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antibodies (IgG anti GQ1b), antecedent infection, neuro-
physiological data and neuroimaging suggested a shared 
autoimmune pathogenetic mechanism rather than distinct 
pathogenesis, thus allowing the hypothesis that both dis-
eases are part of a unified syndrome, named “Fisher-Bick-
erstaff syndrome” [1].

The identification of anti-GQ1b-positive formes frustes 
has further led to the classification of a more inclusive con-
dition known as “Anti-GQ1b-Antibody syndrome”. This 
syndrome encompasses a continuous spectrum of condi-
tions defined by a common serological profile and varying 
degrees of peripheral nervous system (PNS) and central ner-
vous system (CNS) involvement [2, 3].

Such a spectrum presents MFS and BBE at the oppo-
site ends, with MFS primarily affecting the PNS and BBE 
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predominantly involving the CNS, and includes various 
formes frustes such as acute ophthalmoparesis, acute ataxic 
neuropathy without ophthalmoparesis, Guillain-Barré syn-
drome (GBS) with ophthalmoparesis and MFS-GBS and 
BBE-GBS overlap syndromes [4].

The present work aims to provide an extensive, detailed 
and up-to-dated overview of all aspects of the anti-GQ1b 
syndrome through a review and analysis of a substantial 
body of literature, spanning from initial description of its 
components to recent developments in diagnostic classifica-
tion and research perspectives.

Historical perspective

Original description

Cranial nerve involvement in GBS had already been postu-
lated by Guillain himself, who, in the 1938 Belgian Sympo-
sium, described forms of the syndrome presenting isolated 
cranial nerve involvement and forms exhibiting polyneu-
ropathy accompanied by impaired consciousness [5].

These early descriptions share similarities with MFS and 
BBE.

In the 1951 article “Mesencephalitis and rhomboenceph-
alitis”, Bickerstaff described three patients who displayed 
a gradual development of ataxia, external ophthalmoplegia 
and drowsiness following antecedent infection. The terms 
“mesencephalitis” and “rhomboencephalitis” were initially 
suggested to differentiate these conditions from classic 
forms of encephalitis [6].

Bickerstaff later expanded his case series in 1957, theo-
rizing that the pathological process responsible for impaired 
cerebral function without damage to the organ itself was 
localized to the brainstem [7].

It was only in 1978 that Bickerstaff reviewed the syn-
drome for the Handbook of Clinical Neurology under the 
title “Brain stem encephalitis (Bickerstaff’s encephalitis)” 
[8].

Meanwhile in 1956 Miller Fisher described three patients 
exhibiting ataxia, ophthalmoplegia and areflexia following 
an antecedent infection, one of which experienced mild 
drowsiness during the acute phase of the disease [9].

Evolving pathophysiology

The etiology of both conditions has long been debated. In 
his original description, Fisher considered ataxia to be the 
manifestation of an unusual peripheral neuron lesion, while 
also categorizing it as a cerebellar disturbance due to the 
disproportional clinical compared to sensory loss, even in 

the absence of pathological changes in the cerebellum and 
cerebellar dysarthria [9, 10].

In 1982 Al-Din and Bickerstaff reported 18 cases of 
brainstem encephalitis and MFS, suggesting a common cen-
tral cause for both syndromes. All patients exhibited oph-
thalmoplegia and ataxia. Among them, a variable degree 
of impairment of consciousness was present in 12 patients 
and tendon reflexes were absent in 11 patients, normal in 3 
and brisk in 4. Additionally, 4 patients showed long tract 
signs such as Babinski sign and 2 presented sensory distur-
bances. The initial trigger was presumed to be a hypersen-
sitivity reaction following infection and the hypothesized 
pathogenesis included a cerebellar origin for ataxia and a 
supranuclear cause for ophthalmoplegia, while areflexia 
and impaired consciousness were thought to result from the 
involvement of the midbrain and the pontine reticular for-
mation [11].

This hypothesis found support in several pieces of evi-
dence: abnormal EEG findings present in 12 patients, 
brainstem lesions found in 3 MFS patients, and abnormal 
brainstem evoked potential in one. Moreover, the same 
hypothesis was also endorsed by Keane JR, but disputed by 
Ropper, who considered 6 of the 18 patients as having typi-
cal MFS and the remaining 12 as exhibiting obscure brain-
stem lesions without peripheral neuropathy [11–14].

Ropper himself, after conducting an in-depth electro-
physiological study on MFS patient, suggested a purely 
peripheral etiology based on the observed alterations in 
joint position sense and muscle spindle proprioception [15].

The discovery of anti-GQ1b antibodies in MFS patients 
by Chiba in 1991 and later in BBE patients by Yuki made 
it evident that both conditions originate from the same 
immune-mediated process, triggered by an antecedent infec-
tive episode, thus leading to the establishment of a common 
spectrum referred to as “Fisher Bickerstaff syndrome” [1, 
16, 17].

Subsequent findings of anti-GQ1b antibodies in atypical 
forms have then led to the development of a new nosologi-
cal entity known as the “Anti-GQ1b antibody syndrome”, 
comprising a continuous spectrum of phenotypes character-
ized by a common serological profile and variable degrees 
of CNS and PNS involvement [3, 18].

Evidence of lesions in MFS patients observed through 
neuroimaging, including glucose hypermetabolism in the 
cerebellar vermis and hemispheres using PET, and a reduced 
N-acetyl aspartate (NAA) to creatine (Cr) ratio (NAA/Cr) 
through Magnetic Resonance Spectroscopy (MRS) in these 
areas, suggests a cerebellar dysfunction, supporting the cen-
tral involvement in the “peripheral” forms of the spectrum 
[19–26].

At the neuronal level, stable creatine levels are used 
as a reference point against NAA levels, whit reductions 
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indicating neural dysfunction, localized to the cerebellum. 
The normalization of the NAA/Cr ratio at 2.5 months is 
associated with recovery [26, 27].

Autopsies of MFS patients have revealed evidence of the 
loss of Purkinje neurons in the cerebellum [28].

Epidemiology

The worldwide annual incidence of GBS is ~ 1–2/100,000 
inhabitants. Of these, MFS represents a small fraction of the 
total, with the percentage varying according to the area con-
sidered. The literature shows a higher incidence in the East 
than the West: in Asian countries it accounts for ~ 15–25% 
of GBS cases (Taiwan 18%, Hong Kong 9%, Thailand 
7.7%); it is lower in Europe: an Italian review estimated an 
incidence of 0.04–0.18 cases in 100,000 inhabitants (6%), 
while some reports reported an incidence of 7% in Spain [4, 
10, 29–32].

Because of its rarity, there are no epidemiological studies 
on BBE in Europe, although clinical experience suggests 
a lower incidence. One epidemiological study on BBE in 
Japan reports an incidence of 0.078 in 100,000 [33].

Both MFS and BBE present a slight male prevalence, 
early age onset (average age 36) and autumn-winter peak 
[4, 34, 35].

Although atypical forms have a significantly lower inci-
dence and no epidemiological studies have been conducted, 
the incidence of these forms appears to be higher in Asian 
countries [36, 37].

Clinical features

MFS is classically defined by the triad characterized by oph-
thalmoparesis, ataxia and osteotendinous areflexia, which 
appear in ~ 80% of patients [9, 10, 38]. Ophthalmoparesis, 
typically bilateral, progresses to complete external ophthal-
moplegia within 1–2 weeks. Ataxia, often very severe, may 
result in an inability to walk without support despite normal 
strength. Areflexia, a less specific component of the triad 
(absent in 18%), may also be confined to an isolated body 
area [10, 39]. The triad is often accompanied by additional 
signs, including ptosis (60%), facial nerve palsy (30–50%), 
sensory deficits (20–50%), and hyposthenia (20–25%) [10, 
18, 40–42]. MFS may present with atypical manifestations, 
such as an initial presentation with bilateral internal oph-
thalmoplegia, unilateral external ophthalmoplegia, bilat-
eral abducent nerve palsy, or isolated bilateral ptosis [20, 
43–46]. The literature documents numerous cases of MFS 
accompanied by optic neuritis, often bilateral, resulting 
in blurred vision without pain, color desaturation or field 
deficit [47]. MFS may also be accompanied by internuclear 

ophthalmoplegia (INO), mimicking posterior circulation 
stroke [48].

Bickerstaff originally described BBE as a clinical syn-
drome defined by progressive, relatively symmetric external 
ophthalmoplegia and ataxia within 4 weeks, accompanied 
by disturbances in consciousness or hyperreflexia [7, 11]. 
Although atypical cases of BBE not accompanied by oph-
thalmoplegia have been described, the predominant pres-
ence of this symptom in BBE cases makes its absence a 
marker suggesting a lower likelihood of anti-GQ1B anti-
body syndrome [49, 50]. Ataxia can manifest as both trun-
cal and limb ataxia in 71% of cases, truncal only in 18%, 
and limb-only in 11% [34]. Other signs of CNS involvement 
include: varying degrees of impaired consciousness in 74% 
of patients, ranging from mild drowsiness (55%) to stupor 
(17%), semicoma (8%) and coma (20%); long tract signs, 
such as Babinski sign (43%), hemisensory loss and hyper-
reflexia (30%), found in all patients not exhibiting impaired 
consciousness [34, 51]. In addition, the literature describes 
decorticate posturing as a possible sign of CNS involvement 
[52, 53]. Central signs tend to be milder in children, and may 
manifest as irritability or hyperexcitability [54, 55]. Internal 
ophthalmoplegia (34%), blepharoptosis (29%) and nystag-
mus (27%) are relatively common [33, 34, 56]. Additional 
signs associated to these symptoms include limb weakness 
(60%) superficial sensory loss (31%), facial diplegia (45%), 
pupillary abnormalities and bulbar palsy (34%), oropharyn-
geal palsy, decreased or absent tendon reflex (67%).

Similar to MFS, cases of optic neuritis have been reported 
[57]. Deep sense impairment is rarer (2%) [51].

As evidenced in retrospective studies of both BBE and 
MFS, diplopia is the most common initial symptom, occur-
ring in 63% of MFS cases and 52% of BBE cases, followed 
by ataxia, observed in 5% of MFS patients and 35% of BBE 
patients [34, 35]. In 23% of BBE cases, both conditions 
may develop on the same day (3,8,43–45) [35]. Other initial 
symptoms include dysesthesia (10% in MFS, 19% in BBE), 
limb weakness (15% in MFS, 11% in BBE), and dysarthria 
(15% in MFS, 11% in BBE) with similar percentages [34, 
35].

The average time from infection to onset is shorter in 
BBE (5 days, ranging from 2 to 10). MFS exhibits higher 
variability and longer time to onset with ophthalmoparesis 
appearing on average at 7 days from infection (ranging from 
1 to 30 days), followed by ataxia at 10 days (ranging from 
1 to 30 days), and areflexia appearing with the highest vari-
ability at 14 days on average (ranging from 4 to 45 days) 
[35, 51].
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cervicobrachial and proximal muscles. The most common 
onset symptom is arm weakness (29% of cases), followed 
by dysphagia (17%) and diplopia (17%). Rarer initial symp-
toms include blepharoptosis, facial weakness, photophobia 
or dysgeusia. Patients frequently develop hypo/areflexia 
(91% in the arms, 86% in the legs), superficial sensory loss 
(59% in the arms and 38% in the legs), ophthalmoparesis 
(55%) and arm weakness, predominantly proximal in 47% 
of cases and distal in 28%. Ataxia (43%), autonomic dys-
function (20%) and consciousness disturbance (5%) are 
possible [36].

PCB weakness, initially classified among GBS variants, 
was included into the anti-GQ1b syndrome spectrum fol-
lowing a retrospective study on 100 “pure PCB” patients, 
39 of whom tested positive for anti-GQ1b seropositivity. 
Possible overlap with MFS (26% of cases) and BBE (5% 
of cases), with subsequent development of ataxia, ophthal-
moparesis or altered consciousness, provides additional evi-
dence of PCB weakness’s place within this spectrum [36, 
68, 69].

AVS, recently incorporated into the spectrum, is charac-
terized by an acute onset of dizziness, spontaneous or posi-
tional vertigo (80%), truncal (100%) or limb ataxia (86%), 
sensory abnormalities (43%) and various ocular motor find-
ings, such as spontaneous (50%), gaze-evoked (50%), posi-
tional (30%) or head-shaking nystagmus (40%), all without 
ophthalmoplegia. Other possible symptoms include sac-
cadic dysmetria (20%), ocular flutter or opsoclonus, down-
beat nystagmus and central positional nystagmus [70].

ABP is a condition characterized by acute bulbar paraly-
sis in conjunction with other cranial symptoms or ataxia, 
without the presence of limb or neck weakness. The onset 
of acute bulbar paralysis, a prominent symptom, commonly 
presents with dysarthria (50%), diplopia (35%), and dys-
phagia (35%). Less common manifestations include gait 
ataxia (14%), rhinolalia (11%), facial palsy (11%), and pto-
sis (3.6%). As the condition advances, external ophthalmo-
plegia (71%), hypo/areflexia (64%), facial palsy (61%), gait 
ataxia (50%), and sensory abnormality (50%) are frequently 
observed [37] Table 1.

Pathogenesis

The etiology of these conditions has been demonstrated 
to be immunological. Antecedent infections, as originally 
described, appears present in the majority of patients: in 
MFS preceding upper respiratory system infections are 
most common (56–76% of patients). Gastrointestinal infec-
tion (4%) and isolated fever (2%) are less frequent. MFS 
can also be associated with autoimmune disease, neo-
plasms, surgical procedures, use of medication such as TNF 

BBE/MFS associated with GBS

Forms of BBE/MFS overlapping with GBS are described. 
Development of flaccid tetraparesis in BBE patients, 
observed in 60% of cases, may represent the epiphenom-
enon of a clinical profile otherwise indistinguishable from 
pure BBE [34, 58, 59]. Overlap syndromes can affect patient 
outcomes, with one-quarter of those scoring 3 on the MRC 
scale experiencing persistent limb weakness [34].

Atypical forms - Formes frustes

Atypical forms definited in literature like formes frustes are 
incomplete forms that, while sharing a common serological 
profile, may not fully meet the criteria for BBE/MFS. These 
encompass a broad clinical spectrum, including acute ataxic 
neuropathy (AAN), acute ophthalmoparesis (AO), pharyn-
geal-cervical-brachial (PCB) weakness, acute ptosis (AP), 
acute mydriasis (AM), acute oropharyngeal palsy (AOP), 
acute bulbar palsy (ABP), acute vestibular syndrome (AVS) 
[60].

AAN is characterized by profound ataxia without oph-
thalmoplegia and includes two conditions forming a con-
tinuous spectrum: ataxic GBS and acute sensory ataxic 
neuropathy (ASAN).

Ataxic GBS patients (69% of AAN) also exhibit nega-
tive Romberg sign, hypo/areflexia, distal paresthesias and 
cerebrospinal fluid (CSF) albuminocytological dissociation 
(ACD), placing this condition as a GBS variant [61, 62].

These features are absent in ASAN (31% of AAN), 
which more frequently exhibits a positive Romberg sign 
and is defined by the absence of sensory nerve action poten-
tials (SNAP), normal CSF findings, loss of large myelinated 
fibers and axonal damage [63].

Possible initial symptoms of both conditions include dis-
tal dysesthesias (51% in ataxic GBS vs. 71% in ASAN), and 
gait disturbances (49% in ataxic GBS vs. 35% in ASAN). 
Over the course of the diseases, distal dysesthesias (70% 
in ataxic GBS vs. 88% in ASAN) and superficial sensory 
impairments (27% in ataxic GBS vs. 24% in ASAN) often 
develop. The average time to nadir is 4 days (ranging from 
2 to 15 days) in ataxic GBS and 7 days (ranging from 3 to 
13 days) in ASAN. The average length of hospital stay is 16 
days (ranging from 3 to 68 days) in ataxic GBS and 22 days 
(ranging from 5 to 150 days) in ASAN [64].

AO is characterized by acute, symmetric, combined 
external and internal ophthalmoplegia without ataxia or 
areflexia, associated with anti-GQ1b seropositivity [51, 65, 
66]. Unilateral involvement has been described in 27% of 
cases, making diagnosis more challenging [67].

PCB weakness is another extensive form, character-
ized by areflexia and weakness of the oropharyngeal, 
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patients, as well as H. influenzae isolated from an MFS 
patient, were demonstrated to mimic GQ1b [82–84].

It is interesting to note how the immune system’s response 
towards the same pathogens leads to distinct clinical presen-
tations, such as GBS and Anti-GQ1b antibody syndrome.

Essential to the production of gangliosides-like LOS are 
the presence of enzymes such as Campylobacter sialyltrans-
ferase (CstII), N-acetylgalactosaminyltransferase (CgtA) 
and galactosyltransferase (CgtB), encoded by bacterial 
genes found in C. jejuni isolated from anti-GQ1b seroposi-
tive patients [85, 86].

The specific antibody type produced is dictated by the 
51st amino acid of CstII, which determines its enzyme 
activity: the presence of Threonine (Thr51) leads to the 
production of GM1- and GD1a-like LOS, while Asparagine 
(Asn51) leads to the production of GQ1b-like LOS [85, 87].

GQ1b is a ganglioside found predominantly in paranodal 
myelin, especially in oculomotor nerves (III-IV and VI cra-
nial nerves), dorsal root ganglia (DRG), and fibers of neuro-
muscular spindles [10].

GQ1b would act by stabilizing the formation of the axo-
glial paranode, composed of Contactin-1 (CNTN1) and 
CASPR, expressed by neurons, which bind to the glial-
derived NF-155 counterpart. This paranodal axo-glial struc-
ture is essential for the longitudinal conduction of nerve 
impulses, regulating ion channel clustering, propagating 
the action potential, and preventing the lateral diffusion of 
membrane proteins in myelinated nerve fibers. Antibody-
mediated targeting of this epitope leads to an acute blockade 
of nerve impulse propagation, resulting in the sudden onset 
of symptoms [81, 88].

Given the presence of ganglioside GQ1b in the parano-
dal structure, the diagnostic process for suspected diseases 
in this spectrum requires the exclusion of paranodopathies, 
which present with similar clinical features but have differ-
ent neurophysiological profiles [89].

As highlighted by Chiba, GQ1b accounts for 11–13% 
of ganglioside composition in oculomotor nerves, com-
pared to 5–8% in all other cranial nerves, accounting for the 
symptomatologic triad of MFS patients: ophthalmoparesis, 
ataxia, and areflexia [4, 90].

Additionally, the presence of the GQ1b epitope in the 
optic nerve, glossopharyngeal nerve and vagus nerve 
accounts for possible optic and oropharyngeal involvement 
[1, 91].

Pupillary abnormalities are attributed to autoantibody-
mediated ciliary nerves and ganglion involvement [92].

The varied symptomatology of AVS result from variable 
involvement of the peripheral and central vestibular system, 
both of which express the GQ1b epitope [70, 93–95].

How to explain the CNS involvement typical of BBE?

α, heroine, anti-streptokinase, isotretinoin, bone marrow 
transplantation [42, 71–79].

In the case of BBE, a stronger correlation with anteced-
ent infections has been identified, affecting approximately 
92% of patients. Upper respiratory infections (66%), iso-
lated fever (9%), fever and headache (6%), diarrhea only 
(5%), and a combination of respiratory infection symptoms 
and diarrhea (5%) have been observed [34]. Gastrointestinal 
infections are more commonly associated with classic GBS 
[80].

Specific pathogens are isolated in patients across this 
spectrum, with Campylobacter jejuni being the most fre-
quently isolated (21% in MFS, 23% in BBE, and 31% in 
PCB), followed by Haemophilus influenzae (8% in MFS, 
6% in BBE) [35, 36, 51].

Notably, no significant differences have been found in 
the relative frequencies of pathogens found in patients with 
pure forms of BBE and BBE-GBS overlap forms [34].

H. influenzae is isolated more frequently (18%) in formes 
frustes compared to C. jejuni (2%) [51].

Cytomegalovirus (CMV) has been isolated in PCB but 
not in other forms of this spectrum [36, 51].

In most forms of Anti-GQ1b antibody syndrome, no spe-
cific pathogens have been isolated [51].

The underlying mechanism appears to be related to 
“molecular mimicry”. The activation of the immune sys-
tem against lipo-oligosaccharides (LOS) present on the 
pathogens’ membrane, which resemble the shape of human 
gangliosides (GQ1b, GM1, GD1a), triggers the production 
of autoantibodies. When the generated antibody is GM1 
or GD1b, it results in the classic form of GBS, while the 
production of GQ1b antibodies leads to the development of 
anti-GQ1b antibody syndrome [10, 81]. Supporting this, the 
fact that the LOS of C. jejuni isolated from MFS or BBE 

Table 1 Atypical forms included in the spectrum with main clinical 
characteristics
Atypical forms Clinical features
Acute ataxic neuropathy (AAN) Ataxia without 

ophthalmoplegia
Acute ophthalmoparesis (AO) Ophthalmoparesis without 

ataxia or areflexia
Pharyngeal-cervical-brachial 
(PCB) weakness

Weakness of the oropharyn-
geal, cervicobrachial and 
proximal muscles with areflexia

Acute oropharyngeal palsy (AOP) Weakness of the oropharyngeal 
muscles without areflexia

Acute ptosis (AP) Isolated ptosis
Acute mydriasis (AM) Isolated mydriasis
Acute bulbar palsy (ABP), Acute bulbar paralysis with 

other cranial symptoms or 
ataxia, without the presence of 
limb or neck weakness

Acute vestibular syndrome (AVS) Dizziness, vertigo and ataxia, 
without ophthalmoplegia
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incidence of central nervous system (CNS) involvement 
(24.8%) compared to peripheral nervous system (8.9%) 
[101]. These complications spanned a spectrum of severity, 
from mild symptoms like headache, dizziness, myalgia, and 
anosmia to more serious conditions, such as encephalopa-
thy, encephalitis, necrotizing hemorrhagic encephalopathy, 
stroke, epileptic seizures, and Guillain-Barré syndrome 
[102].

In accordance with the ALBACOVID registry, patients 
with Guillain-Barré Syndrome (GBS) represented 0.5% of 
COVID-19-related hospitalizations. Among these, those 
with Miller Fisher Syndrome (MFS) constituted approxi-
mately 10%, while patients with pharyngeal-cervical-bra-
chial weakness (PCB) accounted for around 2% [57, 103, 
104]. While uncommon, there have been reports of multiple 
cases of MFS and BBE occurring after COVID-19 vaccina-
tion in various countries [105–109].

Diagnostic approach

The diagnostic process primarily relies on clinical assess-
ment, although laboratory investigations can provide valu-
able support. Hyperproteinorrachia, a recognized marker 
of GBS, may not manifest in the early stages and might be 
absent in certain cases within the Anti-GQ1b antibody syn-
drome spectrum: the incidence of hyperproteinorrachia in 
this spectrum tends to progressively increase over the initial 
three weeks of onset. Notably, Albuminocytological disso-
ciation (ACD) is detected in ~ 47% of MFS patients. Within 
this subgroup, the incidence rises from 66% within the first 
week to 82% by the third week [4].

Conversely, ACD is less common in BBE patients, with 
an occurrence rate of 25% during the initial week, escalat-
ing to 46% in the second week [34, 110]. Atypical forms 
exhibit an ACD incidence of approximately 30% [51, 64].

Cerebrospinal fluid (CSF) pleocytosis, characterized by 
an increased number of white blood cells in the CSF, is 
observed more frequently in BBE (32%) than in MFS (5%) 
and atypical forms (7%) [34, 51]. Consequently, CSF stud-
ies alone cannot clearly discriminate these forms.

In contrast, anti-GQ1b dosage demonstrates superior 
sensitivity and specificity during the initial week, with anti-
bodies being detectable in 85% of MFS patients and 68% of 
BBE patients [3, 4]. Antibodies other than GQ1b may also 
be identified in different forms of the spectrum with varying 
incidence, as outlined in the following Tables [34, 36, 51, 
64, 110–113] Table 2.

Anti-GT1a and anti-GM1 antibodies can function as anti-
GQ1b equivalents in two ways:

1. As demonstrated in adult mouse brain models, these 
relative gangliosides, in addition to being found in the 

The mechanism underlying the typical central nervous 
system (CNS) involvement in BBE remains a subject of 
investigation. The most widely accepted hypothesis sug-
gests a disruption of the blood-brain barrier (BBB), a pro-
tecting barrier against large circulating molecules, in BBE 
patients, which remains intact in MFS patients. An in vitro 
study demonstrated that the serum of BBE patients, but not 
MFS patients, could disrupt a BBB model by increasing pro-
duction of matrix metalloproteinase-9 (MMP-9) secreted by 
human brain microvascular endothelial cells [96].

An alternative hypothesis involves the passage of anti-
bodies at the area postrema, where the BBB is relatively 
permeable [97, 98].

These hypotheses are substantiated by post-mortem 
examinations in BBE patients, revealing inflammatory 
changes in the brainstem, including perivascular lympho-
cytic infiltration with oedema and glial nodules [7, 34].

An alternative explanation is provided by differences 
in antibody specificity among various forms of anti-GQ1b 
antibody syndrome: in contrast to ASAN, anti-GQ1b anti-
bodies in MFS seldom exhibit cross-reactivity with anti-
GD1b ganglioside [64].

The variable consciousness impairment typical of BBE 
suggests a variable degree of involvement of the reticular 
formation, rich in GQ1b.

A likely sequence of events in the pathogenesis of Anti-
GQ1b antibody syndrome is as follows:

1. Antecedent infection by microorganisms carrying 
LOS mimicking GQ1b triggers the production of IgG 
anti-GQ1b;

2. Anti-GQ1b antibodies attach to the epitopes expressed 
on the oculomotor nerves, DRG, and fibers of neuro-
muscular spindles, inducing MFS;

3. Antibodies may potentially pass into the brainstem 
through areas where the BBB is deficient, where they 
attach to GQ1b in the reticular formation, leading to 
BBE.

The finding of anti-GQ1b seronegative MFS and ataxic 
GBS patients presenting anti-GM1b, anti-GD1b, or anti-
GalNAc-GD1a IgG antibodies may be explained by the 
presence of these relative gangliosides in their oculomotor 
nerves, primary sensory neurons and brainstems [99, 100].

Anti-GQ1b antibody syndrome and COVID

Neuromuscular manifestations have been frequent post-
infective complications of Middle East respiratory syn-
drome (MERS) and COVID. In a retrospective analysis 
of 214 hospitalized patients, neurological complications 
were observed in 36% of the cases examined, with a higher 
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of the nerve roots, cauda equina-conus medullaris may be 
observed in MFS/BBE-GBS overlap forms, similar to sev-
eral GBS patients [59, 123, 124].

EEG recordings show diffuse slowed activities in the θ 
or δ range at rest in 57% of BBE and 25% of MFS patients 
[51]. The higher incidence of neuroimaging and EEG 
abnormalities indicates greater CNS involvement in BBE, 
although found in varying degrees in MFS as well Table 3.

Neurophysiology

Neurophysiological findings in of Anti-GQ1b antibody 
syndrome are milder compared to those found in GBS. 
Unlike the latter, typical signs of acquired demyelinating 
polyneuropathy, such as reduced motor conduction velocity 
(MCV), marked temporal dispersion and conduction blocks, 
are absent in pure forms of the spectrum. In these forms 
motor and sensory conduction studies are normal. Reduced 
sensory nerve action potential (SNAP) amplitude dispro-
portionate to the slowing of sensory conduction velocity or 
prolongation of the distal latencies, indicative of sensory 
neuropathy, may be found [125, 126].

The study of late responses, performed to assess the more 
proximal segment of nerves such as plexuses and roots, 
reveals the absence of soleus H-reflexes, the neurophysi-
ological equivalent of the myotatic reflex [51, 126–128]. 
This neurophysiological abnormality, found in 75% of 
BBE and 94% of MFS patients, may be due to the selective 
involvement of the Ιa muscle spindles expressing the GQ1b 
ganglioside [51, 127–129]. Reappearance of the H-reflex is 
associated with patient recovery [42].

Electrophysiological characteristics of atypical forms are 
less well documented: in AO and AVS, nerve conduction 
studies (NCSs) are usually normal; axonal damage similar 

peripheral nerve roots, thus explaining the limb weak-
ness found in overlap forms, are also present in brain-
stem nuclei, thalamus and white matter tracts [114, 
115];

1. Furthermore, these antibodies have the potential to 
cross-react with the ganglioside GQ1b [116, 117].

Associative studies between anti-ganglioside antibodies 
and clinical phenotype have suggested a correlation. Spe-
cifically, anti-GD1b and GT1b antibodies have been linked 
to the worsening of ataxia, while the presence of anti-GT1a 
antibodies has been correlated with a worsening of ophthal-
moparesis [117]. In contrast, Kashihara et al. evidenced how 
anti-GT1a IgG antibodies in PCB weakness, ABP and AOP 
patients were associated with bulbar symptoms such as dys-
arthria, dysphagia and facial weakness. This association 
was attributed to the high expression of GT1a gangliosides 
in the glossopharyngeal and vagus nerves [37, 91, 118]. 
Additionally, Fukami et al. reported a correlation between 
GM1, GD1a, and GalNAc-GD1a antibodies and limb weak-
ness [117].

Instrumental investigations

In MFS patients, MRI remains normal in 99% of cases [51]. 
In the remaining 1%, MRI may reveal hyperintensity in 
T2-weighted images at the brainstem, cerebellum, middle 
cerebellar peduncle and cranial and spinal nerve root [10, 
51, 119–121]. MRI abnormalities are more frequent in 
BBE (11% of cases), such as hyperintensity in the medulla 
oblongata, pons, thalamus, cerebellum, superior cerebel-
lar peduncle or corpus callosum [51]. According to some 
authors, incidence of MRI abnormalities may reach 30% 
[34, 59, 122]. Hyperintensity and/or contrast enhancement 

Table 2 Antibodies other than GQ1b may also be identified in different forms of the spectrum, with varying incidence. We present in this table 
the relative incidences in percentages of ganglioside reported in the literature in the various forms of the spectrum. The dash indicates that there 
is no available literature data regarding the relative incidence of the corresponding element. It is interesting to note how Anti-GT1a and anti-GM1 
antibodies can function as anti-GQ1b equivalents. Associative studies between anti-ganglioside antibodies and clinical phenotype have shown 
that GD1b and GT1b antibodies are linked to the worsening of ataxia, while anti-GT1a antibodies have been correlated with bulbar symptoms 
due to the high expression of GT1a gangliosides in the glossopharyngeal and vagus nerves. A correlation has been reported between GM1, GD1a, 
and GalNAc-GD1a antibodies and limb weakness. ACD= albuminocytological dissociation, MFS= Miller Fisher syndrome, BBE= Bickerstaff 
brainstem encephalitis, PCB= pharyngeal-cervical-brachial weakness, AVS= acute vestibular syndrome), AO= acute ophthalmoparesis without 
ataxia, ABP= acute bulbar palsy

GQ1b GD1a GM1 GM1b GT1a GalNAc-GD1a GD1b ACD CSF pleocytosis
MFS51 83 28 15 - 78 2 2 47 5
BBE51 68 13 13 - 60 2 2 46 32
PCB36 39 12 10 16 51 1 - - -
Ataxic GBS64 18 - - - - - 47 39 -
Acute sensory ataxic neuropathy64 65 - - - - - 46 30 -
AVS70 67 - 0 - - - 13 50 20
AO without ataxia70 80 - 8 - - - 23 73 6
GBS with ophthalmoparesis2 92 - 22 - - - 44 93 13
ABP37 59 - - - 78 - - - 48
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to AMAN may be found in PCB, AAN [37, 64, 66, 70, 123, 
130].

In ABP, a possible presence of facial nerve involvement 
with an abnormal blink reflex is observed in approximately 
17% of patients [37].

In this form, despite clinical localization of hyposthenia 
restricted to motor cranial nerve territories, a subclinical 
limb neuropathy of varying severity can be detected in more 
than one-third of patients, thereby providing electrophysi-
ological support for the current theory of ABP being part of 
a continuous spectrum [37, 131].

In both typical and atypical forms, the gradual improve-
ment of SNAP amplitudes is linked to the recovery from 
pathology [132].

The overlapping of GBS with MFS and BBE may be 
expressed through electrophysiological findings of super-
imposed acute motor axonal neuropathy [123, 124].

Body sway analysis, a method used to study the proprio-
ceptive afferent system, shows postural sway with a 1-Hz 
frequency in both MFS and BBE [51, 133]. Sway at this 
frequency, also found in tabes dorsalis and ataxic poly-
neuropathy patients, suggest concomitant and common 
proprioceptive afferent system dysfunction, supporting the 
hypothesis of continuity between these conditions [133, 
134]. Auditory brainstem response (ABR), used to evaluate 
activation from the cochlea to the midbrain and detect dam-
age, especially in the pons, may be helpful for the diagno-
sis and follow up in BBE: patients may exhibit low-evoked 
potentials without prolonged latency between I and V wave, 
caused by the loss of neural cells presenting anti-GQ1b 
[115, 135].

Therapy

Due to the rarity of spectrum conditions, there are no 
randomized, double-blind, placebo-controlled trials on 
treatment of the Anti-GQ1b Antibody syndrome, and ret-
rospective studies yield controversial results. An impor-
tant retrospective study on 92 MFS patients, including 28 
treated with intravenous immunoglobulin (IVIG) and 23 
treated with plasma exchange (PLEX); while 41 remained 
untreated, evidenced a survival rate of 100%, regardless of 
therapeutic strategy employed. It is inferred that MFS is 
self-limiting and therapy is unlikely to affect the patients’ 
outcome [136, 137].

MFS BBE
Antecedent illness (%) 82% 92%
Upper respiratory infectious symptoms 56–76% 66%
Gastrointestinal infectious symptoms 4% 5%
Isolated fever 2% 9%
Pathogens isolated
Campylobacter jejuni 21% 23%
Haemophilius influenzae 8% 6%
Clinical features
Consciousness disturbance 0% 74%
Mild drowsiness - 55%
Stupor - 17%
Semicoma - 8%
-Coma - 20%
Blepharoptosis 60% 29%
External ophthalmoplegia 100% 100%
Internal ophthalmoplegia 35% 55%
Facial nerve palsy 30–50% 45%
Bulbar palsy 17% 34%
Mild limb weakness 20–25% 60%
Sensory deficits 20–50% 31%
Dysesthesia 45% 40%
Superficial sense impairment 7% 15%
Deep sense impairment 17% 2%
Ataxia 100% 100%
Babinski sign 2% 43%
Normal or brisk reflex 0 30%
Absent or decreased reflex 100% 67%
Outcome
Assisted ventilation 1% 34%
Mortality rate 0% 4%
Recurrence rate 12% 25%
Paraclinical findings
Albuminocytological dissociation (ACD) 47% 46%

Table 3 Comparison between MFS and BBE: in both conditions, 
the etiology has been demonstrated to be immunological, secondary 
to ‘molecular mimicry. Unlike MFS, BBE shows a stronger correla-
tion with antecedent infections, with specific pathogens, particularly 
Campylobacter jejuni, frequently isolated. MFS is classically defined 
by the triad characterized by ophthalmoparesis, ataxia, and osteo-
tendinous areflexia. On the other hand, BBE is defined as a clinical 
syndrome characterized by progressive, relatively symmetric external 
ophthalmoplegia and ataxia within 4 weeks, accompanied by distur-
bances in consciousness or hyperreflexia. The degree of conscious-
ness disturbance varies from mild drowsiness to stupor, semicoma, and 
coma. Other signs of CNS involvement, such as Babinski sign, hemi-
sensory loss, and hyperreflexia, can be found in all patients not exhibit-
ing impaired consciousness. In both conditions, the triad of symptoms 
is frequently associated with additional signs. Unlike MFS, BBE may 
require assisted ventilation during the acute phase (1% vs. 34%) and 
presents a mortality rate of 4%, attributed to aspiration pneumonia and 
sudden cardiac arrest. Both conditions may recur, albeit in different 
percentages. Albuminocytological dissociation (ACD) is detected in 
similar percentages in both conditions, while cerebrospinal fluid (CSF) 
pleocytosis is observed more frequently in BBE than in MFS. For 
both, anti-GQ1b dosage demonstrates high sensitivity and specificity 
during the initial week. BBE presents a higher incidence of neuroim-
aging and EEG abnormalities, indicating greater CNS involvement, 
although such abnormalities are found in varying degrees in MFS as 
well. Percentages are derived from citations (3) (34) (51)

MFS BBE
CSF pleocytosis 5% 32%
Serum IgG anti-GQ1b antibodies 85% 68%
MRI abnormal findings (%) 1% 11%
EEG abnormal findings (%) 25% 57%

Table 3 (continued) 
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