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ABSTRACT This work addresses the employment ofMachine Learning (ML) and Domain Adaptation (DA)
in the framework of Brain-Computer Interfaces (BCIs) based on Steady-State Visually Evoked Potentials
(SSVEPs). Currently, all the state-of-the-art classification strategies do not consider the high non-stationarity
typical of brain signals. This can lead to poor performance, expecially when short-time signals have to be
considered to allow real-time human-environment interaction. In this regard, ML and DA techniques can
represent a suitable strategy to enhance the performance of SSVEPs classification pipelines. In particular,
the employment of a two-step DA technique is proposed: first, the standardization of the data per subject
is performed by exploiting a part of unlabeled test data during the training stage; second, a similarity
measure between subjects is considered in the selection of the validation sets. The proposal was applied
to three classifiers to verify the statistical significance of the improvements over the standard approaches.
These classifiers were validated and comparatively tested on a well-known public benchmark dataset.
An appropriate validation method was used in order to simulate real-world usage. The experimental results
show that the proposed approach significantly improves the classification accuracy of SSVEPs. In fact,
up to 62.27 % accuracy was achieved also in the case of short-time signals (i.e., 1.0 s). This represents a
further confirmation of the suitability of advanced ML to improve the performance of BCIs for daily-life
applications.

INDEX TERMS Brain–computer interface, domain adaptation, EEG, EEGNet, health 4.0, instrumentation,
machine learning, neural engineering, neural networks, SSVEP, real-time systems.

I. INTRODUCTION
In recent years, human-machine interaction has been
significantly improved by the widespread diffusion of
Brain-Computer Interfaces (BCIs) [1]. BCIs are an emerging
technology integrating hardware and software to create a
direct communication pathway between the human brain and
external devices [2]. Among the different ways of decoding
brain activity, Electroencephalography (EEG) is receiving
a strong interest by the scientific community since it is
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non-invasive, cheap, and is endowed with high temporal res-
olution to allow real-time operation [3], [4]. In fact, different
EEG-based BCI paradigms, such as P300 [5] and Motor
Imagery [6], [7], [8], [9], [10] have already been success-
fully employed in several contexts but, in particular, Steady-
State Visually Evoked Potentials (SSVEPs) have gained
outstanding relevance for the development of applications
in healthcare, [11], [12], [13] entertainment [14], and indus-
try [15], [16] owing to quick response, easy detection, high
signal-to-noise ratio (SNR) [17]. As a matter of fact, the
classification of SSVEPs can be performed with good results
even with simple, trainingless algorithms, such as Power
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Spectral Density Analysis (PSDA) or Canonical Correla-
tion Analysis (CCA) [18]. Nevertheless, there is much room
for improvements aimed at employing SSVEP-based BCIs
in challenging contexts, where the requirements are very
demanding [19], [20].

To this aim, the widespread adoption of 4.0 enabling tech-
nologies such as Artificial Intelligence (AI) and, in particular,
Machine Learning (ML) [21], has raised the question of
whether this family of technologies can improve the per-
formance of such systems [22]. Among the ML paradigms,
supervised ML models learn to predict outputs on the basis
of given examples of relationships between input data and
outputs (the training data). In this regard, several related
works have already addressed the use of ML classifiers in
SSVEPs classification, such as (i) Support Vector Machine
(SVM) [23], (ii) k-Nearest Neighbors (k-NN) [24], and
(iii) Artificial Neural Networks (ANNs) [25], by showing
that ML represents a very promising strategy to boost the
performance of their SSVEP-based BCIs. It has also been
empirically shown that increasing the model complexity can
lead to further enhancements in classification accuracy in
several cases. For the sake of example, in [26] and [27], the
realized Convolutional Neural Networks (CNNs) allowed to
achieve, under specific conditions, higher performance than
Filter Bank Canonical Correlation Analysis (FBCCA) [28],
which is currently considered the state of the art about
SSVEPs classification [27].

However, when short-time input signals are taken into
account (i.e., lower than 1.5 s), the classification of SSVEPs
can still be strongly improved as a means to allow real-
time human-environment interaction. Currently, in fact, most
of the literature considers SSVEPs only as a steady-state
response given by purely oscillatory components synchro-
nized in phase with the stimulation source, thus not con-
sidering the intrinsic non-stationarity of EEG signals [29],
resulting in strong differences across the EEGs acquired from
different subjects or at different time intervals (sessions). This
can represent a limitation in SSVEPs classification and, in our
knowledge, it is currently taken into account only in few
studies [30], [31].

A. THE DATASET SHIFT PROBLEM
From a ML point of view, this issue can be viewed as an
instance of the Dataset Shift problem [32]. In a nutshell,
a Dataset Shift arises when the distribution of the data used
to train the ML model differs from the data distribution
used outside of the training stage. This violates one of the
main assumption of ML approaches, stating that all the data,
no matter if involved in training or not, come from the
same probability distribution. As a consequence, the trained
model won’t work as expected on data acquired from dif-
ferent subjects or at different sessions with respect to the
ones used during the training stage. This problem is usually
mitigated by training specific models for each subject (called
intra− subject models). However, an intra-subjectmodel can
be used only on data acquired from the subject providing

training data. Moreover, also in this case the Dataset Shift
problem can arise insofar as data are collected from substan-
tially different sessions.

For these reasons, newer studies tried to overcome the
Dataset Shift problem in EEG-based BCIs [33]. In particular,
Domain Adaptation (DA) strategies try to construct models
able to generalize on unseen data exploiting knowledge given
by available unlabelled data. These strategies rely on the
assumption that a small initial part (even unlabeled) of the
new user’s data is already available before the actual classifi-
cation. Although time-consuming, acquiring unlabeled data
from a new user/session is still easier than getting labeled
data, leading a BCI system to be more comfortable than one
trained only on user/session-specific labeled data.

B. PROPOSAL
Starting from these considerations, in this work, a DA tech-
nique is proposed in the framework of the SSVEPs classifi-
cation. More specifically, a two-step DA method is validated
on a public dataset described in [34] and composed of 35 sub-
jects and 40 simultaneous flickering stimuli. The remarkable
number of subjects and flickering stimuli allows considering
this dataset a challenging benchmark to significantly test
SSVEPs classification algorithms. Following [27], a suitable
validation method was adopted to simulate real-world usage
in a statistically significant way.

The proposed DA technique is composed of two main
steps, the former consisting in a per-subject z-score nor-
malization (instead of the classical z-score applied on all
the data without regard to the belonging domain), and the
latter consisting in a simple change in the classical neural
network training procedure. More in detail, in the classi-
cal neural network training stage a subset of the training
data (named validation set) is used to prevent the network
to overfit on the training data. Then, the performance of
the network on the validation data are computed at the end
of each training iteration, and the training stage is stopped
when the validation performance starts to degrade rather than
improve [35]. However, the validation set is usually selected
randomly from the training data, without any regards about
the original distribution of the data. In cases where several
distribution are involved, such as in EEG data acquired from
several subjects, this could not be the better choice, since
data too dissimilar from the test data could be chosen, not
leading the network to generalize toward unseen domains.
Instead, if also a small part of unlabelled data coming from the
target subject are available during the training time, this can
be used to choose the validation set in a smarter way respect
to the random choice. In this study, 20 % of the test data
was considered as calibration data, therefore available at the
training data without any label. These data can be used both
to standardize the data and to compute a similarity measure
between subjects to select the validation sets.

The statistical significance of the improvements made by
the proposed DA technique over the standard approaches
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was validated on three different neural network clas-
sifiers: ShallowConvNet , DeepConvNet , and EEGNet .
ShallowConvNet and DeepConvNet are two CNNs devel-
oped in [36] and used in Motory Imagery-based BCIs.
Instead, EEGNet is a compact CNN successfully employed
in several tasks involving different types of EEG sig-
nals, such as P300 visual-evoked potentials, Error-Related
Negativity Response (ERN), Movement-Related Cortical
Potentials (MRCP), and Sensory Motor Rhythms (SMR),
showing comparably high performance with respect to the
reference algorithms [37]. More recently, it has gained inter-
est also in SSVEP-based BCIs [38]. In particular, promis-
ing results in terms of classification accuracy are reported
in literature [39]. In our knowledge, however, this is the
first time that EEGNet is tested to the benchmark dataset
considered.

The paper is organized as follows. Sec. II provides a
background on the SSVEPs classification problem, reporting
some of the most widely adopted processing strategies over
the years. Then, Sec. III describes, in brief, the classifiers
chosen, along with the validation method and the DA tech-
nique considered. Therefore, Sec. IV reports the experimental
setup, and Sec. V provides a comparative analysis between
the results obtained by the proposed approach and those
achieved with traditional, state-of-the-art strategies. Finally,
conclusions are drawn.

II. BACKGROUND AND RELATED WORKS
This Section provides a background on the SSVEPs classifi-
cation problem. In addition, an overview on some of the most
widely adopted processing strategies is given.

A. THE SSVEPs CLASSIFICATION PROBLEM
SSVEPs are exogenous brain potentials [40], elicited in
the primary visual cortex when a flickering stimulus is
observed by the user. Stimulation frequency bands of the
visual stimuli usually range from 6 Hz to 30 Hz, although
the best Signal to Noise Ratio (SNR) is achieved in the
range 8 ÷ 15 Hz [41]. The physiological SSVEP brain
response is typically inducted after a latency ranging
from 80 to 160 ms [42]. It is a sinusoidal-like waveform,
composed of a fundamental frequency equal to that of the
gazed stimulus, and often higher harmonics [43], as shown
in Fig. 1.

In practical applications, stimuli at different frequencies
are simultaneously displayed to the user. Each stimulus is
associated to a specific command: the user, by looking at
the desired flickering stimulus, is able to send the related
command to the target application.

A representative architecture of SSVEP-based BCIs is
shown in Fig. 2. A Stimuli Source (typically, a LCD monitor,
or an eXtendedReality headset [16], [20]) is used to displayN
concurrent flickering stimuli. Each stimulus flickers at a dif-
ferent frequency from the others and is associated to a specific
command to send to the BCIapplication. An EEG headset

FIGURE 1. A 10-Hz SSVEP in time domain (a) and frequency domain (b).

FIGURE 2. Typical architecture of a SSVEP-based BCI.

captures the user’s brain signals, which are digitized and
processed by means of a SSVEP classification algorithm.
The aim of this algorithm is to deduce which stimulus
has been observed by the user. Therefore, the recognition
of N stimuli at different frequencies can be viewed as
a N -class classification problem. Once the classifica-
tion has been made, an output command is sent to the
BCI Application, which provides a feedback to the user
regarding the selection performed. Clearly, if the classifica-
tion is successful, the output command corresponds to the
choice desired by the user.

B. PROCESSING STRATEGIES FOR CLASSIFYING SSVEPs
An overview of some of the typical processing strategies for
classifying SSVEPs is given as follows. In particular, a dis-
tinction between non-ML, hybrid, and ML methods is made.
For the sake of simplicity, but without loss of generality,
a single-channel EEG signal is considered.
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1) NON-ML METHODS
• PSDA: Since SSVEPs are characterized by frequency
peaks consistent with the observed flickering stimuli, the
most intuitive approach used to detect and classify the
elicited SSVEPs is based on a Power Spectral Density
Analysis (PSDA) [41]. This method is composed by
three steps: first, a Fast Fourier Transform (FFT) is
applied to the user EEG; then, a PSD is performed in
the neighborhood of each of the N frequencies rendered
on the display, and eventually its multiple m harmonics,
according to (1).

P(fn) =
1

2mk + 1

 m∑
j=1

jkn+k∑
i=jkn−k

c(j) A2(i)

 (1)

where: P(fn) is the PSD coefficient for the given fre-
quency fn (n = 1, 2, . . . ,N ), kn is the corresponding
bin in frequency domain, k is the number of nearest
bins to be considered, m is the number of chosen har-
monics, A is the signal amplitude, and c is a weight
assigned to each harmonics. Finally, the classification
is usually performed based on the hypothesis that the
observed stimulus is very likely to be the one with the
highest PSD [44]. The main drawback of PSDA is that
it requires a minimum time window Tmin of the acquired
EEG in order to correctly discriminate the harmonics,
since an appropriate frequency resolution 1f =

1
Tmin

is

needed [45].
• CCA: An alternative way to process SSVEPs is
the Canonical Correlation Analysis (CCA) in time
domain [16]. It is a multivariate statistical method of
correlating linear relationships between two sets of
data [46]. CCA is performed between the EEG data D
and a set of sine waves yn(t) having the same frequencies
of the N stimuli rendered on the display, and eventually
their multiple harmonics. Given a frequency fn and the
number of harmonicsm to consider, the set of sinewaves
yn(t) (n = 1, 2, . . . ,N ) can be obtained according to (2).

yn(t) =



sin(2π fn t)

cos(2π fn t)

sin(4π fn t)

cos(4π fn t)

. . .

sin(mπ fn t)

cos(mπ fn t)


(2)

For each stimulus frequency fn, a correlation coefficient
ρn is extracted by means of the CCA between D and
yn(t). Therefore, these coefficients are used for SSVEP
classification. For the sake of example, in [46] the output
of the classification was associated to the frequency
with the highest correlation coefficient extracted. Alter-
natively, in [1], [47], and [48] the maximum value
among the correlation coefficients ρn was compared

with given threshold values: the signal was marked
as classified only if the chosen correlation coefficient
exceeded the thresholds. The classification performance
achieved with the use of CCA are typically better than
PSDA [44]. However, a band pass filtering for the EEG
can be often necessary during the pre-processing phase,
due to the effect of spontaneous EEG activities not
involved in SSVEP events.

• FBCCA: The FBCCA method is an enhancement of
CCA [28] and consists of three major procedures: (i) fil-
ter bank analysis; (ii) CCA between SSVEP sub-band
components and sinusoidal reference signals; and
(iii) signal classification. First, sub-band decomposi-
tions are performed by the filter bank analysis by means
of multiple filters with different pass-bands. In this way,
the sub-band components XSBj (j = 1, 2, . . . , s) from
the original EEG X are obtained. After the filter bank
analysis, the standard CCA is applied to each of the
sub-band components separately. This results in cor-
relation values between the sub-band components and
the sinusoidal reference signals corresponding to the
stimulation frequencies (n = 1, 2, . . . ,N ). A correlation
value ρnj is obtained for each frequency n and each sub-
band j according to (3).

ρn =

[
ρn1 , ρ

n
2 , . . . , ρ

n
j , . . . , ρ

n
s

]
(3)

A weighted sum of squares of the correlation values
corresponding to all sub-band components is calculated
as the feature for signal classification.

ρ̃n =

s∑
j=1

w(j) · (ρnj )
2 (4)

where j is the index of the sub-band. As the SNR of
SSVEP harmonics decreases as the response frequency
increases, the weights for the sub-band components are
defined as follows:

w(j) = j−a + b (5)

where a and b are constants that maximize the clas-
sification performance. Therefore, N features ρ̃n are
obtained (one for each frequency). Finally, the signal
classification is performed on the basis that the observed
frequency fz (z ∈ 1, . . . ,N ) is that corresponding to
the feature ρ̃z with the maximum value. Typically, the
number of filters s, the number of harmonics m, and the
values of a and b are determined using a grid search
method in an offline analysis. A widely adopted practice
is to vary s from 1 to 10, m from 1 to 6, a from 0 to 2,
and b from 0 to 1.

2) HYBRID METHODS
At the state of the art, CCA-based algorithms provide the best
performance in terms of classification accuracy [34], [49].
However, recent works [50] showed that, for low-channels
and low-stimuli setups, the adoption of hybrid approaches,
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FIGURE 3. Main blocks of the three classifiers chosen: ShallowConvNet (left), DeepConvNet (center), and EEGNet (right).

based on a pre-processing of the EEG signal in time and
frequency domains, and a ML-based classification, allows to
outperform the results obtained by CCA. In particular, the
algorithm developed in [50] (named Features Reduction) is
constituted by (i) a pre-processing step, based both on Power
Spectral Density Analysis (PSDA) and Canonical Correlation
Analysis (CCA), to extract significant features from the digi-
tized EEG signal, and (ii) a classification step which employs
ML classifiers such as SVM, K-NN, and shallow NN to
classify the extracted features into an output z (z ∈ 1, . . . ,N ),
where N is the number of stimulation frequencies.

3) ML METHODS
PodNet is a CNN developed by Podmore et al. [27]. It is
constituted by several blocks (Pods), each one made up of a
Convolutional layer, aDrop-out layer, a Batch Normalization
layer, aRectifier LinearUnit (ReLU) layer, and aMaxPooling
layer. The final Pod contains a dense layer which outputs
to a Softmax operation to classify the EEG into one of the
possible z (z ∈ 1, . . . ,N ) classes, where N is the number of
stimulation frequencies.

All network weights are initialized using the Xavier
method [51] and updated following the Adam optimization
algorithm [52]. In [27], it has been shown that PodNet man-
ages to outperform FBCCA, even if only under specific
conditions (i.e., low-volume EEG electrode arrangements).
Nevertheless, there is still much room for improvements
when short-time input signals are taken into account, which
are critical for facilitating real-time human-environment
interaction.

III. MATERIALS AND METHODS
This Section describes the classifiers chosen, along with the
validation method and DA technique proposed.

A. CLASSIFIERS CHOSEN
The three classifiers employed in this work were Shallow-
ConvNet, DeepConvNet, and EEGNet, as shown in Fig. 3.

1) ShallowConvNet is a Convolutional Neural Network
developed in [36] and characterized by a single block,
where two convolutional layers, which perform a tem-
poral convolution and a spatial filter, are followed by a

Batch Normalization layer with ELU activation func-
tion, an Average Pooling layer, a Dropout layer, and,
finally, a Dense Softmax classification layer.

2) DeepConvNet is a Convolutional Neural Network
developed in [36] and composed of four blocks:

• The first block consists of two convolutional layers
which perform a temporal convolution and a spa-
tial filter. Then, Batch Normalization is applied,
followed by Exponential Linear Unit (ELU) [53]
activation function. Finally, a Max Pooling layer
and Dropout layer are used.

• The other three blocks are classic convolutional
blocks, in which only one convolutional layer is
followed by the same layers of the first block:
Batch Normalization, Activation, Max Pooling,
and Dropout.

3) EEGNet is a Convolutional Neural Network origi-
nally designed to be applied to a wide variety of BCI
paradigms (for further details, please refer to [37]).
A brief description of the main blocks is provided as
follows:

• In the first block, a classical convolutional layer
is applied to the input EEG signal, followed
by a Depthwise Convolution layer [37]. Then,
Batch Normalization is applied followed by ELU.
Finally, an Average Pooling layer of size (1, 4)
is used to reduce the sampling rate of the signal
followed by a Dropout layer.

• In the second block, a Separable Convolution [37]
is used. After a Batch Normalization followed by
the ELU activation function, a final Average Pool-
ing layer followed by a Dropout layer is applied.

• Final classification is made using applying a Soft-
max function directly, avoiding the use of a prior
dense layer for feature aggregation to reduce the
number of free parameters in the model.

B. VALIDATION METHOD
EEGNet was validated on the benchmark dataset with a
repeated Hold-Out validation: following [27], this work
included 25 subjects in the training set, 5 in the validation set,
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and the remaining 5 in the test set. In addition, 10 runs were
made for each combination of themodel’s hyperparameters to
make the reported results more statistically significant. Only
novel BCI subjects were included in the test set to simulate
real-world usage, as proposed in [27].

C. DOMAIN ADAPTATION TECHNIQUE
A two-step Domain Adaptation technique was applied during
the training of the three analyzed models (ShallowConvNet,
DeepConvNet, and EEGNet) on the benchmark dataset:
1) DA-based Standardization: The relying hypothesis is

that each subject data can be considered as belonging
to a different Domain. Therefore, instead of the clas-
sical z-score normalization on the whole training data,
a z-score standardization of the data subject-by-subject
was made. In particular, for each subject Si belonging
to the training and validation sets, all the related data
were used to extract the subject mean value µi and the
subject standard deviation σi. Therefore, a subject-wise
z-score normalization was performed. Instead, for each
subject St belonging to the test set, 20 % of the data
was considered as unlabelled calibration data available
during the training. The mean µt and the standard
deviation σt was computed on the calibration data and
used to perform a z-score normalization on the whole
subject data.

2) Similarity between Subjects: The similarity between
subjects was considered in the selection of the valida-
tion sets. In general, a validation set is used to control
the overfit of the network during the training. More
in detail, the performance on the validation set are
computed during the training stage and if it tends to
get worse, the training is stopped. Differently from
classical neural networks’ learning strategies, where
the validation set is selected from the training data ran-
domly, in this study the validation sets were composed
of the subjects closest to thosewho provided calibration
data. Our starting hypothesis is that a proper validation
set selected on the basis of the calibration data provided
by test subjects can lead to learn a model able to better
classify the data coming from the target distribution.
In this study, Kullback-Leibler (KL) divergence [54]
was used to measure the similarity between training
and calibration data. More in detail, for each pair of
subjects, their similarity is computed as follows:

sim(Si, Sj) =
1
K

K∑
k=1

KL(Ski , S
k
j ), ∀1 ≤ i, j ≤ N

where: S1, S2, . . . , SN are the N subjects and K is the
number of EEG channels.

IV. EXPERIMENTAL SETUP
This section provides an overview on the benchmark dataset
considered [34]. Moreover, the pre-processing strategies and
the model selection criteria are described.

A. DATA DESCRIPTION
The benchmark dataset has the following features:

• Subjects: 35 healthy subjects (17 females and 18 males,
aged 17-34 years, mean age: 22 years), having nor-
mal or corrected-to-normal vision, participated in this
study. 8 subjects had previous experience in SSVEP-
based BCI.

• Stimulus Presentation:An offline BCI experiment using
a 40-target BCI speller was designed. The 5× 8 stimulus
matrix was presented on a 23.6-in LCD monitor (Acer
GD245 HQ, response time: 2 ms) with a resolution
of 1920 × 1080 pixels, and a refresh rate of 60 Hz.
The viewing distance to the screen was 70 cm. The
sizes of stimulus and character were 140 × 140 and
32 × 32 pixels square, respectively. The size of the
whole matrix area was 1510 × 1037 pixels. Both the
vertical and horizontal distances between two neighbor-
ing stimuli were 50 pixels. The stimulus program was
developed under MATLAB using the Psychophysics
Toolbox Ver. 3. The 40 characters were coded using a
joint frequency and phase modulation (JFPM) approach.
In particular, the chosen frequencies were in the range
[8.0-15.8] Hz with a 0.2 Hz step, while the phase
values had a 0.5 π step. A sampled sinusoidal stim-
ulation method was applied to present visual flick-
ers on the LCD monitor. Given a frequency f and a
phase θ , the stimulus sequence s(f , θ, i) was generated
by modulating the luminance of the screen according
to 6 [34]:

s(f , θ, i) =
1
2

{1 + sin[2π f (i/RR) + θ ]} (6)

where sin(·) generates a sine wave, and i indicates the
frame index in the sequence. The refresh rate of the LCD
monitor is indicated with RR. In the obtained stimulus
sequence, 0 and 1 represent darkest and highest lumi-
nance, respectively.

• Data acquisition: A Synamps2 EEG acquisition unit
(Neuroscan, Inc.) was used to record EEG data at a
sampling rate of 1 kSa/s. 64 electrodes, according to
international 10-20 system [55], were used to record
whole-head EEG. The reference electrode was placed
at the vertex of the user scalp (Cz). The electrode
impedances were kept below 10 k � during the record-
ing phase. A notch filter at 50 Hz was applied to remove
the power-line noise. For each subject, the experiment
included six blocks. Each block was composed of 40 tri-
als, corresponding to all 40 squares. Each trial started
with a 0.5-s target cue. Subjects were asked to shift
their gaze to the indicated target as soon as possible.
After the cue, all stimuli started to flicker on the screen
concurrently for 5 s. Then, the screen became blank
for 0.5 s, before the start of the next trial. Subjects were
asked to avoid eye blinks during the 5-s stimulation dura-
tion. A rest for several minutes between two consecutive
blocks was foreseen.
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B. PRE-PROCESSING
Ten channels from the occipital and parietal areas were
selected for the experiments, namely PO8, PO7, PO6, PO5,
PO4, PO3, POz, O2, O1, and Oz, according to the Interna-
tional 10-20 System [34], as conducted in [27]. The time
windows considered were 0.5, 1.0, and 1.5 s as they are
typically considered the most challenging in view of using
BCIs for real-time applications [56]. Therefore, the analy-
sis at 5.0 s was excluded, also because the user would too
long be obliged to gaze at the desired flickering stimulus,
resulting in ocular discomfort. In all cases, the time dura-
tion of the target cue was discarded. The data extracted
are then filtered by means of a band-pass Finite Impul-
sive Response (FIR) filter [50] with linear phase response,
which avoids distortions on the original data and preserves
the information contribution of the alpha and beta bands.
Therefore, the standardization of the data was performed
in two ways: (i) canonical z-score normalization [57], and
ii) according to the proposed DA technique mentioned
in Sec. III-C.

C. SELECTION OF THE BEST MODEL
A random search strategy [58] was adopted to select the
hyperparameters values of ShallowConvNet, DeepConvNet,
and EEGNet. The hyperparameters spaces of each model are
reported respectively in Tables 1, 2 and 3. In particular, on the
three models, the Temporal Kernel Length hyperparameter is
related to the signal sample rate and the time window input;
with regards to EEGNet, the 2D convolutional layers of the
first and second blocks, share the same number of filters.
Furthermore, during the learning phase, a stop criterion was
used by means of a patience of 10 epochs. The hyperpa-
rameters values leading the model toward the best perfor-
mance in terms of mean classification accuracy (defined
as the percentage of signals correctly classified) were
selected.

TABLE 1. Optimized hyperparameters and variation ranges for
ShallowConvNet.

V. EXPERIMENTAL RESULTS
In this Section, the results achieved by the proposed approach
on the benchmark dataset [34] are reported. A comparison
with the performance obtained by several well-known strate-
gies proposed in literature, that are PodNet [27], CCA, and
FBCCA [28], was made. More in detail, Tab. 4 provides the
classification accuracy and standard deviations for several

TABLE 2. Optimized hyperparameters and variation ranges for
DeepConvNet.

TABLE 3. Optimized hyperparameters and variation ranges for EEGNet.

time windows T , namely T = {0.5 s, 1.0 s, 1.5 s}. To val-
idate the proposed approach, also a standard ML approach
consisting in standard z-score normalization parameters com-
puted on the whole training data and classical validation set
composed of random data extracted from the training data
was considered as baseline. In other words, the following two
experiments were made:

• DA experiment: in this case, the two-step DA technique
proposed in Sec. III (DA-based standardization and sim-
ilarity between subjects) is employed.

• Standard experiments: in this case, a standard ML
approach (canonical z-score normalization and random
validation sets) is adopted.

As specified in Sec. III, the validation method used was an
Hold-Out with a 25-5-5 split repeated 10 times. This setup
allows to compare the proposal with the results achieved
by PodNet reported in [27]. Moreover, the same validation
method was also applied to CCA and FBCCA, implemented
as described in [28]. However, several details needed for
experimental repeatability, such as the precise validation
procedure, are missing in the original study, therefore the
FBCCA results obtained in this work are different from
those reported in [28]. As stated in Sec. III, the 10 test sets
were created randomly, with the only condition of excluding
BCI-experienced subjects to simulate real-world usage. Pre-
liminary experiments, in fact, showed that the performance
of the expert participants were significantly higher than those
obtained by naive ones. For the sake of example, given
a 1.0-s time window, the mean accuracy obtained by
EEGNet - DA on the eight experienced subjects was greater
than 75 %, while that on the novel ones was only about 61 %.
A similar condition happened with FBCCA: in that case,
the mean accuracy obtained on the expert subjects was
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FIGURE 4. Boxplot of the obtained results as a function of the time window.

TABLE 4. Classification accuracy as a function of the time window T . The
three classifiers chosen are shown in bold.

about 54 %, while that on the naive ones was only 40 %.
Therefore, the proposed experiments including only
BCI-novels subjects were considered more suitable to vali-
date the usage of BCIs in real-world scenarios.

With regard to the findings reported in Tab. 4, the mean
classification accuracy achieved by EEGNet, DeepConvNet,

and ShallowConvNet when the two-step DA technique is
applied results greater than the baseline in all the analyzed
cases. For the sake of example, EEGNet - DA achieves
about 62 % accuracy at 1.0 s, while EEGNet - Standard
is limited to about 57 %, and FBCCA reaches only 39 %.
Therefore, the adoption of the proposed DA method leads
to an improvement of the performance with respect to the
baseline.

Fig. 4 illustrates the boxplot of the accuracy achieved
by all the aforementioned processing strategies, as a func-
tion of the time window T . The length of the whiskers is
set to 1.5 times the Interquartile Range (IQR). The statis-
tical significance of the results was tested by means of the
Paired T − Test .

• First, it was verified that the proposed DA tech-
nique significantly outperforms traditional ML strate-
gies. To this aim, the chosen null hypothesisH0 was that
the classifiers DA and Standard belonged to the same
population.

• Second, it was verified that the classifiers employed
with theDA technique significantly outperformFBCCA,
which is the gold standard in terms of SSVEPs classi-
fication. Therefore, the chosen null hypothesis H0 was
that the classifiersDA and FBCCA belonged to the same
population.

In Tab. 5, the details of the tests performed are shown
in terms of P-Value, that is the probability of failing to
reject the null hypothesis H0. The obtained P-Values can be
considered acceptable to confirm that the adoption of DA
techniques leads to relevant improvements in classification
accuracy with respect both to traditional ML approaches
and to FBCCA strategy, which is currently the state of the
art in the field of SSVEPs classification. These improve-
ments are more evident when the time windows are equal
to 0.5 s and 1.0 s. In fact, in these cases, the obtained
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TABLE 5. Details about the p-values obtained from the t-tests conducted.

P-Values considerably decrease with respect to those
obtained at 1.5 s.

VI. CONCLUSION
In this work, the employment of Machine Learning
(ML) and Domain Adaptation (DA) in the framework of
Brain-Computer Interfaces (BCIs) based on Steady-State
Visually Evoked Potentials (SSVEPs) was addressed. Three
well-known classifiers were employed to validate the pro-
posed method, namely ShallowConvNet, DeepConvNet, and
EEGNet. For each classifier, a two-step DA technique was
applied: i) a percentage of the test data was considered avail-
able as a calibration set during the training stage, in order
to standardize data per subject, and ii) a similarity mea-
sure between subjects was considered in the creation of the
validation sets. This was made with the aim to reduce the
high non-stationarity typical of the brain signals, leading to
improved classification accuracy. The experimental results
were obtained by testing the proposal on a benchmark dataset,
composed of 35 subjects and 40 simultaneous flickering
stimuli. A 10-run Hold-Out Validation was used to simu-
late real-world usage in a statistically significant way. The
experimental results show that the proposed DA approach
significantly helps to improve classification accuracy both
over standard ML strategies and FBCCA, which is currently
considered the gold standard in terms of SSVEPs classifi-
cation [27]. In fact, the low p-values obtained suggest that,
for short-time signals, a Dataset Shift problem may arise
due to the non-stationarity of EEG signals. Performance of
62.27 % accuracy was achieved by EEGNet - DA with a
time window of only 1.0 s, while EEGNet - Standard and
FBCCA reached 56.82 % and 39.34 %, respectively. This
allows easier development of SSVEP-based BCIs in contexts
where short-time signals are required for real-time human-
environment interactions. Future work will be dedicated to
further enhance the classification performance in order to
achieve satisfactory results even with time windows equal to
or lower than 1.0 s.
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