructed LC cell. (b) Setup
to characterize the fabricated samples. DMD = digital micromirror device, PBS = polarizing beam splitter, and FG = function generator.
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FIG. 7. Numerical optimization results for α = 45○. (a) Twist and (b) tilt distributions for V = 1.141, 2.121, 2.828, and 4.243 V. (c) Phase retardation distribution Γ(z) computed
using L = 35 μm.

with respect to each other. When the patterns are not aligned, two
singularities will be visible. The distance between the two singular-
ities is minimized as much as possible, limited by the resolution
of the eyesight of the person assembling the sample. In this proof-
of-principle work, the alignment was carried out without the use
of a microscope, yielding a residual separation of slightly less than
0.5 mm. However, higher-quality samples can be fabricated with the
aid of microscopes and precision controls. Finally, the rest of the
liquid crystals are injected into the cavity and the remaining sides
of the cell are sealed off with glue. The completed sample is heated
to ∼100○C on a hot plate and cooled to room temperature once
more to cement the alignment of the liquid crystals with the written
patterns.

The setup to characterize the fabricated sample is shown in
Fig. 6(b). A red 635-nm diode laser is used to illuminate the sam-
ple; it is expanded using a telescoping lens system to completely
cover the patterned area. A polarizing beam splitter (PBS), a half-
wave plate (HWP), and a quarter-wave plate (QWP) are used to
prepare the input polarization state. A second set of QWP, HWP,
and PBS is used to project the output polarization state from the
sample onto a different polarization state. Another telescoping lens
system (not shown) is used to image the sample plane and shrink the
beam down to fit onto a CCD camera in order to record the intensity
measurement. A function generator (FG) applies a sinusoidal wave-
form with 4 kHz frequency and peak-to-peak voltages Vpp—i.e., the
difference between the maximum positive voltage and the minimum
negative voltage of the waveform—between 0 and 20 V to the pre-
pared sample. Polarization state tomography is thus performed for
the six cardinal polarizations as inputs on the sample. This consists
of projecting the output polarization state onto the six cardinal states
and recording the intensity using the CCD camera, i.e., there are six
measurements for each input state, for 36 measurements (images)
total per configuration of the sample.

Elastic continuum theory

In order to determine the twist ϕ(z) and tilt θ(z) distributions
of the liquid crystal director n̂ within a general sample, it is necessary
to minimize the free energy of the system, given by the fundamental
elastic continuum equation,

F = 1
2
{K1[∇ ⋅ n̂(r)]2 + K2[n̂(r) ⋅∇ × n̂(r)]2

+ K3[n̂(r) ×∇ × n̂(r)]2 −D ⋅ E − B ⋅H}, (12)

over its volume. The K i correspond to the elastic constants
for the splay, twist, and bend distortions, respectively. For 6CHBT
nematic liquid crystals, the elastic constants are K1 = 6.7 pN,
K2 = 3.4 pN, and K3 = 10.6 pN.25 In the current case, where the
back alignment layer is twisted by α with respect to the front layer,
a coupled set of integrals must be solved numerically to find ϕ(z)
and θ(z).26 For completeness, we report the integrals here. The twist
distribution ϕ(z) is given by

ϕ(z) = β∫
θ(z)

0

√

1 + κ sin2 θ
g(θ)cos2 θ(1 + τ sin2 θ)

dθ, (13)

where κ = (K3 − K1)/K1 and β is an unknown constant of inte-
gration to be determined from boundary conditions. The tilt
distribution θ(z) is determined implicitly through

z
L
=

1
2∫

θ(z)

0

√

1 + κ sin2 θ
g(θ)

dθ/∫
θm

0

√

1 + κ sin2 θ
g(θ)

dθ, (14)
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where θm ≡ θm(V) is the maximum tilt angle located at z = L/2 and
is itself a function of the applied field. The g(θ) function depends on
β and θm, with the form

g(θ) = {
sin2θm − sin2 θ

(1 + γ sin2 θ)(1 + γ sin2θm)
+ β2 1 + κ

1 + τ

× (
1

(1 + τ sin2θm)cos2θm
−

1
(1 + τ sin2 θ)cos2 θ

)}

1/2
,

(15)

where γ = (ϵ∥ − ϵ�)/ϵ� and τ = (K3 − K2)/K2. Here, ϵ∥ (ϵ�)
denotes the dielectric constant per unit volume that is parallel
(perpendicular) to the local director.

We implemented a genetic algorithm to numerically determine
the twist and tilt distributions. Figure 7 reports an example of the cal-
culated distributions for a maximum twist angle of α = 45○. Further
details on our numerical routine will be found in Ref. 28.

SUPPLEMENTARY MATERIAL

We refer to the supplementary online material for a 2D
visualization of the data presented in Figs. 4 and 5.
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