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Abstract

Industrial applications often exhibit multiple in-control patterns due to varying
operating conditions, which makes a single functional linear model (FLM) inade-
quate to capture the complexity of the true relationship between a functional quality
characteristic and covariates, which gives rise to the multimode profile monitoring
problem. This issue is clearly illustrated in the resistance spot welding (RSW) pro-
cess in the automotive industry, where different operating conditions lead to multiple
in-control states. In these states, factors such as electrode tip wear and dressing
may influence the functional quality characteristic differently, resulting in distinct
FLMs across subpopulations. To address this problem, this article introduces the
functional mixture regression control chart (FMRCC) to monitor functional quality
characteristics with multiple in-control patterns and covariate information, modeled
using a mixture of FLMs. A monitoring strategy based on the likelihood ratio test
is proposed to monitor any deviation from the estimated in-control heterogeneous
population. An extensive Monte Carlo simulation study is performed to compare
the FMRCC with competing monitoring schemes that have already appeared in the
literature, and a case study in the monitoring of an RSW process in the automotive
industry, which motivated this research, illustrates its practical applicability.

Keywords: Functional Data Analysis, Profile Monitoring, Statistical Process Control, Func-
tional Mixture Regression, Multiple Functional Linear Models

1 Introduction

In modern statistical process monitoring (SPM) applications, experimental measurements

of the quality characteristic of interest are often characterized by complex and high-

dimensional formats that can best be represented by functional data or profiles (Ramsay
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and Silverman, 2005; Kokoszka and Reimherr, 2017) and stimulated growing interest in

profile monitoring (Noorossana et al., 2011; Zou et al., 2012; Chou et al., 2014; Grasso

et al., 2014; Paynabar et al., 2016; Wang et al., 2018b; Ren et al., 2019; Capezza et al.,

2024b, 2023). Other relevant contributions include those by Jin and Shi (1999), Colosimo

and Pacella (2010), Grasso et al. (2016), Grasso et al. (2017), Menafoglio et al. (2018),

Maleki et al. (2018), and Jones et al. (2021).

Profile monitoring, and in general SPM, is commonly implemented in two phases. The

first (Phase I) aims to identify a clean dataset to be assumed to be representative of

the in-control (IC) state of the process, hereinafter referred to as Phase I or reference

sample, through retrospective monitoring of an initial dataset drawn from the process;

the second (Phase II) is concerned with prospective monitoring of new observations (Qiu,

2013), hereinafter referred to as Phase II observations or Phase II dataset.

Traditional profile monitoring methods assume that the IC process is unimodal, i.e.,

it exhibits a single IC state. However, real industrial processes are often multimodal, i.e.,

they operate under different unobserved IC states, and give rise to the so-called multimode

profile monitoring problem. To face this problem, Grasso et al. (2017) propose a method

based on curve classification to determine the mode of the data on top of a functional

control charting scheme. Park and Shrivastava (2014) presented a procedure to monitor

time-correlated multimode processes using a mixture of time-series models in a Bayesian

framework. Wang et al. (2018a) developed a feature extraction approach to group and

monitor near-circular shape profiles through a likelihood ratio test-based EWMA control

chart.

However, all works on multimode profile monitoring that appeared so far were not designed

to incorporate any information from additional concurrent variables, hereinafter referred

to also as predictors or covariates, influencing the functional quality characteristic to be

monitored, hereinafter referred to also as the response. When available, incorporating

covariate information may drastically improve any SPM scheme’s performance.

It is well known indeed that, if a covariate manifests itself with extreme realization, an

SPM scheme based on the observations of the quality characteristic alone may wrongly

judge the process out of control (OC) or, dually, there are situations where the covariates
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are not extreme, and the process may incorrectly appear IC.

In the profile monitoring framework, a basic solution was given by Centofanti et al.

(2021), who translated the regression control chart (Mandel, 1969) into a functional re-

gression control chart (FRCC) framework and implemented it under the assumption that

a functional response is influenced by multiple functional covariates through a functional

linear model (FLM). The residuals of the model were then monitored by simultaneously

applying Hotelling’s T 2 and squared prediction error (SPE) control charts, as in Woodall

et al. (2004). A software implementation of the FRCC is openly available in the R package

funcharts (Capezza et al., 2023). However, while the FRCC is presented as a broader

framework, the implementation presented in the original work relies on the assumption

that all subjects sampled from the process obey the same FLM, and thus cannot apply in

the multimode profile monitoring problem, where subjects belong to more than one sub-

population, in which the FLMs describing the influence of the covariates on the response

are different.

In fact, this is the case for the resistance spot welding (RSW) process in the automotive

industry that motivated this research. From a technological perspective, the quality of the

RSW process, as also noted by Capezza et al. (2021), can be monitored through observations

of the dynamic resistance curve (DRC), which is recognized as the quality footprint of

the metallurgical development of a spot weld (Dickinson et al., 1980) and represents the

functional quality characteristic of interest, also called the response. Details on DRC

behavior can be found in Section 4.

The RSW dataset consists of 1802 IC observations, measured in [mΩ], referring to the

same spot weld location on different car bodies and 37 OC DRC observations corresponding

to known defective spot welds. For illustrative purposes, the left panel of Figure 1 displays

the IC observations colored by the wear of the electrode tips that performed the spot weld,

measured through the number of welds before the electrode tip dressing, whereas, on the

right panel, DRCs are colored by the number of electrode tip dressings itself. These panels

clearly show that both the electrode tip wear and the dressing represent informative scalar

covariates, which may explain the heterogeneous DRC shapes depicted in Figure 1 while

not necessarily influencing the final quality of the welded joint. In addition to these two
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Figure 1: Wear effect (left panel) and dressing effect (right panel) on the DRCs for point 20268.

covariates, many other phenomena can cause DRC heterogeneity across different subpopu-

lations. One known phenomenon is the expulsion of molten material caused by an abnormal

welding current flowing through the electrode tips due to an abnormal clamping force that

causes a significant drop in the DRCs and may cause the DRC behavior highlighted by the

balloons in the left and right panels of Figure 1.

Mixtures of regression models are undoubtedly useful for modeling such heterogeneity,

as pointed out by (DeSarbo and Cron, 1988; Jones and McLachlan, 1992) in the case of

scalar response versus scalar predictor variables. Extensions to the functional case are

presented by Yao et al. (2011); Ciarleglio and Ogden (2016); Zhao et al. (2012) in the

scalar-on-function regression setting. In particular, Yao et al. (2011) proposed a mixture

of functional regression models which relate a univariate scalar response with a functional

predictor variable by adopting the eigenbasis representation of the latter, reducing to a

framework similar to the classic mixture of regression models. Wang et al. (2016) studied

the mixture of functional regression models in the case of a univariate functional response

and multivariate functional covariates through concurrent FLMs. Finally, Devijver (2017)

extended this case with one functional predictor variable to non-concurrent FLMs, also

referred to as total FLMs (Ramsay and Silverman, 2005), where the value of a univariate

functional response is related to the entire domain of a functional predictor variable. It is
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important to note that all functional mixture regression (FMR) models are more flexible

in modeling unobserved heterogeneity than existing functional clustering methods. The

latter methods focus only on clustering the functions themselves, while the former focuses

on detecting clusters characterized by different regression structures.

In this article, a functional mixture regression control chart (FMRCC) is proposed

to deal with the multimodal profile monitoring problem through an FMR approach with

functional response and multivariate functional or scalar predictors instead of modeling

different modes only through functional clustering (see, e.g., Capezza et al. (2021); Cento-

fanti et al. (2024)). To deal with the infinite dimensionality of the data, both the response

and predictors are projected onto an appropriate basis function system. This allows for

the application of existing methods based on the finite mixture regression model and the

expectation-maximization (EM) algorithm on the basis coefficients. Finally, an SPM strat-

egy based on the likelihood ratio test (LRT) is proposed to monitor any deviation from

the estimated IC heterogeneous population. A Monte Carlo simulation study is performed

to assess the SPM performance of the FMRCC scheme. The practical applicability of the

FMRCC is demonstrated through a case study in the monitoring of the aforementioned

RSW process.

The remainder of the article is organized as follows. Section 2 provides a complete

description of the FMRCC. In Section 3, the performance of the FMRCC is compared to

that of the other three control charts by means of a simulation study. In Section 4, the case

study is presented. Section 5 concludes the article. The Supplementary Materials contains

additional details on the data generation process in the simulation study. All calculations

and plots were obtained using the programming language R (R Core Team, 2021).
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2 The Functional Mixture Regression Control Chart

Framework

2.1 Preliminaries

The proposed FMRCC is a general framework for multimode profile monitoring where

different modes are characterized by different FLMs, with a univariate functional response.

Assume that N observations of random functions X̃1, . . . , X̃p and Ỹ are available with

X̃j, j = 1, . . . , p, representing predictors having values in L2(S), and Ỹ representing the

response having values in L2(T ). L2(D) denotes the Hilbert space of square-integrable

functions defined in the compact set D ⊆ R, with the inner product ⟨f, g⟩ =
∫
S f(s)g(s)ds.

Let HX̃ = (L2(S))p denote the Hilbert space whose elements are vectors of functions in

L2(S). Then X̃ = (X̃1, . . . , X̃p)
T is a random vector of functions, whose realizations are in

HX̃ . Assume that X̃ has a smooth mean function µX̃ = (µX̃
1 , . . . , µ

X̃
p )

T , with µX̃
j = E(X̃j)

and a covariance function CX̃ = {CX̃
i,j}1≤i,j≤p, with C

X̃
i,j(s1, s2) = Cov(X̃i(s1), X̃j(s2)), for

s1, s2 ∈ S. Analogously, let µỸ = E(Ỹ ) and C Ỹ (t1, t2) = Cov(Ỹ (t1), Ỹ (t2)), for t1, t2 ∈ T ,

be the mean and covariance functions of the response variable, respectively.

In particular, to avoid exhibiting incomparable magnitudes of variation, the transformation

approach of Chiou et al. (2014) is utilized hereinafter. To this end, letX = (X1, . . . , Xp)
T =

(V X̃)−1(X̃ −µX̃) be the standardized covariate with V X̃ = diag((vX̃1 )1/2, . . . , (vX̃p )1/2) and

the square root of vX̃j (s) = CX̃
j,j(s, s), ∀s ∈ S. Consequently, the standardized response is

defined as Y = (vỸ )−1/2(Ỹ − µỸ ) with vỸ (t) = C Ỹ (t, t), ∀t ∈ T . Then, let CX and CY

denote the covariance functions of the standardized covariates and the response. There

exists a multivariate orthonormal eigenbasis {ψX
l (s)}l=1,2,..., such that ⟨ψX

l ,ψ
X
h ⟩HX = δlh,

with δlh the Kronecker delta. The corresponding non-negative eigenvalues {λXl }l=1,2,... are

nonnegative and are supposed, without loss of generality, to be nonincreasing with l and

such that CX(s1, s2) =
∑∞

l=1 λ
X
l ψ

X
l (s1)ψ

X
l (s2)

T , for s1, s2 ∈ S. Similarly, there exists an

orthonormal eigenbasis {ψY
m(t)}m=1,2,... such that CY (t1, t2) =

∑∞
m=1 λ

Y
mψ

Y
m(t1)ψ

Y
m(t2)

T , for

t1, t2 ∈ T where {λYm}m=1,2,... are the corresponding nondecreasing eigenvalues such that

⟨ψY
l , ψ

Y
h ⟩HX = δlh.
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2.2 Model specification

Suppose N observations are spread among an unknown number K of mutually exclusive

clusters, each of which is characterized by a different FLM describing the influence of the

covariates on the response, with the probability that each observation belonging to the

k-th cluster is πk, with
∑K

k=1 πk = 1. Moreover, let us denote by Z = (Z1, . . . , ZK)
T ,

k = 1, . . . , K, the unknown component-label vector corresponding to (X̃, Ỹ ), where Zk

equals 1 if the observation is in the k-th cluster and 0 otherwise. Conditioned to Zk = 1,

that is, to the k-th cluster, the functional linear model to be estimated is

Y (t) = β0k(t) +

∫

S
(βk(s, t))

TX(s)ds+ ε(t), t ∈ T , k = 1, . . . , K, (1)

where βk = (βk1, . . . , βkp) is k-th regression coefficient vector, whose elements are bivariate

functions in the space of square-integrable functions defined on the closed interval S × T ,

β0k and ε are k-th functional intercept and the functional error term, respectively, both

defined on the compact domain T . The functional error term ε is supposed independent of

X and having E(ε) = 0 and Var(ε) = ν2ε . Thus, the regression function for the k-th cluster

is

E(Y (t)|X) = β0k(t) +

∫

S
(βk(s, t))

TX(s)ds, t ∈ T , k = 1, . . . , K. (2)

From the multivariate functional principal component (MFPC) decomposition (Chiou et al.,

2014; Happ and Greven, 2018), the predictors and the response can be represented as

X(s) =
∞∑

l=1

ξXl ψ
X
l (s), Y (t) =

∞∑

m=1

ξYmψ
Y
m(t), (3)

where {ψX
l (s)} and {ψY

m(t)} are the eigenfunctions defined in section 2.1 and ξXl = ⟨X,ψX
l ⟩HX

and ξYm = ⟨Y, ψm
Y ⟩ are the functional principal component scores which, unconditionally,

are uncorrelated and satisfy E(ξXl ) = 0, E(ξXl ξ
X
h ) = λXl δlh and E(ξYm) = 0, E(ξYmξ

Y
h ) =

λYmδmh. Since the eigenfunctions of a square-integrable random function form a complete

orthonormal basis, the regression coefficient vector and the functional intercept can be

expressed as
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βk(s, t) =
∞∑

l,m=1

blmkψ
X
l (s)ψY

m(t), β0k(t) =
∞∑

m=1

b0mkψ
Y
m(t), s ∈ S, t ∈ T , k = 1, . . . , K,

(4)

respectively, where blmk and b0k are the coefficents of the basis expansions. Furthermore,

considering the following expansion of the functional error term ε,

ε(t) =
∞∑

m=1

εmψ
Y
m(t), (5)

with εm = ⟨ε, ψY
m⟩, and by plugging Equations (3), (5) and (4) in (1), we obtain

Y (t) =
∞∑

m=1

b0mkψ
Y
m(t) +

∫

S

( ∞∑

l,m=1

blmkψ
X
l (s)ψY

m(t)

)T ∞∑

l=1

ξXl ψ
X
l (s)ds +

∞∑

m=1

εmψ
Y
m(t),

t ∈ T , k = 1, . . . , K. (6)

In the context of multivariate functional regression, the estimation of model parameters

in Equation (6) requires regularization of the predictor and response functions, which is

achieved by considering the truncated principal component decomposition XL and YM of

X and Y . That is,

XL(s) =
L∑

l=1

ξXl ψ
X
l (s), YM(t) =

M∑

m=1

ξYmψ
Y
m(t), (7)

where L and M denote the minimum number of components necessary to explain a given

fraction of the total variation in the data. Other selection criteria, e.g., based on Akaike

information criterion (AIC) or Bayesian information criterion (BIC), could also be used.

Accordingly, we get the truncated version of Equation (4) as follows

βk(s, t) =
L∑

l=1

M∑

m=1

blmkψ
X
l (s)ψY

m(t), β0k(t) =
M∑

m=1

b0mkψ
Y
m(t), s ∈ S, t ∈ T , k = 1, . . . , K.

(8)
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Then, using YM(t) in Equation (7) instead of Y (t) and by the orthonormality of {ψX
l (s)}

and {ψY
m(t)}, Equation (1) is reduced to the truncated multivariate linear regression model

ξYM = b0k + (BLMk)
TξXL + εM , k = 1, . . . , K, (9)

where ξYM = (ξY1 , . . . , ξ
Y
M)T , ξXL = (ξX1 , . . . , ξ

X
L )T , εM is the truncated version of the basis co-

efficients of ε in Equation (5), that is, multivariate Gaussian random errors with zero mean

and covariance Σk, BLMk = {blmk}l=1,...,L,m=1,...,M and b0k = (b01k, . . . , b0Mk). Additionally,

Equation (9) can be reduced to

ξYM = (BLMk)
TξXL + εM , k = 1, . . . , K, (10)

by incorporating the intercept term b0k inBLMk and by adding 1 to the head of ξXL . Hence,

given N independent realizations (Xi, Yi) of (X, Y ), i = 1, . . . , N , the probability density

function (pdf) of ξYi,M |ξXi,L comes from the following mixture:

f(ξYi,M |ξXi,L) =
K∑

k=1

πkϕ(ξ
Y
i,M ; (BLMk)

TξXi,L,Σk), (11)

where ϕ(·,µ,Σ) is the multivariate Gaussian pdf with mean µ and covariance Σ. Equation

(11) is the classicalK-component Gaussian mixture regression model (McLachlan and Peel,

2004). Therefore, the log-likelihood function corresponding to (ξY1,M , ξ
X
1,L), . . . , (ξ

Y
N,M , ξ

X
N,L)

is given by

logL(Ψ) =
N∑

i=1

log
K∑

k=1

πkϕ(ξ
Y
i,M ; (BLMk)

TξXi,L,Σk), (12)

where Ψ = (πk,BLMk,Σk)k=1,...,K is the parameter set to be estimated. In the presence of a

large number of components K, having a different matrix parameter Σk in each component

may lead to too many parameters and then to overfitting. Therefore, we also consider

alternative and more parsimonious parameterizations of Σk. Then, the problem of model

selection is discussed at the end of the next Section 2.3. In particular, in this article

we consider the following parametrizations, i.e., the spherical family with one common

scalar parameter λ and diagonal matrix Σk = λI for each k = 1, . . . , K; the spherical
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family with K scalar parameters λ1, . . . , λK , where Σk = λkI; the parameterization with

common covariance Σk = Σ, not necessarily diagonal; the full parametrization where each

component k = 1, . . . , K has its own covariance Σk.

2.3 The estimation method

An estimator Ψ̂ of Ψ in Equation (12) can be calculated by maximizing the log-likelihood

in Equation (12). Unfortunately, maximization should be performed numerically through

dedicated algorithms, such as the expectation-maximization (EM) algorithm (Dempster

et al., 1977; McLachlan and Krishnan, 2007). The EM algorithm first requires the con-

struction of the complete-data log-likelihood by elaborating Equation (12) as follows

logLc(Ψ) =
N∑

i=1

K∑

k=1

Zki log[πkϕ(ξ
Y
i,M ; (BLMk)

TξXi,L,Σk)]. (13)

Then, starting from an initial solution Ψ(0), the version of the EM algorithm for a mixture

regression model (Jones and McLachlan, 1992) such as that introduced in Equation (11)

alternates between the expectation and maximization steps, referred to as the E step and

M step, respectively, until there is no appreciable change in the logarithmic likelihood

values. At iteration q, the E-step computes the conditional expectation of the complete-

data log-likelihood function in Equation (13), using the current parameter vector Ψ(q); that

is

Q(Ψ,Ψ(q)) =
N∑

i=1

K∑

k=1

τ
(q)
ki log[πkϕ(ξ

Y
i,M ; (BLMk)

TξXi,L,Σk)]. (14)

The E-step only requires computing the posterior probabilities of component membership

τ
(q)
ki , i = 1, . . . , N , for each of the K components, namely

τ
(q)
ki =

π
(q)
k ϕ(ξYi,M ; (B

(q)
LMk)

TξXi,L,Σ
(q)
k )

∑K
h=1 π

(q)
h ϕ(ξYi,M ; (B

(q)
LMh)

TξXi,L,Σ
(q)
h )

. (15)
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The M-step updates the value of the parameter vector Ψ by maximizing Equation (14)

with respect to Ψ. The mixing proportions updates are

π
(q+1)
k =

1

N

N∑

i=1

τ
(q)
ki , (16)

while the regression parameters BLMk and Σk are obtained by maximizing the complete-

data log-likelihood function in Equation (14) with respect to (BLMk,Σk). This corresponds

to solvingK least-squares problems with the posterior probabilities (τ
(q)
ki )k=1,...,K as weights,

which give

B
(q+1)
LMk =

[
N∑

i=1

τ
(q)
ki (ξ

X
i,L)

TξXi,L

]−1 N∑

i=1

τ
(q)
ki ξ

X
i,L(ξ

Y
i,M)T , (17)

Σ
(q+1)
k =

1
∑N

i=1 τ
(q)
ki

N∑

i=1

τ
(q)
ki

[
ξYi,M − (B

(q+1)
LMk )

TξXi,L

] [
ξYi,M − (B

(q+1)
LMk )

TξXi,L

]T
. (18)

Dempster et al. (1977) showed that at each iteration of the EM algorithm, the log-likelihood

in Equation (12) is non-decreasing. Additionally, the series of parameter estimates con-

verges towards a local maximum of the log-likelihood function (Wu, 1983).

As suggested in McLachlan and Peel (2004) and implemented in popular software packages

EMMIXskew (Wang et al., 2009) and mclust (Scrucca et al., 2016), the K-means algorithm

can be utilized to obtain an initial solution Ψ(0). The BIC is used for the parameterization

of the covariance matrix Σk as well as for the choice of the number of clusters K, when the

number of components is not known prior to or evident by data exploration. BIC is one of

the most widely adopted methods and has provided good results in various applications of

model-based clustering (Fraley and Raftery, 2002).

2.4 The SPM strategy

Let us assume that a set of functional principal component scores (ξXi,L, ξ
Y
i,M) corresponding

to the functional observations (X̃i, Ỹi), i = 1, . . . , N , is available from Phase I, and that it

is drawn from an IC heterogeneous population as defined by Jones and McLachlan (1992)

and denoted by Π. Then, let us suppose that we are interested in testing whether the

scores (ξXN+1,L, ξ
Y
N+1,M) of a new functional observation (X̃N+1, ỸN+1) belong to Π or not.
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That is, we are interested in testing the following null hypothesis H0 (IC process) versus

the alternative hypothesis H1 (OC process)

H0 : ξ
Y
N+1,M |ξXN+1,L ∈ Π, H1 : ξ

Y
N+1,M |ξXN+1,L /∈ Π. (19)

The test statistic can be constructed using a likelihood ratio test (LRT), as the ratio

between the likelihood functions maximized under H0 and H1, and denoted by L0(Ψ) and

L1(Ψ,β), respectively. The former can be written as

L0(Ψ) =

(
N∏

i=1

f(ξYi,M |ξXi,L;Ψ)

)
f(ξYN+1,M |ξXN+1,L;Ψ), (20)

where f(ξYN+1,M |ξXN+1,L;Ψ) is the IC pdf defined as in Equation (11) evaluated at a new

observation, whereas the latter is similarly expressed as

L1(Ψ,β) =

(
N∏

i=1

f(ξYi,M |ξXi,L;Ψ)

)
h(ξYN+1,M |ξXN+1,L;β), (21)

where h(ξYi,M |ξXi,L;β) denotes the pdf with parameter vector β from which the new obser-

vation is sampled. However, since there is only one observation under H1, according to

Wang et al. (1997), a simple constant density h(ξYN+1,M |ξXN+1,L) ≡ c should be used and

dropped from the LRT statistic in these cases. Therefore, following the principle of equal

ignorance, the outlier distribution is not explicitly required (Sain et al., 1999). By denoting

the likelihood based on the Phase I sample with

L̃1(Ψ) =
N∏

i=1

f(ξYi,M |ξXi,L;Ψ), (22)

the LRT statistic can be written as

Λ =

sup
Ψ∈Ω

L0(Ψ)

sup
Ψ∈Ω

L̃1(Ψ)
, (23)
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where Ω is the complete parameter space. In particular, the denominator of Equation (23)

is computed only once by plugging in the estimate Ψ̂ of the parameter set Ψ calculated,

as described in Section 2.3, with the Phase I sample, whereas the numerator sup
Ψ∈Ω

L0(Ψ)

is computed at each new observation, using Ψ̂ as an initial value. Wang et al. (1997)

demonstrated that, as n → ∞, Λ approaches f(ξYN+1,M |ξXN+1,L; Ψ̂). That is, for large n,

due to the minimal conditioning effect that a new observation has on the maximizer of

Equation (20), there is no significant change in the parameter estimate. This asymptotic

approximation, which is used throughout this article, leads to the simplification of Equation

(23), which, for large n, can be rewritten as

Λ = f(ξYN+1,M |ξXN+1,L; Ψ̂). (24)

For obvious reasons, the monitoring statistic W = − log Λ can be used more practically in

place of (24).

Unlike Sain et al. (1999) and Wang et al. (1997), who calculate the distribution of the test

statistic under H0 using a bootstrap procedure, here we assume that the Phase I sample

is suitably partitioned into a training and tuning datasets as also done in Colosimo and

Pacella (2010), Capezza et al. (2024b) and Centofanti et al. (2021), to reduce the undesir-

able effect caused by uncertainty in the estimation of the MFPCA model (Ramaker et al.,

2004; Kruger and Xie, 2012). The training set is used to estimate the model parameters,

whereas the tuning set is used to estimate the control chart limit for the monitoring statis-

tic calculated based on the estimated model. The upper control limit W lim
α is obtained

non-parametrically by means of the (1 − α)-quantile of the empirical distribution of W ,

where α is the desired type-I error rate.

In Phase II monitoring, to test hypotheses in Equation (19) based on the current func-

tional observation, denoted by (X̃∗, Ỹ ∗), the functional principal component scores ξ̂X∗
l =

⟨X∗, ψ̂X
l ⟩l=1,...,L and ξ̂Y ∗

m = ⟨Y ∗, ψ̂Y
m⟩m=1,...,M are obtained from X∗ = (V̂ X̃)−1(X̃∗ − µ̂X̃)

and Y ∗ = (v̂Ỹ )−1/2(Ỹ ∗− µ̂Ỹ ). Then, the corresponding realization of the monitoring statis-

tic denoted by Ŵ ∗ is calculated as

Ŵ ∗ = − log f(ξ̂Y ∗
M |ξ̂X∗

L ; Ψ̂). (25)
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If Ŵ ∗ > W lim
α , we reject H0, and an alarm is issued to signal a possible OC state of the

process.

2.4.1 The studentized FMRCC

To reduce the influence of covariate mean shifts on the residual mean, especially when the

Phase I sample size is small, as in Centofanti et al. (2021), we propose a studentized version

of the residuals and thus of the monitoring statistic

Ŵ ∗ = − log
K∑

k=1

π̂kϕ
(
ξ̂Y ∗
M ; (B̂LMk)

T ξ̂X∗
L , Σ̂∗

k

)
(26)

to be used in place of Equation (25). In Equation (26), the elements of Σ̂∗
k, which is the

covariance matrix of the prediction error of (X̃∗, Ỹ ∗), are calculated as

σ̂∗
rhk =

(
σ̂rhk + (ξ̂X∗

L )T Cov{B̂LM(r)k, B̂LM(h)k}ξ̂X∗
L

)
r,h=1,...,M

, (27)

where σ̂rhk is the element corresponding to the r-th row and the h-th column of Σ̂k, B̂LM(r)k

and B̂LM(h)k are the r-th and h-th row of B̂LMk, respectively. Recalling the EM algorithm,

Cov{B̂LM(r)k, B̂LM(h)k} can be obtained accordingly as

Cov{B̂LM(r)k, B̂LM(h)k} = σ̂rhk

[
ξ̂XL Λk(ξ̂

X
L )

T
]−1

ξ̂XL ΛkΛk(ξ̂
X
L )

T
[
ξ̂XL Λk(ξ̂

X
L )

T
]−1

, (28)

where Λk is the n × n diagonal matrix with diagonal elements the posterior probabilities

τki, i = 1, . . . N . In this article, we will always use the studentized FMRCC when not

differently specified.
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Figure 2: Generated functional intercepts β∗

0k(t)

3 Simulation Study

3.1 Data generation

To evaluate the performance of the proposed FMRCC, the functional response has been

generated according to the following FLM

Y (t) = (1−∆2)β0k(t) +

∫

S
∆2(βk(s, t))

TX(s)ds+ ε(t), t ∈ T , k = 1, . . . , K, (29)

by setting K = 3 clusters and p = 1 functional covariate. On top of these choices,

which do not impact the generality of the study, three different simulation scenarios are

generated based on the difference in the FLM structure across clusters. The parameter

∆2 = {0, 0.5, 1} introduced in Equation (29) controls the generation of three scenarios:

∆2 = 0 corresponds to clusters that differ only in the intercept β0k(t), with no influence

of covariates; ∆2 = 1 corresponds to clusters that differ only in βk(s, t) with no inter-

cept, ∀k = 1, 2, 3; ∆2 = 0.5 generates clusters characterized simultaneously by different

functional intercepts and regression coefficient functions.

The functional intercepts β0k(t) and the regression coefficient functions βk(s, t) are ob-

tained as follows

β0k(t) = (1−∆1)β
∗
01(t) + ∆1β

∗
0k(t) t ∈ T , k = 2, 3, (30)

βk(s, t) = (1−∆1)β
∗
1(s, t) + ∆1β

∗
k(s, t) t ∈ T , k = 2, 3, (31)
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Figure 3: Generated coefficient functions β∗
k(s, t)

where β∗
0k(t) and β

∗
k(s, t), k = 1, 2, 3, are the different functional intercepts and regression

coefficient functions depicted in Figure 2 and Figure 3, respectively. The parameter ∆1 =

{0, 0.33, 0.66, 1} controls the dissimilarity between the generated clusters: the larger ∆1

the more distinct the clusters. Accordingly, ∆1 = 0 corresponds to a single cluster. A more

detailed description of the data generation process is given in the Supplementary Materials.

Although data are observed through noisy discrete values, each component of the gen-

erated observations is obtained by the spline smoothing approach with a roughness penalty

in the second derivative, using 80 cubic B-splines, with the penalty parameter chosen via

the generalized cross-validation criterion (GCV), as commonly described by Ramsay and

Silverman (2005).

The purpose of the simulation is to assess the performance of FMRCC in identifying any

deviation from the IC heterogeneous population, as defined in Section 2.4, in the presence

of changes in the mean function of Ỹ conditional on X̃, E
(
Ỹ (t)|X̃

)
. From Equation (2) the

shifts in E
(
Ỹ (t)|X̃

)
can result from the changes in β0k(t) and βk(s, t). However, the latter,

in addition, can also affect the variability of the functional regression residuals. Because

we are interested in the performance of FMRCC in identifying mean function shifts in

response, given that the variability of residuals is assumed constant, only shifts caused by

changes in β0k(t) are considered. Both linear and quadratic types of the shift are considered

to represent a change in the slope or curvature of the FLM.
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Figure 4: Mean FAR (Severity = 0) or TDR achieved in Phase II by FMRCC, FRCC, FCC, and CLUST for each combination
of ∆1 and ∆2 for the shift type linear as a function of the severity level.

3.2 Simulation results and discussion

The proposed FMRCC is compared to three different profile monitoring methods: (a) the

functional regression control chart (FRCC) of Centofanti et al. (2021); (b) a functional

control chart (FCC), which monitors the scores coming from the functional principal com-

ponent decomposition of the standardized response Y via Hotelling’s T 2 and SPE control

charts; (c) the FCC applied after a functional clustering step, based on the works of Jacques

and Preda (2013) and Grasso et al. (2017), referred to as CLUST. More specifically, the

latter consists of a model-based clustering step on the principal component scores of Y and

the use of Hotelling’s T 2 and SPE control chart on each cluster separately. The BIC and

the maximum a posterior principle (MAP) are adopted to choose the number of clusters

and assign the observations to each group, respectively.

Four severity levels of the mean shift (see the Supplementary Materials) are explored.

For each combination of ∆1, ∆2, shift type and severity level, 100 simulation runs are
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Figure 5: Mean FAR (Severity = 0) or TDR achieved in Phase II by FMRCC, FRCC, FCC, and CLUST for each combination
of ∆1 and ∆2 for the shift type quadratic as a function of the severity level.

performed. According to Section 2.4, in each run, a training set and a tuning set are

independently simulated from IC patterns with 400 and 1000 observations for each cluster,

respectively, to mimic a Phase I sample. The number of principal components L and M

retained for X and Y is chosen so that the fraction of variance explained (FVE) is at least

95%.

In Phase II, a testing set of 3000 OC observations is randomly generated, and the

control chart performance is evaluated by means of the mean true detection rate (TDR)

and the mean false alarm rate (FAR), which are estimated as the average proportion, over

the simulation runs, of points that fall outside the control limits, whilst the process is,

respectively, OC or IC. The mean FAR should be as similar as possible to the overall

type-I error probability, whereas the mean TDR should be as large as possible.

The simulation results for the linear shift and the quadratic shift, respectively, are dis-

played in Figure 4 and Figure 5, which show the mean FAR and TDR as a function of
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the severity level for each combination of ∆1, ∆2, and severity level. For the linear shift,

when the clusters differ in the functional intercept β0k(t) and there is no functional slope

(∆2 = 0), the first row of panels in Figure 4 shows that, as the dissimilarity between the

clusters increases, FRCC and FCC decrease their performance, while, as expected, CLUST

and FMRCC have stable and similar TDRs. However, when no clusters are present (cor-

responding to ∆1 = 0) FMRCC performs slightly better than FRCC. When clusters differ

in functional intercept and, simultaneously, in regression coefficient functions (correspond-

ing to ∆2 = 0.5), FMRCC does not detect the correct number of clusters for a value of

∆1 = 0.33, while it succeeds in detecting the correct number of clusters for a value of

∆1 = 0, ∆1 = 0.66 and ∆1 = 1. As expected, incorporating covariate information is key to

the proposed FMRCC performance. In particular, CLUST selects the correct number of

clusters for each value of ∆1, due to the presence of different functional intercepts β0k(t).

However, the poor performance of the FRCC, which does not account for the different FLM

structures, shows its inability to deal with a heterogeneous population. A more specific

advantage of the proposed FMRCC arises when the clusters differ in regression coefficient

functions βk(s, t) only (∆2 = 1), while keeping the intercept β0k(s, t) = 0. In this situation,

depicted in the third row of Figure 4, FMRCC largely outperforms all competing methods

and succeeds in detecting the correct number of clusters for each value of ∆1, while CLUST

fails since the common functional intercept induces it to prefer only one cluster. FRCC,

even worse than the previous case, is inadequate for capturing the different regression struc-

tures. For the quadratic shift, the simulation results shown in Figure 5 are analogous to

the case shown in Figure 4. Minor differences arise in the competing method’s capability

of detecting a change in the profile pattern curvature compared to a modification in slope.

FMRCC still outperforms all competing methods when the regression coefficient functions

differ from 0, i.e., ∆2 ̸= 0, while remaining competitive when ∆2 = 0.

4 Case Study

The practical applicability of the FMRCC is demonstrated through the case study, already

mentioned in the introduction, on the SPM of an RSW process in the automotive industry

through the observations of the DRC, which is known to be an informative proxy of the
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Figure 6: 37 OC DRCs used in Phase II on the IC Phase I DRCs.

final quality of a welded spot. Several factors are known to affect the behavior of DRCs,

such as the expulsion of molten material from the weld and the wear of the electrode

tips (Capezza et al., 2024a). In particular, the expulsion phenomenon is associated with

a notable resistance drop and is usually due to an excessive current and/or inadequate

clamping force in the welding spot (Valaee-Tale et al., 2020). However, recent findings

from downstream ultrasound inspections, routinely used to certify the actual quality of spot

welds on a very low percentage of car bodies, suggest that many spot welds showing signs of

molten material expulsion are not necessarily defective. In fact, under certain conditions,

expulsion does not always compromise the final quality of the spot weld. Therefore, the

corresponding DRCs, despite exhibiting heterogeneous behavior, should be included in

the Phase I sample, leading to multimodal IC data. Along the same line, electrode tip

wear, which is known to cause changes in electrical, thermal, and mechanical conditions at

the electrode tip and metal sheets interfaces (Manladan et al., 2017), is counteracted by

periodic electrode tip dressing to avoid inadequate final quality of welded joints. Therefore,

its consequences on DRC behavior, already depicted in Figure 1, may still be representative,

up to a certain level, of the IC state and lead to another IC mode in the 1802 IC DRCs of the

RSW dataset considered in the Phase I sample. The remaining 37 OC DRCs were instead

used as Phase II observations. For illustrative purposes, in Figure 6, the OC DRCs (black

line) are superimposed on the IC DRCs (grey line). It is worth remarking that, although
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Figure 7: Top panels: Estimated coefficient functions of the two groups detected by the FMRCC along with 95% pointwise
confidence intervals (CI). Bottom panels: The corresponding DRCs assigned by the MAP rule to each group.

the FMRCC framework is developed in the more general case of univariate functional

response and multivariate functional predictors, in this case study the two predictors are

scalar and will not be subject to dimension reduction. As described in Section 2, the

Phase I sample is partitioned into training and tuning sets by randomly selecting 901

observations without remittance for the former and the remaining 901 observations for

the latter. Five components of the functional response Y are retained to account for at

least 95% of the total variance explained. Two mutually exclusive groups with different

regression structures are suggested by BIC. The estimates of the regression functions with

the 95% pointwise confidence intervals shown in the top panels of Figure 7 are obtained

based on 100 bootstrap samples via the non-parametric bootstrap approach of Yao et al.

(2011), which includes a label-switching strategy to avoid non-identifiability of component

labels. The corresponding DRCs assigned by the MAP rule are shown in the bottom panels

of 7. The intercept term of group 2 reveals a drop in DRCs, which clearly corresponds to
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Figure 8: The proposed FMRCC applied to the RSW dataset. The vertical line separates the monitoring statistic calculated
for the tuning set on the left and the Phase II observations on the right, while the control limit is shown as a horizontal line.

spot welds affected by the expulsion phenomenon. The wear effect appears to be clearly

mapped by a resistance decrease in the first portion of the DRC domain in both clusters,

while the dressing effect manifests itself by an overall modest increase of the resistance in

the DRC, with a slight decrease in a small initial domain portion.

Figure 8 shows the proposed FMRCC method applied to the RSW dataset. The vertical

line separates the monitoring statistic Ŵ ∗ calculated for the tuning set, on the left, and the

Phase II observations, on the right, while the control limit is represented by the horizontal

line. This figure shows that 32 over 37 OC DRCs are correctly detected, resulting in an

estimated TDR, denoted by T̂DR, of 0.864. This value is reported in Table 1 along with

that achieved by the competing methods on the RSW dataset, with the same training and

tuning sets and Phase II observations. Finally, to quantify the uncertainty of the T̂DR,

Table 1 reports the bootstrap 95% confidence intervals (CI) of the empirical bootstrap

distribution (Efron and Tibshirani, 1986) of T̂DR for the FMRCC and the competing

methods presented in Section 3. The CI achieved by the FMRCC is above and non-

overlapping those of all competing approaches and confirms its superior performance also

in this real scenario, where the capability of simultaneously accounting for the variability

explained by the covariates and the heterogeneous structure of the population is decisive.

5 Conclusions

A new framework, referred to as functional mixture regression control chart (FMRCC),

is proposed for statistical process monitoring (SPM) of a functional quality characteristic

linked to functional and/or scalar covariates by possibly different functional linear models
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T̂DR CI

FMRCC 0.864 [0.756,0.960]

FRCC 0.486 [0.310,0.581]

FCC 0.486 [0.323,0.608]

CLUST 0.621 [0.472,0.729]

Table 1: Estimated TDR values, denoted as T̂DR, on the Phase II observations and the corresponding bootstrap 95%
confidence interval (CI) for each monitoring method.

(FLM). The FMRCC is the first profile monitoring framework that is able, by means of a

likelihood-raio test (LRT), to jointly enhance the SPM performance by exploiting additional

information on covariates and allowing the subjects to obey different FLMs, thus simulta-

neously modeling the variability explained by covariates and the hidden heterogeneity of

the population structure.

From an extensive Monte Carlo simulation, the FMRCC demonstrated, in the function-

on-function regression setting, its superiority in identifying mean shifts in the response

over three competing methods suggested by the multimode profile monitoring literature.

The practical applicability of the proposed method is illustrated through the case study

that motivated this research on the SPM of a resistance spot welding (RSW) process in

the automotive industry where heterogeneity of the functional quality characteristic, the

dynamic resistance curve (DRC), is modeled through additional information on the wear

of the electrode tips and the number of tip dressings the electrode has been subject to.

In the case study, the FMRCC confirms that it outperforms all competitors with a more

prompt ability to identify the out-of-control state of the RSW process.

Future research can be addressed to extend the proposed framework to nonlinear func-

tional models or to combine it with profile registration techniques and handle profile ob-

servations with different domains. In addition, time-weighted monitoring strategies, such

as cumulative sum (CUSUM) and exponentially weighted moving average (EWMA), could

be implemented to increase the reactivity of the control chart when small and persistent

shifts from the in-control population are of interest.
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Supplementary Materials

Supplement A contains additional details about the data generation process in the simula-

tion study, omitted from the main manuscript for brevity.
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A Details on Data Generation in the Simulation Study

The data are generated according to the FLM

Ỹ (t) = (1−∆2)β0k(t) +

∫

S
∆2(βk(s, t))

T X̃(s)ds+ ε(t), t ∈ T , k = 1, . . . , K, (A.1)

where the compact domains S and T are set, without loss of generality, equal to [0, 1]

and the number of covariates p and clusters K are set equal to 1 and 3, respectively.

The functional covariates X̃(s) are generated by the eigenfunction set {ψl}l=1,2,..., as in

Centofanti et al. (2021), by considering the correlation function G through the following

steps.

1. Set G(s, t) = G(z), where z = |s− t|, as the powered exponential correlation function

(Stein, 1999). The general form of the correlation function and parameter used are

listed in Table 1.

2. Calculate the eigenvalues λl and the corresponding eigenfunctions ψl, l = 1, 2, . . . , L∗,

of G, where L∗ is set equal to 50.
∗Corresponding author. e-mail: biagio.palumbo@unina.it
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Table 1. Powered exponential correlation function and parameter for covariates generation in the simulation study.

ρ ν

P (z) = exp−
(

|z|
ρ

)ν
1 0.5

Table 2. Parameters a,b,c,d,e used for the functional coefficient functions generation.

a b c d e
β∗
1(s, t) 0.3 0.3 0.3 0.3 5
β∗
2(s, t) 0.2 0.15 0.9 0.9 -5
β∗
3(s, t) 0.9 0.9 -0.3 -0.3 5

3. Let X̃ as

X̃ =
L∗∑

l=1

ξX̃l ψ
X̃
l , (A.2)

with ξX̃L∗ =
(
ξX̃1 , . . . , ξ

X̃
L∗

)T
generated by means of a multivariate normal distribution

with mean 0 and covariance Cov
(
ξX̃L∗

)
= diag (λ1, . . . , λL∗).

Covariate generation is made by means of the R package funcharts of Capezza et al.

(2023).

Inspired by the coefficient functions generation process proposed in Centofanti et al.

(2022), the regression coefficient functions β∗
k(s, t), depicted in Figure 3, are obtained

through the following reference model for k = 1, 2, 3

β∗
k(s, t) =

(
t− 0.5

c

)3

+

(
s− 0.5

d

)3

+

(
t− 0.5

b

)2

−
(
s− 0.5

a

)2

+ e, s, t ∈ [0, 1], (A.3)

where the parameters c, d, b, a, e are real numbers depicted in Table 2.

Furthermore, the functional intercepts β∗
0k(t), depicted in Figure 2, are obtained through

the following reference model for k = 1, 2, 3

β∗
0k(t) = f + 0.3117 exp [−371.4uk(t)] + 0.5284{1− exp [guk(t)]}

− 423.3{1 + tanh [−huk(t) + 0.1715]} t ∈ T , (A.4)

where the parameters f , g and h are real numbers depicted in Table 3 and uk(t) is defined

2



Table 3. Parameters f , g and h used for the functional intercepts generation.

f g h
β∗
01(t) 0.2074 0.8217 26.15
β∗
02(t) 0.187 0.2 27
β∗
03(t) 0.3 4 24

as follows

uk(t) =
t−min(t)

max(t)−min(t)
(m− 0.0045) + 0.0045 t ∈ T , (A.5)

with m = 0.15, 0.4, 0.08 for k = 1, 2, 3 respectively. Note that the mean functions β∗
0k(t) are

generated to resemble a typical DRC through the phenomenological model for the RSW

process presented in Schwab et al. (2012).

The parameter ∆1 = {0, 0.33, 0.66, 1} represents a measure of dissimilarity between the

generated clusters according to the equations

β0k(t) = (1−∆1)β
∗
01(t) + ∆1β

∗
0k(t) t ∈ T , k = 2, 3 (A.6)

βk(s, t) = (1−∆1)β
∗
1(s, t) + ∆1β

∗
k(s, t) t ∈ T , k = 2, 3. (A.7)

A higher value of ∆1 corresponds to more distinct clusters, whereas a value of ∆1 = 0

corresponds to the absence of clusters.

The parameter ∆2 = {0, 0.5, 1} weighs the functional intercept term and the regression

coefficient function term according to Equation (A.1). In particular, a value of ∆2 = 0

corresponds to clusters that differ only in β0k(t), while βk(s, t) = 0 ∀k = 1, 2, 3. On the

other hand, a value of ∆2 = 1 corresponds to clusters that differ only in βk(s, t), while

β0k(t) = 0 ∀k = 1, 2, 3. Finally, a value of ∆2 = 0.5 indicates the presence of clusters

characterized simultaneously by different functional intercepts and regression coefficient

functions.

Moreover, to have noisy realizations of the response, a functional error term kε(t) =
∑20

i=1 eiψ
e
i (t) is generated, where ei are independent realizations of a standard normal ran-

dom variable and ψe
i (t) are cubic B-splines with evenly spaced knot sequence. The constant

k is chosen to have a signal-to-noise ratio (SNR) defined as Städler et al. (2010) equal to

10. Finally, it is assumed that the generated data were observed discretely at 500 equally
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Figure 1. Sample of 30 IC randomly generated Ỹ and X̃ functions corresponding to ∆1 = 1 and ∆2 = 0.5

Table 4. Shift types according to Equation A.8

Shift δ1 δ1

Linear 0 s · ql
Quadratic s · qq 0

spaced time points throughout the domain [0, 1].

For illustrative purposes, a sample of 30 IC randomly generated Ỹ and X̃ functions

corresponding to ∆1 = 1 and ∆2 = 0.5 are shown in Figure 1.

Without loss of generality, the Phase II out-of-control functional profiles are generated

from the first cluster using the model in Equation (A.1) with an additional shift term δ(t)

defined as follows

δ(t) = δ1t
2 + δ2t, t ∈ [0, 1]. (A.8)

The real numbers δ1 and δ2 are set equal to positive severities as reported in Table 4, where

two different shift types are considered. The terms ql and qq are set equal to 1.2 and 1.6,

respectively, and s represents five severity levels equal to 0, 0.375, 0.75, 1.25, 1.5.

The linear shift is representative of a change in the slope of the profile pattern, whereas

the quadratic shift represents curvature modification.

4



References

Capezza, C., F. Centofanti, A. Lepore, A. Menafoglio, B. Palumbo, and S. Vantini (2023). Fun-

charts: Control charts for multivariate functional data in r. Journal of Quality Technology 55 (5),

566–583.

Centofanti, F., M. Fontana, A. Lepore, and S. Vantini (2022). Smooth lasso estimator for the

function-on-function linear regression model. Computational Statistics & Data Analysis 176,

107556.

Centofanti, F., A. Lepore, A. Menafoglio, B. Palumbo, and S. Vantini (2021). Functional regression

control chart. Technometrics 63 (3), 281–294.

Schwab, I., M. Senn, and N. Link (2012). Improving expert knowledge in dynamic process monitor-

ing by symbolic regression. In 2012 Sixth International Conference on Genetic and Evolutionary

Computing, pp. 132–135. IEEE.

Städler, N., P. Bühlmann, and S. Van De Geer (2010). ℓ1-penalization for mixture regression

models. Test 19, 209–256.

Stein, M. L. (1999). Interpolation of spatial data: some theory for kriging. Springer Science &

Business Media.

5


