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Abstract: The crystallization behavior of random propene-octene isotactic copolymers (iPPC8) pre-
pared with a homogeneous metallocene catalyst has been studied. Samples of iPPC8 with low octene
content up to about 7 mol% were isothermally crystallized from the melt at various crystallization
temperatures. The samples crystallize in mixtures of the α and γ forms of isotactic polypropylene
(iPP). The relative amount of γ form increases with increasing crystallization temperature, and a max-
imum amount of γ form (fγ(max)) is achieved for each sample. The crystallization behavior of iPPC8
copolymers is compared with the crystallization from the melt of propene–ethylene, propene–butene,
propene–pentene, and propene–hexene copolymers. The results show that the behavior of iPPC8
copolymers is completely different from those described in the literature for the other copolymers
of iPP. In fact, the maximum amount of γ form achieved in samples of different copolymers of iPP
generally increases with increasing comonomer content, while in iPPC8 copolymers the maximum
amount of γ form decreases with increasing octene content. The different behaviors are discussed
based on the inclusion of co-monomeric units in the crystals of α and γ forms of iPP or their exclusion
from the crystals. In iPPC8 copolymers, octene units are excluded from the crystals giving only the
interruption effect that shortens the length of regular propene sequences, inducing crystallization
of the γ form at low octene concentrations, lower than 2 mol%. At higher octene concentration, the
crystallization of the kinetically favored α form prevails.

Keywords: isotactic polypropylene; copolymers; metallocene catalysts; role of defects excluded
from crystals

1. Introduction

Copolymerization of propene with other α-olefins of different chain lengths to isotactic
random copolymer is a well know strategy to modify the molecular structure and physical
properties and mechanical behavior of isotactic polypropylene (iPP) and expand the pos-
sible applications of iPP [1–3]. The introduction of constitutional defects as comonomers
of different sizes into polypropylene chains produces, generally, a decrease of melting
temperature and density, resulting in higher clarity and an improvement of flexibility and
ductility of iPP [1,4]. The efficient change of the mechanical properties depends on the
size and concentration of the comonomer, and, in general, on the type of the incorporated
defect. Therefore, understanding the effect of different defects on the crystallization and
mechanical properties of iPP allows for a controlled modification of properties [4,5].

The effect of comonomers on the crystallization behavior of iPP and crystallization of
the different polymorphic forms has been extensively investigated in samples prepared
either with heterogeneous Ziegler–Natta catalysts [6–33] or homogeneous metallocene cat-
alysts [34–57,57–93]. These studies have shown that modification of mechanical properties
of iPP, as the deformation behavior, depends mostly on the crystallization of α and γ forms.

The α form is the stable form of iPP and generally crystallizes in the common condi-
tions of crystallization from solution or from the melt and in fibers [5,94].
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In standard highly stereoregular samples of iPP synthesized with heterogeneous
Ziegler–Natta catalysts, the γ form has been observed only in low molecular mass sam-
ples [95], in copolymers of iPP with various comonomers [6], and by crystallization at high
pressures [96–100].

The discovery of single-center homogeneous metallocene catalysts [101–103] allowed
the synthesis of homogeneous samples of iPP that crystallize easily into the γ form in
common conditions of crystallization at atmospheric pressure in samples of high molecular
mass [104–115] and in random copolymers of iPP [34–57,57–93]. In fact, the γ form that
crystallizes in iPP samples is characterized by chains containing defects of stereoregularity
(as rr triads) or regioregularity (for instance 2,1 secondary propene units) [104–115], and
constitutional defects, such as comonomers [34–57,57–93]. In these defective samples of iPP
and in its copolymers with various comonomers, the γ form generally crystallizes in mixture
with α form, and the relative amount of γ form increases with increasing the concentration
of stereo-defects [104–112], regio-defects [115], and of comonomeric units [34–57,57–93]. In
these conditions, and in the special case of copolymers, the crystallization of the γ form
significantly modifies the mechanical behavior of iPP [1,4,75,78,86–92,116–120].

The easy crystallization of γ form in metallocene-based iPP and copolymers is related
to the shortening of the length of the regular isotactic propene sequences due to the presence
of defects randomly distributed along the chains generated by the catalyst. In fact, it is
known that the crystallization of γ form is induced by short regular propene sequences,
that is, when iPP chains contain any type of defect that interrupts the regular propene
sequences [52,72,74,107,110]. The crystallization of α form is instead preferred when the
regular propene sequences are very long, which are generated when the content of defects
is low or when defects are segregated in blocks of the macromolecules [110,111,113,114].

In general, for iPP samples and iPP-based copolymers synthesized with heteroge-
neous multi-site Ziegler–Natta catalysts, the distribution of defects (and comonomeric units)
along the macromolecules is not random, but they are segregated in blocks of the macro-
molecules [113,114,121,122]. Moreover, copolymer chains are characterized by mixtures
of different macromolecules that may have different composition and type of distribution
of the comonomers along the chains [123,124]. Therefore, in these systems, the regular
propene sequences are generally much longer, giving crystallization of α form even for high
concentration of defects. The nonrandom distribution of comonomers along the chains of
Ziegler–Natta copolymers and the presence of other types of microstructural defects have
so far prevented the study of the effect of a single comonomeric unit on the crystallization
behavior and physical properties of iPP.

Copolymers of iPP and iPP homopolymer prepared with single-center metallocene
catalysts are instead characterized by a more homogeneous molecular structure with a
perfectly random and uniform distribution of molecular defects along the chain. Therefore,
even a low content of defects decreases the length of the regular propene sequences,
inducing the crystallization of the γ form [107,110,111,115].

The crystallization of α and γ forms depending on the different molecular struc-
ture and architecture has a great influence on the physical and mechanical properties of
iPP [4,5,75,88–92,110,116–119]. Therefore, in general, the molecular architecture and topol-
ogy of copolymers, from standard random to block or multiblock copolymers, greatly
affects the crystallization behavior and properties of polymers because of the different
length of crystallizable sequences [123–133].

The random distribution of defects and comonomers along the macromolecules allows
considering iPPs and its copolymers synthesized with metallocene catalysts as model
systems for the crystallization behavior of iPP, which is defined by the average length of
the regular propene sequences that is directly related (inversely) to the concentration of
defects [110]. Since the crystallization behavior of iPP depends on the length of regular
propene sequences, the inclusion of defects in the crystals or their exclusion from the
crystals plays a fundamental role. The inclusion of defects in the crystals gives longer
crystallizable propene sequences, even for high concentrations of defects, whereas exclu-
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sion produces a shortening of the regular propene sequences [72,74,93,110]. This aspect
is particularly relevant in the case of iPP-based copolymers with different α-olefins, as
different comonomeric units may or may not be incorporated in the crystals of α or γ forms,
depending on the size of comonomers and their compatibility with the crystal structures
of the α and γ forms. In this context, detailed studies of the crystallization behavior and
properties of copolymers of iPP with ethylene, butene, pentene, and hexene prepared with
metallocene catalysts have been reported in the literature [34–57,57–93]. However, all these
comonomers (ethylene, butene, pentene, and hexene) are in part included in the crystals
and in part excluded from the crystals of α and γ forms, and their degree of inclusion and
the partitioning of defects between the crystalline and amorphous phases have been also
evaluated by solution and solid-state 13C NMR and ab initio calculations [51,61,108,109].
Therefore, only the effect of comonomers included in the crystals or only the effect of
comonomers excluded from the crystals cannot be understood yet.

This paper reports an analysis of the crystallization behavior of isotactic propene-
octene copolymers (iPPC8) synthesized with a metallocene catalyst. Octene units are
completely excluded from the crystals of both α and γ forms, therefore, we aim at clarifying
the specific effect of defects excluded from the crystals on the crystallization behavior of iPP.
The crystallization behavior of iPPC8 copolymers is compared with those of copolymers of
iPP with ethylene, butene, pentene, and hexene. The effect of the octene units excluded
from the crystals on the crystallization of α and γ forms of iPP is analyzed and compared
to those of the different mentioned comonomers that are partially included in the crystals
of α and γ forms with a different degree of incorporation.

2. Materials and Methods

Propene–octene isotactic copolymers (iPPC8) were prepared with the metallocene
catalyst of Scheme 1 [134] in combination with methylalumoxane (MAO) (from Lanxess,
Cologne, Germany), as reported in ref. [79]. The used catalyst is highly isospecific in both
homo- and copolymerizations, and the iPPC8 copolymers result in being highly isotactic
and contain very low amounts of defects of stereoregularity and regioregularity, with only
about 0.2 mol% of 2,1-eryhro propene units [134] (Table 1). Moreover, octene incorporation
does not affect the molecular mass, and all samples present high values of molecular mass
(Table 1).
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Table 1. Feed (mL octene) and copolymer composition (mol% octene), melting temperature of
as-prepared samples (Tm), molecular mass (Mw), and dispersity (Mw/Mn) of iPPC8 copolymers [79].

Sample Feed
(mL Octene)

Composition
(mol% Octene) Tm (◦C) a Mw

b Mw/Mn
b

iPPC8-1 1 1.9 132.5 398,576 2.1
iPPC8-2 4 4.3 114.4 257,274 2.0
iPPC8-3 6 7.1 91.8 302,205 2.1
iPPC8-4 7 10.3 72.6/53.2 252,380 2.1
iPPC8-5 8 12.8 47.3 230,985 2.0
iPPC8-6 10 15.9 44.9 225,750 2.0

a Determined from DSC heating curves recorded at 10 ◦C/min. b Determined by GPC.

The composition and comonomer distribution were determined by 13C NMR
analysis [135,136] (Table 1). All spectra were obtained using a Bruker DPX-400 spectrome-
ter operating in the Fourier transform mode at 120 ◦C at 100.61 MHz (Bruker Company,
Billerica, Massachusetts, USA). The samples were dissolved with 8% wt/v concentration in
1,1,2,2-tetrachloroethane-d2 at 120 ◦C. The carbon spectra were acquired with a 90◦ pulse
and 12 s of delay between pulses and CPD (WALTZ 16) to remove 1H-13C coupling. About
1500–3000 transients were stored in 32 K data points using a spectral window of 6000 Hz.
For all copolymer samples, the peak of the propene methine carbon atoms was used as
an internal reference at 28.83 ppm. The resonances were assigned according to ref. [135],
and the 1-octene concentrations in the copolymers were evaluated from the constitutional
diads PP, PO, and OO concentration (P = propene, O = octene). The NMR analysis showed
that all the copolymers present a statistical distribution of comonomers (r1 × r2 ≈ 1) and
homogeneous intermolecular composition.

The molecular masses and the dispersity were determined by gel permeation chro-
matography (GPC), using a Polymer Laboratories GPC220 apparatus equipped with a
differential refractive index (RI) detector and a Viscotek 220R viscometer (Agilent Company,
Santa Clara, CA, USA), on polymer solutions in 1,2,4-trichlorobenzene at 135 ◦C.

The calorimetry measurements were performed with differential scanning calorimeter
(DSC) Mettler Toledo DSC-822 (Columbus, OH, USA) performing scans in a flowing N2
atmosphere and a scanning rate of 10 ◦C/min.

X-ray powder diffraction profiles were recorded with Ni filtered Cu Kα radiation by
using an Empyrean diffractometer (Malvern Panalytical, Worcestershire, UK), performing
continuous scans of the 2θ Bragg angle from 2θ = 5◦ to 2θ = 40◦.

All samples of iPPC8 copolymers were isothermally crystallized from the melt at
different crystallization temperatures (Tc). Powder samples were melted at 200 ◦C and kept
for 5 min at this temperature in a N2 atmosphere. They were then rapidly cooled to the
crystallization temperature, Tc, and kept at this temperature, still in a N2 atmosphere, for a
time long enough to allow complete crystallization at Tc. After the complete crystallization,
the samples were quenched to room temperature and analyzed by X-ray diffraction and
DSC. In the various isothermal crystallization experiments, the crystallization time is
different depending on the crystallization temperature. The crystallization time necessary
to have complete crystallization was evaluated by recording the crystallization exotherms in
DSC and evaluating the crystallization kinetics. The crystallization time is about 2 h for low
crystallization temperatures and about 2 weeks for the highest crystallization temperatures.

The degrees of crystallinity (xc) were determined from the powder diffraction profiles
by the ratio between the crystalline diffraction area (Ac) and the area of the whole diffraction
profiles (At = Ac + Aam), xc = (Ac/At) × 100. The area of the crystalline phase (Ac) has been
determined subtracting a baseline and the scattering halo of the amorphous phase (Aam)
from the whole diffraction profile. For iPPC8 copolymer samples with low comonomer
concentration, the amorphous halo has been obtained from the X-ray diffraction profile
of a sample of atactic polypropylene. For iPPC8 copolymer samples with high octene
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concentration, the amorphous halo has been obtained from the X-ray diffraction profile of
the amorphous sample iPPC8-6 with the highest octene concentration (15.9 mol%).

In samples that crystallize in mixtures of α and γ forms, the weight fraction of crystals
of γ form fγ, with respect to that of the α form, was evaluated from the intensity of the
(117)γ reflection at 2θ = 20.1◦ of the γ form, with respect to that of the (130)α reflection at
2θ = 18.6◦ of the α form, as the ratio: fγ = 100× (I(117)γ/[I(117)γ + I(130)α]). The in-
tensities of (117)γ and (130)α reflections were measured from the area of the corresponding
diffraction peaks above the diffuse amorphous halo in the X-ray powder diffraction profiles.
The amorphous halo was obtained as described above. Next, it was scaled and subtracted
to the X-ray diffraction profiles of the melt-crystallized samples. This method was applied
to samples of iPPC8 copolymers of low octene concentrations that present X-ray diffraction
profiles with well-defined and separated (117)γ reflection at 2θ = 20.1◦ of the γ form and
(130)α reflection at 2θ = 18.6◦ of the α form. For samples with high octene concentrations
that crystallize from the melt in disordered modifications of γ form intermediate between
the α and γ forms [112], the structural disorder reduces the intensities of both (130)α and
(117)γ reflections, and in limit of high degree of disorder in the γ crystals, both (130)α and
(117)γ reflections disappear. In these cases, the absence of the (130)α and (117)γ reflections
prevents the application of the method based on the intensities of the (130)α and (117)γ
reflections, and the amount of γ form has been evaluated using the method described
in ref. [112], based on the simulation of the diffraction profiles by calculating the X-ray
diffraction as the sum of the contributions of the diffraction of crystals of α form and of
the diffraction of disordered crystals of γ form. The amount of γ form in the mixture
of α crystals and disordered crystals of γ form corresponds to that which gives the best
agreement between experimental and calculated diffraction profiles.

3. Results and Discussion

The X-ray powder diffraction profiles of as-prepared (precipitated from the polymer-
ization solution) samples of iPPC8 copolymers are shown in Figure 1. The values of the
degree of crystallinity evaluated from the diffraction profiles are also shown in Figure 1.
The corresponding DSC heating curves are reported in Figure 2A. These data indicate that
the presence of octene produces a decrease of crystallinity and melting temperature with
increasing octene concentration from xc = 41% and Tm = 132 ◦C of the sample with 1.9 mol%
of octene down to xc = 5% and Tm = 45 ◦C of the sample with 15.9 mol% of octene. For
octene concentrations higher than 16 mol%, the copolymers do not crystallize any more.

It is apparent that samples with octene content up to about 12 mol% crystallize in the
α form, as indicated by the presence in the diffraction profiles a–d of Figure 1 of the (110)α,
(040)α, and (130)α reflections at 2θ = 14.1, 17.0, and 18.6◦, respectively, of the α form of iPP,
and the absence of the (117)γ reflection at 2θ = 20.1◦ of the γ form. The diffraction profiles
of samples with octene concentration higher than nearly 12 mol% present a diffuse halo
with some shoulders or very weak and broad diffraction peaks (profiles e, f of Figure 1).
This indicates that these samples are basically amorphous. In the sample iPPC8-5 with
12.8 mol% of octene (profile e of Figure 1), very small and broad reflections are indeed still
observed at 2θ ≈ 14, 17, and 21◦, corresponding to the (110)α, (040)α, and (111)α reflections
of the α form, and the amorphous scattering of the sample iPPC8-6 with 15.9 mol% of octene
is clearly asymmetric with a broad peak at 2θ = 14◦ (profile f of Figure 1). This indicates
that in the samples iPPC8-5 and iPPC8-6, a very small residual crystallinity (xc = 10 and
5%, respectively), which can be attributed to disordered crystals of the α form, is still
present [79]. This is also demonstrated by the DSC heating curves e and f of Figure 2A,
which still present endothermic peaks at about 47 and 45 ◦C [79].

The DSC curves of the iPPC8 copolymers recorded during cooling from the melt are
reported in Figure 2B. It is apparent that the crystallization temperature and enthalpy
decrease with increasing octene concentration, and the samples iPPC8-5 and iPPC8-6 with
12 mol% and 15.9 mol% of octene do not crystallize by cooling from the melt. In the curves
e and f of Figure 2B, only very small and broad exothermic signals are visible at very low
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temperature of nearly −10 ◦C. The DSC cooling curves recorded at low cooling rates of
2.5 ◦C/min (data not shown) are very similar to those of Figure 2B. The low crystallinity that
these two samples show in the as-prepared specimens (profiles e and f of Figures 1 and 2A)
is due to further crystallization upon aging at room temperature.
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Figure 1. X-ray diffraction profiles of as-prepared samples of iPPC8 copolymers of the indicated
octene concentration (a–f). The (110)α, (040)α, and (130)α reflections at 2θ = 14◦, 17◦, and 18.6◦,
respectively, of the α form of iPP and the values of the degree of crystallinity xc are indicated.

These data indicate that the γ form of iPP does not crystallize in these iPPC8 copoly-
mers, even at high octene concentrations. Instead, this occurs in copolymers of iPP with
ethylene (iPPC2) [72], butene (iPPC4) [72,81,92], pentene (iPPC5) [82,90,91,93], and hex-
ene (iPPC6) [68,69,74,77]. Moreover, Figure 1 also indicates that the trigonal δ form does
not crystallize in these iPPC8 copolymers, as instead occurs in iPPC5 [73,82,90,91,93] and
iPPC6 [68–70,74,77] copolymers.
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Figure 2. DSC heating (A) and cooling (B) curves of as-prepared samples of iPPC8 copolymers of the
indicated 1-octene concentration (a–f).

The analysis of the 2θ positions of the (110)α and (040)α reflections of α form in the
diffraction profiles of Figure 1 indicates that the Bragg distances of the diffracting planes
are the same as those of the homopolymer, indicating that there is not expansion of the unit
cell dimensions and that, therefore, octene co-units are excluded from the crystals of the
α form. This behavior is different from those of iPPC4 [72,81,92], iPPC5 [73,82,90,91,93],
and iPPC6 [68–70,74,75,77] copolymers, in which the comonomers are included, at least
in part, in the crystals of α form with different degree of inclusion depending on the size
and type of the comonomer unit. For iPPC6 and iPPC5 copolymers with high comonomer
concentration, a huge amount of hexene and pentene comonomeric units is included in the
unit cell of α form, inducing increase of crystal density that, in turn, induces crystallization
of the δ form [68–70,73–75,77,82,90,91,93].

The exclusion of octene from the crystals of α and γ forms and the consequent absence
of the crystallization of the trigonal δ form explains the fact that iPPC8 copolymers crystal-
lize only up to 10–12 mol% of octene, whereas iPPC5 and iPPC6 copolymers crystallize up to
very high pentene and hexene concentrations of about 55 mol% of pentene [73,82,90,91,93]
and 25–30 mol% of hexene [68–70,74,75,77].

To study the effect of the octene comonomeric units excluded from the crystals on
the crystallization of α and γ forms, samples of iPPC8 copolymers have been isother-
mally crystallized from the melt at high crystallization temperatures in conditions close
to the thermodynamic conditions. The diffraction profiles of samples of iPPC8 copoly-
mers isothermally crystallized from the melt at different temperatures are reported in
Figure 3. The diffraction profiles of the as-prepared samples, (already presented in Figure 1)
are also reported in Figure 3 (profiles a) for comparison. The isothermal crystallizations
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have been performed only for the three samples of iPPC8 copolymers with low octene
concentrations of 1.9, 4.3, and 7.1 mol% that crystallize from the melt and develop a
significant degree of crystallinity. As discussed above, samples with higher octene concen-
tration do not crystallize from the melt or develop very low crystallinity and crystallize by
cold crystallization.
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Figure 3. X-ray powder diffraction profiles of samples isothermally crystallized from the melt at
the indicated crystallization temperatures Tc (b–f) of the samples iPPC8-1 with 1.9 mol% of octene
(A), iPPC8-2 with 4.3 mol% of octene (B), and iPPC8-3 with 7.1 mol% of octene (C). The diffraction
profiles of the as-prepared samples are also reported (profiles (a)). The (110)α, (040)α, and (130)α
reflections at 2θ = 14◦, 17◦, and 18.6◦, respectively, of the α form of iPP and the (117)γ reflection of
the γ form at 2θ = 20.1◦, are indicated.

Samples of iPPC8 copolymers with low octene concentrations of 1.9 and 4.3 mol%
crystallize at any crystallization temperature in mixtures of α and γ forms, as indicated by
the presence of the (130)α and (117)γ reflections at 2θ≈ 18.6◦ and 20.1◦ of the α and γ forms,
respectively, in all the diffraction profiles of Figure 3A,B. In these two samples, the intensity
of the (117)γ reflection at 2θ = 20.1◦ of the γ form increases up to achieve a maximum,
whereas the intensity of the (130)α reflection at 2θ = 18.6◦ of the α form decreases with
increasing crystallization temperature. This indicates that the relative amount of γ form
increases, and that of the α form decreases, with increasing crystallization temperature up
to achieve a maximum (Figure 3A,B).

The sample iPPC8-3 with higher octene concentration of 7.1 mol% instead crystallizes
at all crystallization temperatures only in the α form, as indicated by the presence of only
the (130)α reflection at 2θ = 18.6◦ of the α form and the absence of the (117)γ reflection
at 2θ = 20.1◦ of the γ form in all the diffraction profiles of Figure 3C. Only at the highest
crystallization temperature of 80 ◦C does a very small broad peak at about 2θ = 20.1◦

appear, while the (130)α reflection at 2θ = 18.6◦ disappears (profile e of Figure 3C). This
indicates development at high crystallization temperature of a small amount of γ form.
However, the lack of well-defined (130)α and (117)γ reflections at 2θ = 18.6◦ and 20.1◦ of
α and γ forms in the diffraction profile e of Figure 3C indicates that the sample iPPC8-3
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crystallizes in a disordered modification of the γ form intermediate between the ordered
α and γ forms [110–112]. Contrary to propene–pentene and propene–hexene copolymers
that, for high comonomer concentration, crystallize in the trigonal δ form [74,93], no traces
of the trigonal δ form are observed in all three samples of iPPC8 copolymers isothermally
crystallized from the melt (Figure 3).

The values of the amount of γ form (fγ), with respect to the α form, that crystallizes
in the isothermal crystallizations, determined from the intensities of (117)γ and (130)α
reflections in the diffraction profiles of Figure 3, are reported in Figure 4 as a function
of the crystallization temperature. For all samples, the amount of γ form increases with
increasing crystallization temperature up to achieve a maximum fγ(max). In samples of
different octene concentrations, a maximum amount of γ form is achieved at different
crystallization temperatures (Figure 4). The values of the maximum amount of γ form
(fγ(max)) that are obtained in each sample are reported in Figure 5 as a function of the
octene concentration. It is apparent that the maximum amount of γ form achieves the
highest value of 95% at the lowest octene concentration of 1.9 mol% and then decreases
with increasing octene concentration down to a value of about 50% for the sample iPPC8-
3 with 7.1 mol%. This sample always crystallizes in the α form and crystallizes in the
disordered modification intermediate between the ordered α and γ forms only at the
highest crystallization temperature (Figure 3C). For this sample (diffraction profile e of
Figure 3C), because of the absence of both (130)α and (117)γ reflections at 2θ = 18.6◦ and
20.1◦ of α and γ forms, the amount of γ form has been calculated from the simulation of the
diffraction profile by calculating the X-ray diffraction as the sum of the contributions of the
diffraction of crystals of α form and of the diffraction of disordered crystals of γ form [112].
A value of fγ = 50% has been obtained.
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Figure 4. Relative amount of γ form (fγ) that crystallizes from the melt in samples of iPPC8 copoly-
mers isothermally crystallized from the melt at the crystallization temperatures, Tc, as a function of
the crystallization temperature Tc. (l) sample iPPC8-1 with 1.9 mol% of octene, (N) sample iPPC8-2
with 4.3 mol% of octene, (�) sample iPPC8-3 with 7.1 mol% of octene.

The behavior of iPPC8 copolymers of Figure 5 is completely different from the behav-
iors observed in iPPC2 [72], iPPC4 [72], iPPC5 [93], and iPPC6 [74] copolymers. In fact, the
maximum amount of γ form achieved in each sample of different copolymers depends
on the comonomer concentration and generally increases with increasing comonomer
concentration, while in iPPC8 copolymers, the maximum amount of γ form decreases with
increasing octene concentration (Figure 5).



Polymers 2022, 14, 4032 10 of 20

Polymers 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

The behavior of iPPC8 copolymers of Figure 5 is completely different from the be-
haviors observed in iPPC2 [72], iPPC4 [72], iPPC5 [93], and iPPC6 [74] copolymers. In fact, 
the maximum amount of γ form achieved in each sample of different copolymers depends 
on the comonomer concentration and generally increases with increasing comonomer 
concentration, while in iPPC8 copolymers, the maximum amount of γ form decreases 
with increasing octene concentration (Figure 5). 

 
Figure 5. Maximum amount of γ form (fγ(max)) obtained in isothermal crystallization from the melt 
of iPPC8 copolymers (the highest values of Figure 4) as a function of octene concentration. 

The data of the maximum amount of γ form of iPPC8 copolymers of Figure 5 are also 
plotted in Figure 6 as a function of the total concentration of defects, defined as the sum 
of steric defects (rr diads), 2,1 regiodefects, and octene units, ε = [rr] + [1,2] + [octene], and 
compared with the values of fγ(max) observed and found in the literature for highly ste-
reoregular iPP homopolymer [72,74,93,115], iPPC2 [72], iPPC4 [72], iPPC5 [93], and iPPC6 
[74] copolymers. The literature values refer to copolymers synthesized with similar iso-
specific catalysts [72,74,93,115] that produce copolymers with isotacticity as high as that 
of the iPPC8 copolymers analyzed in this paper. Therefore, the differences among the dif-
ferent copolymers observed in Figure 6 are due to the different effects of the different 
comonomers on the crystallization of the α and γ forms. In the plot of Figure 6, the data 
of maximum amount of γ form produced by melt crystallizations of stereodefective iPPs 
containing different amounts of defects of stereoregularity (only rr diad defects) synthe-
sized with various metallocene catalysts are also reported [110]. Figure 6 shows that, com-
pared to the homopolymer sample of similar high isotacticity synthesized with the same 
or similar catalyst, for all copolymers the maximum amount of γ form rapidly increases 
with increasing comonomers concentration. For iPPC8 copolymers, the increase of fγ(max) 
from that of the homopolymer is very fast, and the highest value of fγ(max) is achieved at 
a very low octene concentration of 1.9 mol%. Then, for octene contents higher than 1.9 
mol%, fγ(max) decreases (Figures 5 and 6). 

0 5 10 15
0

20

40

60

80

100

f  
(m

ax
) 

(%
)

mol% octene

Figure 5. Maximum amount of γ form (fγ(max)) obtained in isothermal crystallization from the melt
of iPPC8 copolymers (the highest values of Figure 4) as a function of octene concentration.

The data of the maximum amount of γ form of iPPC8 copolymers of Figure 5 are also
plotted in Figure 6 as a function of the total concentration of defects, defined as the sum
of steric defects (rr diads), 2,1 regiodefects, and octene units, ε = [rr] + [1,2] + [octene],
and compared with the values of fγ(max) observed and found in the literature for highly
stereoregular iPP homopolymer [72,74,93,115], iPPC2 [72], iPPC4 [72], iPPC5 [93], and
iPPC6 [74] copolymers. The literature values refer to copolymers synthesized with similar
isospecific catalysts [72,74,93,115] that produce copolymers with isotacticity as high as that
of the iPPC8 copolymers analyzed in this paper. Therefore, the differences among the
different copolymers observed in Figure 6 are due to the different effects of the different
comonomers on the crystallization of the α and γ forms. In the plot of Figure 6, the data
of maximum amount of γ form produced by melt crystallizations of stereodefective iPPs
containing different amounts of defects of stereoregularity (only rr diad defects) synthesized
with various metallocene catalysts are also reported [110]. Figure 6 shows that, compared
to the homopolymer sample of similar high isotacticity synthesized with the same or
similar catalyst, for all copolymers the maximum amount of γ form rapidly increases with
increasing comonomers concentration. For iPPC8 copolymers, the increase of fγ(max) from
that of the homopolymer is very fast, and the highest value of fγ(max) is achieved at a
very low octene concentration of 1.9 mol%. Then, for octene contents higher than 1.9 mol%,
fγ(max) decreases (Figures 5 and 6).
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Figure 6. Maximum amount of γ form (fγ(max)) obtained in samples of iPPC8 copolymers isother-
mally crystallized from the melt (�) as a function of the total concentration of defects ε, compared to
literature values found for stereoirregular iPPs (
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The compared data of Figure 6 indicate that for iPPC2 copolymers, fγ(max) increases
with increasing ethylene content to achieve the maximum value of fγ(max) = 100%, cor-
responding to the crystallization of the pure γ form [72]. A similar effect is visible in the
stereodefective samples of iPP homopolymer containing variable content of stereodefects
(only rr diad defects) (Figure 6) [110]. In fact, for these iPP samples the values of fγ(max)
increase with increasing concentration of rr defects and achieve the highest maximum
value fγ(max) = 100% for rr defects content higher than 5–7 mol% (Figure 6). Both iPPC2
copolymers and defective iPPs crystallize from the melt in the pure γ form for ethylene and
rr defect concentrations higher than 5–7 mol% [72,110]. This suggests that rr diad defects
and ethene units provide a similar effect in inducing crystallization of γ form, and the
values of fγ(max) of defective iPPs and iPPC2 copolymers in Figure 6 are interpolated by
the same curve [72,110].

Different behaviors are instead observed in Figure 6 for the other copolymers. In fact,
in copolymers iPPC8, iPPC6, iPPC5, and iPPC4, the maximum amount of γ form fγ(max)
first increases, achieves the highest value of nearly 90–95% and then decreases with further
increase of comonomer concentration (Figure 6). The rates of increase and then of decrease
of fγ(max) with the comonomer concentration are, however, different in these copolymers.
For low defects concentration (lower than 2–3 mol%), the increase of fγ(max) observed
in iPPC8 copolymers is faster than that in iPPC6, iPPC5, and iPPC4 copolymers, whereas
the increase of fγ(max) observed in iPPC6 copolymers is faster than that in iPPC5 and
iPPC4 copolymers, and, finally, the increase of fγ(max) in iPPC5 copolymers is, in turn,
faster than that in iPPC4 copolymers (Figure 6). The fastest increase of fγ(max) is, indeed,
observed for iPPC8 copolymers characterized by the largest size comonomer. Moreover,
the highest values of fγ(max) in iPPC5 and iPPC6 copolymers are obtained soon for low
pentene and hexene concentrations (2–3 mol%), whereas in iPPC8 copolymers is achieved
at the lowest comonomer concentration of 1.9 mol% (Figure 6). Furthermore, the highest
value of the maximum amount of γ form in iPPC8 copolymers (95%) is higher than those
in copolymers iPPC6, iPPC5, and iPPC4, whereas iPPC6 copolymers produce a maximum
amount of γ form (90%) higher than those in copolymers iPPC5 and iPPC4. Finally, iPPC5
copolymers give a highest maximum amount of γ form higher than that developed in
iPPC4 copolymers [72,74,93].

At high concentrations of comonomers, fγ(max) decreases in the three copolymers
iPPC4, iPPC5, and iPPC6 down to fγ(max) = 0, corresponding to crystallization of the pure
α form. The decrease of fγ(max) in iPPC6 copolymers is faster than in iPPC5 copolymers,
which is, in turn, faster than in iPPC4 copolymers. In the case of iPPC8 copolymers, the
decrease of fγ(max) from the highest value is faster than in iPPC6, iPPC5 and iPPC4
copolymers, because the value of fγ(max) = 50% is obtained already for the sample with
7.1 mol% of octene, which gives only a disordered modification of γ form with structure
intermediate between those of the α and γ forms (Figure 3C). The drop off of fγ(max) starts
at concentrations of comonomers of 2 mol% for iPPC8 copolymers, nearly 4–5 mol% in
iPPC6 copolymers, 10–11 mol% in iPPC5 copolymers, and 14–15 mol% in iPPC4 copolymers
(Figure 6) [72,74,93]. Moreover, for concentrations of pentene and hexene higher than
10–11 mol%, iPPC5 and iPPC6 copolymers do not crystallize any more in the γ form but
crystallize in the α form or in mixtures of α and δ forms [74,93]. Instead, at these high
concentrations of butene, iPPC4 copolymers continue to crystallize in a mixture of α and γ
forms, and only for butene concentration higher than 30 mol% they crystallize in the pure
α form [72]. In iPPC8 copolymers, crystallization of the γ form is no longer observed at
octene concentrations higher than 7 mol%, and for this composition, iPPC8 copolymers do
not crystallize or develop only very low crystallinity of the α form (Figure 5).

Since in the analyzed copolymers there is no effect of stereo- or regio-defects, the
observed different behavior is due to the different effect of different comonomers on the
crystallization of iPP, related to the inclusion of different comonomers into crystals of α and
γ forms or their exclusion from the crystals. Defects as comonomers [53,72,74,90–93], as well
as defects of stereoregularity [105–111] and regioregularity [108,115], give the same effect
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of interruption the propene sequences, shortening the average length of regular propene
sequences <LiPP> and favoring the crystallization of the γ form. When the defects are
incorporated in part or totally in the crystals of α and γ forms, the length of the crystallizable
sequences increases, favoring the crystallization of the form that better accommodates the
defect into crystals [72,74,90–93].

Ethylene, butene, pentene, hexene, and octene comonomers show different degrees of
inclusion in crystals of iPP. A small amount of ethene is included in crystals ofα and γ forms,
and iPPC2 copolymers do not crystallize at high ethylene concentrations [51,52,72]. A high
amount of butene is instead easily incorporated in the crystals of α form and, as a conse-
quence, iPPC4 copolymers crystallize in the whole range of composition [61,72,92]. The
degree of inclusion of pentene and hexene comonomeric units is very low in copolymers
with low comonomer content but is very high in samples of high comonomer concen-
tration [64,65,67–70,73–75,77,82,90,91,93]. Therefore, at low concentrations, pentene and
hexene comonomeric units act as defects interrupting the regular propene sequences and
inducing crystallization of the γ form [74,93]. At high comonomer concentrations, instead,
the high fraction of co-units included in the crystals of the α form induces crystallization
of the α form [68,69,73,74,77,93] and produces an increase of crystal density that then
induces crystallization of the δ form for comonomer concentrations higher than about
15–16 mol% [68–70,73,74,77,82,90,91,93]. As discussed above, octene units are instead
excluded from the crystals and are mainly segregated in the amorphous phase.

The two competing effects of interruption of the regular propene sequences of defects
excluded from the crystals and the inclusion of defects into crystals define the crystallization
behavior of iPP. The interruption effect induces crystallization of γ form [72,74,93,110],
whereas the inclusion effect induces crystallization of α and δ forms [68–70,72,73,77,82,90–93].
For random copolymers and, generally, for iPP chains characterized by random distribution
of defects along the macromolecules, the average length of the regular propene sequences
is inversely proportional to the total concentration of defects ε and can be evaluated as
<LiPP> ≈ 1/ε [110]. The data of the maximum amount of γ form fγ(max) of Figure 6 of
all copolymers and of defective iPPs [72,74,93,110] are reported in Figure 7 as a function of
the average length of the regular propene sequences <LiPP>. For the different copolymers,
different relationships between <LiPP> and fγ(max) have been obtained [72,74,93,110], and
iPPC8 copolymers give a new different behavior.
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The plot of Figure 7 indicates that the data of iPPC2 copolymers and of defective iPPs
follow the same relation between fγ(max) and <LiPP>, which essentially corresponds to
the interruption effect [72,110]. Ethylene co-units and rr stereodefects are mainly excluded
from crystals (or partially included), and the effect of interruption and of shortening the
length of the regular propene sequences prevails [72,110]. For the iPPC8 copolymers, octene
defects are also mainly excluded from the crystals, and therefore, the interruption effect
predominates and at octene concentrations lower than 2 mol% iPPC8 copolymers give the
highest maximum amount of γ form, similar to that of stereodefective iPPs and iPPC2
copolymers (Figure 7). At higher octene concentration, the behavior of iPPC8 copolymers
deviates from the master curve of iPPC2 and stereodefective iPPs, and the maximum
amount of γ form does not depend anymore on the average length of regular propene
sequences <LiPP> and decreases with increasing octene concentration and decreasing
<LiPP>. This is due to the fact that the long octene units makes the crystallization of the
γ form too much slow even for short values of <LiPP>, inducing crystallization of the
kinetically favored α form, and prevents complete crystallization of both α and γ forms at
octene concentrations higher than 12–13 mol%.

The three copolymers iPPC4, iPPC5, and iPPC6 give three different relationships
between fγ(max) and <LiPP> (Figure 7), because different amounts of the three comonomers
are included in the crystals of the α form [72,74,93]. At low concentrations of comonomer
(lower than 5–6 mol% and <LiPP> of 200-30 monomeric units), the included amounts of
pentene and hexene are low, as in the case of ethylene, and the effect of interruption prevails
inducing crystallization of the γ form. The bigger the comonomer, the more efficient the
interruption effect, and the higher the amount of γ form. In fact, for this composition, iPPC5
and iPPC6 copolymers give an amount of γ form higher than those of iPPC2 copolymers
and defective iPPs but lower than that of iPPC8 copolymers (Figure 7) [74,93]. High
amounts of butene co-units are, instead, included in the crystals of α form, even at low
concentrations, and iPPC4 copolymers give a maximum amount of γ form lower than those
of iPPC5, iPPC6, and iPPC8 copolymers, and lower than those of iPPC2 copolymers and
streoirregular iPPs (Figure 7) [72].

For comonomer concentrations higher than 5 mol% and <LiPP> lower that
20–30 monomeric units, hexene, pentene, and butene units are incorporated in the α
form to very high extents with corresponding increase of crystalline density, and the inclu-
sion effect with the stabilization of the α form prevails over the interruption effect, inducing
the crystallization of the α and δ forms, with a fast decrease of the maximum amount of γ
form down to zero for iPPC6, iPPC5, and iPPC4 copolymers (Figure 7) [72,74,93]. A fast
or slow decrease of fγ(max) depends on the fast or slow increase of crystal density, which
depends on the size of the included comonomer. Therefore, the decrease of fγ(max) is
faster in iPPC6 copolymers because of the bigger hexene units, and the decrease of fγ(max)
in iPPC5 copolymers is faster than that of iPPC4 copolymers. It is worth noting that the
fastest decrease of the maximum amount of γ form in iPPC8 copolymers is not due to
incorporation of octene units in the crystals of α form, but, as mentioned above, is rather
correlated to the fact that the excluded octene units make the crystallization of γ form too
slow, inducing the faster crystallization of the kinetically favored α form, and then, at high
concentrations, completely prevents crystallization of both α and γ forms (Figure 7).

These data on iPPC8 copolymers and the comparison with the literature demonstrate
that the crystallization behavior of iPP may be described in terms of a model that defines
a double role exerted by defects, the interruption of the regular propene sequences, and
the inclusion effect. The crystallization of α, γ, and δ forms of iPP depends on which effect
prevails, which in turn depends on the size and type of the defect.

4. Conclusions

Random isotactic propene–octene copolymers with octene concentrations ranging
from 1.9 to 16 mol% have been synthesized with a homogeneous single center metallocene
catalyst. The as-polymerized samples with octene content up to 10–12 mol% crystallize in
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the α form of iPP, whereas for higher octene concentration, the samples are basically amor-
phous or show very low crystallinity. The melting temperatures decrease with increasing
octene content from 132 ◦C of the sample with 1.9 mol% of octene down to 47–45 ◦C for the
samples with 12.8 and 15.9 mol% of octene.

Three samples of iPPC8 copolymers with low octene concentration of 1.9, 4.3, and
7.1 mol% have been isothermally crystallized from the melt at different crystallization
temperatures. The samples crystallize at any crystallization temperature in mixtures of α
and γ forms and the relative amount of γ form increases with increasing crystallization
temperature and achieves a maximum value, which depends on the octene concentration.
Contrary to propene–pentene and propene–hexene copolymers that, for high concentrations
of pentene and hexene, crystallize in the δ form [74,93], the crystallization of the trigonal
δ form has not been observed in all three samples of iPPC8 copolymers crystallized from
the melt.

The behavior of iPPC8 copolymers is completely different from the behaviors observed
in iPPC2 [72], iPPC4 [72], iPPC5 [93], and iPPC6 [74] copolymers. In fact, the maximum
amount of γ form achieved in each sample of different copolymers depends on the concen-
tration of comonomer and generally increases with increasing comonomer content, while in
iPPC8 copolymers, the maximum amount of γ form decreases with increasing octene con-
centration. This different behavior is due to the fact that in iPPC8 copolymers octene units
are excluded from the crystals, giving only the interruption effect that shortens the length
of the regular propene sequences, inducing crystallization of the γ form. A maximum
amount of γ form is achieved at low octene concentrations of nearly 1.9 mol%. At higher
octene concentration, the amount of γ form crystallized from the melt rapidly decreases.

In copolymers of iPP with butene, pentene, and hexene, the comonomer units are,
instead, incorporated in the crystals of α form to a very high extent. At a high concentration
of comonomers, the inclusion effect that favors crystallization of the α form prevails over
the interruption effect. The efficiency of the incorporation effect depends on the size of
comonomers, as a rapid or slow increase of density is obviously correlated to the size of the
incorporated comonomer.

For iPPC8 copolymers, the observed fastest decrease of the maximum amount of γ
form and the consequent crystallization of the α form for high octene concentrations is not
due to incorporation of octene units in the crystals of α form, but is due to the fact that
the excluded octene units make the crystallization of γ form too slow, inducing the faster
crystallization of the kinetically favored α form and, then, at high concentration, prevent
the crystallization of both α and γ forms.

The reported results on crystallization of iPPC8 copolymers and the comparison with
the literature demonstrate that the crystallization behavior of iPP may be described in
terms of a model that defines two effects exerted by defects: the interruption of the regular
propene sequences and the inclusion effect. The crystallization of α, γ, and δ forms of iPP
depends on which effect prevails, which in turn depends on the size and type of the defect.
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