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ABSTRACT

Mastitis has detrimental effects on the world’s dairy 
industry, reducing animal health, milk production and 
quality, as well as income for farmers. In addition, 
consumers’ growing interest in food safety and ratio-
nal usage of antibiotics highlights the need to develop 
novel strategies to improve mastitis detection, preven-
tion, and management. In the present study we applied 
machine learning (ML) analyses to predict presence or 
absence of subclinical mastitis in Italian Mediterranean 
buffaloes, exploiting information collected the previous 
month during routine milk recording procedures, as well 
as climatic data. The data set included 3,891 records of 
1,038 buffaloes from 6 herds located in Basilicata Re-
gion (South Italy). Prediction models were developed 
using 4 different ML algorithms (Generalized Linear 
Model, Support Vector Machines, Random Forest, and 
Neural Network) and 2 data set splitting approaches 
for the creation of the training and test sets (by record 
or by animal ID number, always with 80% of the data 
used for model training and the remaining 20% for 
model testing). Support Vector Machine was the best 
method to predict high or low somatic cell count at the 
subsequent test-day record in the validation set, and 
therefore it was used to estimate the contribution of 
each feature to the best model. Independently from the 
data set splitting approach, the most important features 
were somatic cell score, differential somatic cell count, 
electrical conductivity, and milk production. Among 
climatic data, the most informative were temperature 
and relative humidity. When the data were split by 
animal ID, an improvement in models’ predictive per-
formance on the test set was observed, suggesting this 
as the most appropriate data splitting approach in data 
sets with repeated measures to avoid data leakage. Ac-

cording to different metrics, Neural Network was the 
best method for making predictions on the test set. Our 
findings confirmed the promising role of ML methods 
to improve prevention and surveillance of subclinical 
mastitis, exploiting the large amount of data currently 
available to identify animals that would possibly have 
high somatic cell count the subsequent month.
Key words: machine learning, mastitis, climatic data, 
data leakage, Italian Mediterranean buffaloes

INTRODUCTION

Mastitis, an inflammatory condition of the udder, 
has become a critical issue in the world’s dairy in-
dustry, affecting animal health, milk production and 
quality, and income for farmers (Halasa et al., 2007). 
Mediterranean buffaloes (Bubalus bubalis) have been 
generally considered less susceptible to udder infec-
tions compared with dairy cows, thanks to morpho-
logical characteristics of the teat canal and sphincter 
that reduce the possible invasion of mastitis-causing 
pathogens (Fagiolo and Lai, 2007). Nevertheless, mas-
titis has a detrimental effect also on the buffalo dairy 
sector, which suffers from poor scientific knowledge 
about this disease in comparison to the bovine dairy 
sector (Puggioni et al., 2020). Recently, efforts have 
been made to improve mastitis detection, manage-
ment and selection in dairy buffaloes. Indeed, novel 
indicators of mammary gland inflammation derived 
from traditional SCC, previously developed for im-
proving selection for mastitis resistance in Italian 
Holstein cattle (Bobbo et al., 2018), were investigated 
in dairy buffaloes (Costa et al., 2021). Moreover, the 
dynamics of the different cell types (e.g., macrophages 
and neutrophils) that compose total SCC have been 
explored (Alterisio et al., 2021). Differential somatic 
cell count (DSCC), a novel parameter that represents 
the proportion of lymphocytes and neutrophils on the 
total SCC, has been recently introduced in the routine 
milk recording scheme of dairy buffaloes. The combi-
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nation of SCC and DSCC has been demonstrated to 
better define the udder health status of dairy cattle 
and enhance a rational use of antibiotics (Bobbo et 
al., 2020). In addition, a novel cathelicidin ELISA has 
been developed for detecting buffalo mastitis (Puggio-
ni et al., 2020). However, there is still a need for filling 
the gap in knowledge, possibly by using information 
that is currently available and not fully exploited. For 
instance, great advantage could be taken of the large 
amount of data provided by automatic milking record-
ing systems, as well as by monthly test-day (TD) milk 
recording procedures. Such information, easily acces-
sible, could be used to train machine learning (ML) 
algorithms for the prediction of specific traits of inter-
est, such as phenotypes that are difficult to measure, 
or the possible occurrence of a disease. Machine learn-
ing offers a new approach for data analysis and has 
already been applied in several areas of dairy research 
(e.g., feeding, behavior, reproduction, and health) for 
supporting management of farms (Cockburn, 2020). 
Early detection and prevention of mastitis would 
represent a valuable asset from both the economic 
and health point of view. Previous studies reported 
in the literature have attempted to predict mastitis in 
dairy cattle, defined by the presence of high milk SCC 
(Ebrahimi et al., 2019; Anglart et al., 2020; Bobbo et 
al., 2021) or of mastitis-causing pathogens (Sharifi et 
al., 2018; Hyde et al., 2020), by applying different ML 
algorithms. Nevertheless, in livestock research, where 
data sets with repeated measures are often used for 
ML data analysis, there has been little discussion on 
the issue of data leakage related to data splitting and 
model overfitting (Satoła and Bauer, 2021; Ji et al., 
2022). Data leakage occurs when the training set used 
to create the model contains information about the 
target to be predicted.

Following the approach reported by Bobbo et al. 
(2021), in the present study we exploited information 
already collected in the frame of the monthly routine 
milk recording procedure of Italian Mediterranean buf-
faloes, as well as climatic data (features at time t − 1), 
to predict which animals will present high or low milk 
SCC level at the subsequent TD (outcome at time t). 
In addition, we compared results obtained using 2 dif-
ferent data splitting approaches to evaluate the possible 
effects of data leakage.

MATERIALS AND METHODS

Ethics Statement

Animal welfare and use committee approval was not 
needed for this study because data sets were obtained 

from pre-existing databases based on routine animal 
recording procedures.

Data Collection and Editing

Buffaloes involved in the current study were reared on 
commercial farms and were not subjected to any inva-
sive procedure. Test-day data, recorded during monthly 
routine milk recording procedures, were provided by 
the Italian Breeders Association (Rome, Italy). Data 
included information about herd, animals (ID number, 
date of calving, stage of lactation, and parity order), 
date of sampling, daily milk production (kg/d), milk 
composition [fat (%), protein (%), casein (%), lactose 
(%), pH, and urea (mg/100 mL)], SCC (cells/mL), 
DSCC (%), BHB (mmol/L), electrical conductivity 
(EC, mS), and milk coagulation properties [rennet 
coagulation time (min) and curd firmness 30 min after 
rennet addition (mm)]. The original data set, which in-
cluded records collected from August 2019 to February 
2021, was edited to select animals with at least 2 TD 
records within lactation, and with less than 360 DIM. 
In addition, only consecutive TD records separated by 
a time interval lower than 6 wk were selected. This 
approach, also applied by Bobbo et al. (2021), was ad-
opted to reduce data fragmentation over time. Among 
milk traits, outliers beyond 4 standard deviations, 
possibly resulting from errors in sampling or record-
ing procedures, were considered as missing values, and 
only full records were selected for subsequent analysis. 
Average daily milk production and SCC of contempo-
rary groups—that is, animals sampled in the same herd 
and day (herd-test-date, HTD)—were also determined 
(milk_HTD and SCC_HTD, respectively). Finally, 
the 2 SCC-related traits (SCC and SCC_HTD) were 
log-transformed to SCS and SCS_HTD to achieve 
normality, whereas no transformation was required for 
DSCC. The outcome to be predicted—that is, presence 
or absence of subclinical mastitis at the subsequent 
monthly TD—was coded as a binary trait and was 
based on SCC: animals were classified as healthy (SCC 
≤200,000 cells/mL) or mastitic (SCC >200,000 cells/
mL). The threshold of 200,000 cells/mL was selected 
based on the published literature (Moroni et al., 2006; 
Costa et al., 2020, 2021). The prevalence of subclinical 
mastitis (SCC >200,000 cells/mL) was 40.3%. After 
editing, the data set included 3,891 records of 1,038 
buffaloes in 6 herds. Each record included information 
of 2 subsequent monthly TD: animal and milk data 
collected at the previous TD and outcome (healthy vs. 
mastitic) at the subsequent TD.

In addition, climatic information of the sampling 
location and date were retrieved from the NASA Pre-
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diction of Worldwide Energy Resource (POWER) Data 
Access Viewer (Sparks, 2018), which allowed access to 
daily averaged data by providing latitude and longitude 
values of the 6 herds and the desired date range. In 
particular, parameters of interest were as follows: All 
Sky Surface Shortwave Downward Irradiance (MJ/m2 
per day), All Sky Surface UV Index (dimensionless), 
Temperature at 2 Meters (°C), Relative Humidity at 2 
Meters (%), Precipitation Corrected (mm/day), Sur-
face Pressure (kPa), Wind Speed at 2 Meters (m/s), 
and Wind Direction at 2 Meters (Degrees). For a 
detailed description of climatic variables see Supple-
mental Table S1 (https://data.mendeley.com/datasets/
pdmy7czpz4/1; Bobbo et al., 2022).

Finally, a total of 27 features were considered: parity 
(from 1 to ≥6), stage of lactation (DIM: 10 classes, 9 
of 30 d each and the last one including DIM >300 d), 
year and month of calving (18 levels), year and month 
of sampling (10 levels), milk production, fat, protein, 
casein, lactose, pH, urea, SCS, DSCC, BHB, EC, milk_
HTD, SCS_HTD, the 2 milk coagulation properties, 
and the 8 climatic parameters.

Data Processing, Recursive Feature Elimination,  
and Model Building

Four different ML methods were adopted to develop 
subclinical mastitis prediction models: Generalized 
Linear Models (GLM; Nelder and Wedderburn, 1972), 
Support Vector Machine (SVM; Cortes and Vapnik, 
1995), Random Forest (RF; Breiman, 2001), and Neu-
ral Network (NN; McCulloch and Pitts, 1943). Two 
approaches were used for splitting the data, to evaluate 
whether results could be biased by possible overfitting 
due to data leakage in time series data sets:

•	 (1) Splitting by record. The data set was randomly 
split into 2 subsets: 80% of the data was used to 
train and evaluate the models, and the remaining 
20% was excluded from model building and held 
out as a test set. Random sampling was performed 
within each outcome class, thus preserving the 
original outcome rate in training, validation, and 
test sets. Splitting by record, the same animals, 
but with different TD records, can be found in all 
created subsets.

•	 (2) Splitting by animal ID. The data set was ran-
domly split so that 80% of the animals (and all 
their relative TD records) were included in the 
training subset used for model building and evalu-
ation, and the remaining 20% were included in the 
test set. Original class distribution of the outcome 
was preserved. Splitting by animal ID, buffaloes 

in the test set were not included in the training 
subset.

Recursive feature elimination using a 10-fold cross-
validation repeated 100 times with the RF method 
(Svetnik et al., 2004) was applied to eventually reduce 
the number of features, automatically selecting the 
most predictive ones to identify the most parsimoni-
ous model with best performance—that is, with high-
est accuracy of prediction. Then, a stratified 10-fold 
cross-validation repeated 100 times was employed to 
train and evaluate the models. In particular, the train-
ing data set was divided into 10 subsets of equal size. 
Splitting the data by record, partitions of the 10-fold 
cross-validation were randomly selected; splitting by 
animal ID, data were split into the 10 subsets based 
on groups (ID). At each of the 10 iterations, predic-
tion models were trained on 9 subsets and evaluated on 
the last one, changing the validation subset every time. 
This entire process was repeated 100 times, for a total 
of 1,000 iterations. Therefore, 100 mean accuracy and 
kappa values of each 10-fold cross-validation were then 
averaged to obtain the final metrics of each method 
reported in the tables. Data standardization was per-
formed within cross-validation. Tuning details of each 
model are reported in the supplemental information file 
(https://data.mendeley.com/datasets/pdmy7czpz4/1; 
Bobbo et al., 2022). Data analysis was performed using 
Caret v. 6.0-86 (Kuhn, 2021) and Tidyverse v. 1.3.1 
(Wickham et al., 2019) packages of R software v. 4.1.2 
(R Core Team, 2021).

Comparison of Methods Predicting Performance  
on Validation and Test Sets

Comparison of methods predicting performance on 
the validation set was first performed by means of ac-
curacy and Cohen’s kappa values. Feature importance 
(i.e., the estimation of the contribution of each variable 
to the best model) was then computed. Importance 
values were then scaled to 0 (least important) and 100 
(most important). Predictive ability of all models on 
the test set was then assessed, and method comparisons 
were based on different metrics: sensitivity, specificity, 
accuracy, positive predictive value, negative predictive 
value, Cohen’s kappa value, and F1 score. False posi-
tive, false negative, and total error rates of each method 
were also calculated. Receiver operating characteristic 
curve analysis was performed using pROC package v. 
1.17.0.1 (Robin et al., 2011), and area under the receiver 
operating characteristic curve (AUC) was measured. 
Finally, Matthew’s correlation coefficient (MCC) was 
calculated according to the following formula:
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	MCC TP TN FP FN

TP FP TP FN TN FP TN FN
=

× − ×

+( )× +( )× +( )× +( )
,

where TP is true positive, TN is true negative, FP is 
false positive, and FN is false negative.

RESULTS

Data Processing, Recursive Feature Elimination,  
and Model Building

Four ML methods (GLM, SVM, RF, and NN) were 
applied to develop subclinical mastitis prediction 
models, using animals and milk information collected 
during monthly routine milk recording procedures and 
climatic data. Training and test sets were obtained 
using 2 approaches: dividing the original data set by 
records or by animal ID, so that the same animals 
could or could not be present in the 2 sets of data; 
that is, they could be totally unknown or not when 
testing the model.

Before model building and training, a recursive 
feature elimination was applied to eventually reduce 
the number of features and remove uninformative 
ones. Splitting the data set both by record and by 
animal ID, all 27 features were retained in the most 
parsimonious yet accurate model (Figures 1a and 1b). 
Nevertheless, a sort of plateau can be reached with 
the first 7 most important features (SCS, SCS_HTD, 
milk_HTD, EC, milk, parity, and DSCC).

Comparison of Methods Predicting Performance  
on Validation Set

Evaluation and comparison of the predicting perfor-
mance of the 4 ML algorithms on the validation set 
was based on accuracy and kappa value. Splitting the 
data set by record, accuracy ranged between 75.4% 
(NN) and 76.1% (SVM), and kappa between 0.476 
(NN) and 0.489 (SVM) (Figure 2a). Splitting the data 
by animal ID, slightly lower values were reported, 
with accuracy ranging from 74.8% (RF) to 75.3% 
(SVM), and kappa from 0.446 (RF) to 0.457 (GLM; 
Figure 2b). In both cases, SVM was the best method 
to predict presence or absence of subclinical mastitis 
in the validation set, and therefore it was used for es-
timating the contribution of each variable to the best 
model. Results of the feature importance using SVM 
on the validation set suggested that, independently 
from the data set splitting approach, SCS at the pre-
vious TD was the most important feature, followed by 
SCS_HTD and DSCC (Figures 3a and 3b). Two other 

important variables were milk_HTD and EC. Among 
climatic data, the most informative were temperature 
and relative humidity.

Comparison of Methods Predicting Performance  
on Test Set

Comparison of the prediction performance of the 4 
ML algorithms on test set, obtained by splitting the 
original data set with 2 different approaches, was based 
on several metrics, summarized in Table 1. Splitting the 
data set by record, accuracy of prediction ranged from 
73.9% (SVM) to 75.4% (NN), whereas kappa values 
were ranged between 0.447 (SVM) and 0.480 (NN). The 
NN method also showed the highest F1 score (0.676) 
and MCC (0.482), followed by GLM (0.670 and 0.476, 
respectively). Similar findings but with slightly greater 
scores were obtained by splitting the data set by animal 
ID. Indeed, NN proved to be the best-performing meth-
od, with prediction accuracy of 76.2%, kappa value of 
0.518, F1 score of 0.726, and MCC of 0.522. The SVM 
method, which was the most accurate in predicting 
subclinical mastitis on the validation set, was instead 
the worst-performing on the test set.

Considering all 4 methods, the greatest AUC values 
were observed by splitting the data set by animal ID 
rather than by record: 84.1% versus 81.2% for GLM, 
83.3% versus 80.2% for SVM, 84.1% versus 79.0% for 
RF, and 84.0% versus 81.4% for NN (Figures 4a and 
4b).

DISCUSSION

In the current study, we predicted whether Italian 
Mediterranean buffaloes will present high or low SCC in 
the milk collected at the subsequent TD, applying ML 
analyses on easily accessible and already available in-
formation (i.e., milk data collected the previous month 
during monthly routine milk recording, as well as cli-
matic data related to the sampling location). Although 
Mediterranean buffaloes seem to be more robust and 
resistant to diseases than dairy cows, their health and 
production are also affected by mastitis (Puggioni et 
al., 2020). Therefore, strategies for early detection and 
prevention of subclinical mastitis are of paramount im-
portance for both economic and health aspects. From 
this perspective, our study highlighted the pivotal role 
of ML analysis for exploiting the large amounts of data 
that are available nowadays, with the aim of improving 
disease surveillance and, consequently, farm manage-
ment strategies.

Subclinical mastitis prediction models were developed 
using 4 different ML methods, one linear (GLM), one 
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with a distance-based approach (SVM), an algorithm 
based on decision trees (RF), and one that works like 
the human brain trying to perform pattern recognition 
(NN). We decided to compare results obtained using 2 
different data set splitting approaches. Indeed, train-

ing and test sets were created by dividing the original 
data set by records (i.e., the same animals, but with 
different TD records, can be found in both sets of data) 
or by animal ID (i.e., animals in the test set were not 
included in model building and were totally unknown).

Bobbo et al.: MACHINE LEARNING FOR MASTITIS PREDICTION

Figure 1. Results of the recursive feature elimination, a function that implements backward feature selection, incorporating 27 to 1 features 
in the model, using the training set obtained by splitting the original data set (a) by record and (b) by animal ID. The number of features is 
reported on the x-axis, and the model accuracy from the 10-fold cross-validation repeated 100 times on the y-axis.
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A common approach during model building is to ran-
domly divide the data set into multiple subsets, so that 
training and fine-tuning of the model are performed 

using a k-fold cross-validation as resampling procedure 
(Ebrahimi et al., 2019; Anglart et al., 2020; Bobbo et 
al., 2021). In addition, data sets can also be split to 

Bobbo et al.: MACHINE LEARNING FOR MASTITIS PREDICTION

Figure 2. Metrics (accuracy and Cohen’s kappa value) for the comparison of methods predicting performance on the validation set, obtained 
by splitting the original data set (a) by record and (b) by animal ID. Prediction models were developed using 4 machine learning methods: 
Generalized Linear Model (glmnet), Support Vector Machines (svmRadial), Random Forest (rf), and Neural Network (nnet). Error bars repre-
sent 95% CI.
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Figure 3. Plot of the feature importance, scaled from 0 (least important) to 100 (most important), showing the ranking for the prediction of 
presence or absence of subclinical mastitis in the validation set, obtained by splitting the original data set (a) by record and (b) by animal ID. 
Evaluated features, using Support Vector Machine as the predictive method, are as follows: individual SCS and SCS of contemporary group (scs 
and scs_htd), differential SCC (DSCC), electrical conductivity (EC), individual milk production and milk production of contemporary group 
(milk and milk_HTD), parity, stage of lactation (DIM), milk composition traits (urea, pH, lactose, fat, casein, protein), BHB, year and month 
of sampling (yms), year and month of calving (ymc), rennet coagulation time (r), curd firmness 30 min after rennet addition (a30), and climatic 
data (temperature, relative humidity, UV index, irradiance, pressure, precipitation, wind speed, and wind direction).
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use part of the data for training with cross-validation 
and to hold out a portion of the data as external test 
set (e.g., 80/20%, 90/10%, 50/50%). The test set is 
important in order to obtain non-inflated estimates due 
to possible overfitting; indeed, model predictive per-
formance on test sets is generally lower. In such cases, 
data are typically divided by randomly selecting a cer-
tain proportion of records (Anglart et al., 2020; Bobbo 
et al., 2021) or of farms (Hyde et al., 2020), or numbers 
of milkings (Ankinakatte et al., 2013). Nevertheless, 
records in time series data sets or in data sets with 
repeated measures of the same individual (e.g., animals 
with several TD) might be highly correlated; therefore 
special attention should be paid to choosing the most 
appropriate data splitting approach. In such cases, data 
should be split based on ID rather than by records, to 
avoid possible overfitting due to data leakage. Indeed, 
the aim of predictive modeling is to develop a model 
that makes accurate predictions on novel unseen data. 
Splitting by record data sets with repeated measures, 
data leakage might occur; that is, the data you are 
using for model training might contain the information 
you are trying to predict. In our study, when splitting 
by record, we observed slightly better predictive per-
formances on the validation set and lower performance 
on the test set. This can be the result of overfitting, 
although, in our study, to minimize data leakage, recur-
sive feature elimination as well as data standardization 
were performed within cross-validation. When the data 
were split by animal ID (both in the creation of the 
training and test sets and during cross-validation), an 
improvement in models’ predictive performance on the 
test set was observed, suggesting this as the most ap-
propriate data splitting approach according to our data 
structure.

Comparisons of the predicting performance of the 4 
ML algorithms on both validation and test sets were 
based on several metrics, including F1score, AUC, and 

MCC, which are independent from the outcome rate. 
Results of the feature importance based on the most 
accurate method (SVM) on the validation set revealed 
that, independently from how the data set was split, 
SCS recorded at the previous TD was, as expected, the 
most important feature for predicting the presence or 
absence of subclinical mastitis at the subsequent TD, 
followed by the other 2 SCC-related traits (SCS_HTD 
and DSCC). In addition to individual SCS, average 
SCS of contemporary groups was included to repre-
sent herd hygiene conditions. Our results confirmed 
the important information provided by DSCC, a novel 
indicator of udder health status, to be used in combina-
tion with SCC to better screen for udder health status, 
as previously observed for dairy cattle (Bobbo et al., 
2020). Indeed, DSCC and SCS are different traits, as 
their phenotypic and genetic correlations differ from 
unity (i.e., 0.66), as reported by (Bobbo et al., 2019). 
Other important variables were milk_HTD, a proxy 
for herd management level, individual milk production, 
and EC. The negative correlation between buffaloes’ 
milk production and SCS has already been reported in 
the literature (Tripaldi et al., 2010; Costa et al., 2020). 
In addition, previous ML studies on dairy cows (Ebra-
himie et al., 2018; Ebrahimi et al., 2019) have found EC 
to be one of the most important features in the predic-
tion of subclinical mastitis based on automatic milking 
parameters. Indeed, udder infection alters the volume 
of milk produced, as well as its ionic composition due 
to leakage of components through the blood-milk bar-
rier. Parity order and stage of lactation also showed 
relevant contributions to the best model; indeed, they 
are well known factors affecting SCC variation (Cerón-
Muñoz et al., 2002). Among climatic data, the most 
informative were temperature and relative humidity. 
In livestock, heat stress is known to negatively affect 
both milk production and animal health (Bernabucci 
et al., 2010, 2014). The temperature-humidity index, 
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Table 1. Metrics for the comparison of methods predicting performance on test set, obtained by splitting the original data set by record and by 
animal ID: accuracy, 95% CI, sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), Cohen’s kappa 
value, F1 score, and Matthew’s correlation coefficient (MCC)1

Method Accuracy 95% CI Se Sp PPV NPV Kappa F1 score MCC

Splitting by record                
  GLM 0.752 0.720–0.782 0.624 0.838 0.723 0.767 0.473 0.670 0.476
  SVM 0.739 0.707–0.770 0.618 0.821 0.700 0.760 0.447 0.656 0.450
  RF 0.740 0.708–0.771 0.627 0.817 0.699 0.764 0.452 0.661 0.453
  NN 0.754 0.723–0.784 0.634 0.836 0.724 0.771 0.480 0.676 0.482
Splitting by animal ID                
  GLM 0.760 0.729–0.789 0.661 0.845 0.787 0.742 0.512 0.719 0.518
  SVM 0.749 0.717–0.778 0.651 0.834 0.772 0–734 0.489 0.706 0.495
  RF 0.759 0.728–0.788 0.645 0.857 0.796 0.736 0.509 0.713 0.517
  NN 0.762 0.731–0.791 0.677 0.836 0.781 0.749 0.518 0.726 0.522
1Prediction models were developed using 4 machine learning methods: Generalized Linear Model (GLM), Support Vector Machines (SVM), 
Random Forest (RF), and Neural Network (NN).
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Figure 4. Receiver operating characteristic (ROC) curves of 4 machine learning methods [Generalized Linear Model (GLM), Support Vector 
Machines (SVM), Random Forest (RF), and Neural Network (NN)] run for predicting the presence or absence of subclinical mastitis on the 
test set, obtained splitting the original data set (a) by record and (b) by animal ID. In each plot, area under the curve (AUC) and 95% CI are 
reported.
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which represents the combined effect of air tempera-
ture and humidity, is a parameter commonly used to 
evaluate the degree and the consequences of heat stress 
(Bernabucci et al., 2014; Matera et al., 2022). A recent 
study conducted on Italian Mediterranean buffaloes 
(Matera et al., 2022) has confirmed the negative ef-
fect of temperature-humidity index variation on udder 
health, defined by SCC. In the present study, traits 
related to solar radiation (UV_index and irradiance) 
also showed moderate relevance. Climate variables such 
as temperature, relative humidity, and solar radiation 
have previously been found to slightly affect milk pro-
duction and composition (Sharma et al., 1988). In ad-
dition, the inclusion of meteorological parameters (e.g., 
precipitation, sunshine hours, and soil temperature) 
in milk production forecast models resulted in a slight 
improvement in the prediction accuracy, with sunshine 
hours having the largest effect (Zhang et al., 2020).

CONCLUSIONS

The findings of our study confirmed ML methods 
to be a promising tool to improve prevention and sur-
veillance of subclinical mastitis, exploiting the large 
amount of data currently available. Given consumers’ 
growing concerns about food safety, quality, and an-
tibiotic usage, further studies are needed to advance 
mastitis detection, management, and selection. Indeed, 
given the high economic value of Protected Designation 
of Origin (PDO) Mozzarella di Bufala cheese, special 
attention should be paid to the health and well-being of 
Italian Mediterranean buffaloes and their milk quality. 
We are confident that our research will serve as a basis 
for practical implementation of these methodologies in 
dairy management systems, as well as in the applica-
tion of complex phenotypes in genetic and genomic 
evaluations.
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