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Abstract

CANDECOMP/PARAFAC aims to identify the true components underlying data with a
trilinear configuration. The search for a unique solution is not always an easy task, as de-
generacies may occur. The presence of outlier contamination further complicates the matter
by requiring the implementation of robust procedures. The most used robust approach R-
ALS is based on the iterative repetition of the standard alternating least squares algorithm,
which is known to be slow and vulnerable to over-factoring, collinearity, and bad initial
values. Here the faster and stable robust alternative R-INT1, based on the SWATLD-ALS
integrated scheme INT-1, is implemented. Its performance is tested against ALS, R-ALS,
and R-INT?2 (built on INT-2, an ATLD-ALS procedure already proposed in the literature).
Performance is assessed in a simulation study with varied levels of outlier contamination.
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1. Introduction

Three-way data sets collect observations on a set of variables measured over several occasions (locations,
times, conditions) and are represented as three-dimensional arrays rather than data matrices, as it is
usual in the multivariate data analysis. Different techniques exist to analyze such three-way data but
CANDECOMP/PARAFAC (CP), which can be seen as a generalization of principal component analysis
(PCA) to higher-order tensors is one of the most popular. The idea of CP is to find a given number of
components that jointly represent the data well.

The usual way of parameter estimation in CP is an alternating least squares (ALS) procedure which
yields least-squares solutions and provides consistent outcomes. It is well-known that algorithms which
rely on least squares easily break down in the presence of outliers. This is well recognized for PCA
and a number of robust alternatives were proposed in the literature. In the multivariate case where two-
way data are analyzed, the outliers are assumed to be rows (observations, objects, subjects, etc.) in the
data set which lie significantly far from the other observations. Similarly, in the three-way case, we
can assume that outliers are matrices (slices) that have a profile strongly deviating from the rest. (3)
have demonstrated the influence of outlying samples on the classical ALS. They split the observations
into four groups: regular observations, good leverage points, bad leverage points and residual outliers
constructing a plot, the outlier map, similar to the one in robust regression or in robust PCA on two-way
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data. To cope with the presence of outlying samples they have also proposed a robust version of the ALS
algorithm, R-ALS, which relies on the robust PCA method ROBPCA (5).

Apart from its proneness to outlying samples, the standard ALS-PARAFAC procedure suffers several
major flaws which might be particularly problematic for large-scale problems: slow convergence and
sensitiveness to degeneracy conditions such as over-factoring, collinearity, bad initialization and local
minima. A lot of research was invested to find a solution to these problems and a number of improved
versions of ALS were created. Several alternatives to ALS were developed, like the alternating trilinear
decomposition (ATLD) (10), self-weighted trilinear decomposition (SWATLD) (2) and their properties
and comparative performances have been studied in several works, e.g. (9). These alternative procedures
resist temporary degeneracies and over-factoring problems while ensuring a much speedier estimation
process than ALS, thanks to a steeper convergence curve. These advantages are obtained at the cost of
losing the stability of results and obtaining non-least-squares solutions. As a possible fix, an algorithm
integration strategy was introduced in (6; 7) to combine the benefits of faster procedures with ALS
stability.

The robust version of ALS proposed by (3) also shares these issues. In this approach, standard
ALS is iteratively executed; thus, the effect of these disadvantages will be multiplied causing the whole
procedure to become very slow, especially in the case of large data sets. The ATLD-based procedure
INT2 (7) was extended to a robust version R-INT2 by (8) and its superior performance was demonstrated
in an extensive simulation study and experimental data. Following these lines, in this paper we propose
to robustify also the INT1 procedure based on SWATLD and call it R-INT1. We study its performance
in the case of data without contamination or with increasing levels of contamination and compare to the
other two known robust procedures.

2. The CP model, the ALS algorithm and its integrated versions

The CP model (1; 4) decomposes the 3-way data array X (/ x J x K') with a generic element x;;;, into
the three loading matrices A (I x R), B (J x R), C (K x R) with R components (using the same
number for each mode). The CP model can be written formally as

X,=A(C®B) +E,4, ¢))

where X 4 and E 4 are the original array and the error array unfolded with respect to mode A and the
symbol ® represents the Kronecker product between two matrices. To estimate the optimal component
matrices the residual sum of squares

I J K I I
|1 Eall* = ZZZ gk — &ik)” = Y |J@i — &> =) RD? 2
o1 1 ke i=1 i=1

7j=1k=1

is minimized. The residual distance (RD) for observation 7 is thus given by
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and the estimation is equivalent to the minimization of the sum of the squared distances. With ALS the
component matrices are estimated one at a time, keeping the estimates of the other component matrices
fixed, i.e. we start with initial estimates of B and C and find an estimate for A conditional on B and
C by minimizing the objective function. Estimates for B and C are found analogously. The iteration
continues until the relative change in the model fit is smaller than a predefined constant.

As already mentioned in the introduction, while ALS is still the algorithm of choice because of its
many desirable characteristics, its use can be problematic especially in cases of large data sets due to
slow convergence and sensitiveness to degeneracy conditions such as over-factoring, collinearity, bad
initialization and local minima. The alternating trilinear decomposition (ATLD) proposed by (10) seems
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to be the most efficient method among the proposed alternatives to ALS and it is claimed to be less
sensitive than ALS to over-factoring. It is based on the use of three loss functions with different response
surfaces. SWATLD (2) does not attempt to find the minimum of (2), instead, it alternates between
minimizing three different (non-least squares) loss functions, one per each of the loading matrices. It
is important that the three matrices A, B and C must have full column rank in order for the algorithm
to resolve uniquely the components of interest. SWATLD seems to be the best algorithm in terms of
recovery capability (factor congruence) (9).

However, these advantages of ATLD and SWATLD are obtained at the cost of unstable results and
non-least squares solutions. To cope with these disadvantages a recent research development demon-
strated that an integrated approach, combining algorithms with complementary points of strength, could
provide a suitable solution. Two integrated algorithms INT-1 (6) and INT-2 (7) were proposed which
combine SWATLD and ATLD steps with ALS, respectively, to ensure faster convergence, stability, and
insensitivity to wrong model specification. For both integrated procedures the authors demonstrated the
gain in performance in terms of computational efficiency and resistance to different undesirable effects.
However, it is not known which of them is to be preferred in different situations since no comparison
between them was conducted.

3. The robust alternatives to ALS

The idea of a robust version of CP proposed by (3) is to identify enough “good” observations and to per-
form the classical ALS on these observations. This is repeated until no significant change is observed.
Finally, a reweighting step is carried out to improve the efficiency of the estimators. To identify the
“good” observations a robust version of PCA, e.g. ROBPCA (5), is used on the unfolded array. We will
call this procedure R-ALS in the rest of the paper. It is obvious that the robust procedure will be much
more time-consuming than the classical one, repeating many times the ALS optimization. Therefore,
any improvement of the parameter estimation procedure will contribute to the improvement of the per-
formance of the complete robust procedure. R-ALS is entirely based on ALS and thus suffers the slow
convergence and other disadvantages of this algorithm. (8) proposed to replace ALS by INT2 thus ob-
taining a new robust estimation procedure which they called R-INT2. As in R-ALS, it starts with robust
principal components to identify any outlying points and then iterates using the INT2 algorithm until
no significant change is observed. After convergence, a reweighting step with INT2 is conducted which
produces the final solution.

Since the integrated procedure (6) based on SWATLD was demonstrated to have also very good
performance as an alternative to ALS, we suggest extending it to a robust version in the same way as it
was done for R-INT2 in (8). To verify that it can cope with outlying samples in the data and outperform
R-ALS we conduct a simulation survey which is presented in Section 4. The purpose of this simulation
study is also to find out which of the two integrated robust procedures performs better.

4. Simulation study

We will study the performance of the newly proposed procedure R-INT1 for robust estimation of trilinear
CP models and will compare it to the classical ALS and the other two known robust procedures R-ALS
and R-INT2 on a detailed simulation platform. Similarly as with the other integrated procedures the
performance of the two-stage procedure R-INT1 will depend significantly on the transition parameters
for switching from the initialization stage to the refinement stage. For this reason, the preliminary part
of this simulation study is dedicated to the empirical estimation of these parameters, but due to the
space limitation we will only state the final result - the values 10~2 and 103 seem to be most favorable
and 10~2 will be used in all further computations. Successively we will compare the classical CP,
the robust version based on ALS as proposed by Engelen and Hubert (3) R-ALS, the integrated robust
version proposed by Todorov et al (8) R-INT2 and the newly proposed integrated procedure based on
SWATLD R-INT1. First of all, we want to verify that R-INT1 and R-INT2 work well on data sets with
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and without contamination by identifying the outliers at least as well as R-ALS, retrieving solutions with
good statistical quality. At the same time, we want to verify that the convergence of these two procedures
is improved significantly and thus the computational time is reduced. And finally, we want to compare
the computational performance of R-INT1 and R-INT?2 in different scenarios.

These aspects will be illustrated on three-way data generated as in (7), (9), (3) and (8). The three-way
arrays have I = 50 observations, J = 100 variables and K = 10 occasions and the number of factors
is R = 3 or R = 5. For each data set random matrices A € R, B ¢ R/*F and C € RE*® are
generated from a uniform distribution. With the so defined loadings matrices a three-way data set can
be constructed according to Equation 1 with different levels of homoscedastic (HO) and heteroscedastic
(HE) noise Ef O and Ef B respectively defined as in (9).

Different types of outliers were then added following the scheme proposed by (3) and used by (8).
First of all, we want to study the behavior of the four procedures on clean data and thus, the first setup is
created by not including any outliers. In the other configurations 10% and 20% of the observations are
modified to contain bad leverage points. For each setup, in order to account for minor statistical fluctu-
ations 100 replicates were conducted. For evaluating efficiency performance CPU time, iterations, and
incidence of temporary degeneracies (swamps) are considered. For accuracy, the computed diagnostics
include the value of the objective function (FIT), the occurrence of fault recoveries (FR), the mean square
error (MSE), and the angle between the estimated and original subspaces of the second and third mode.
See (9) and (8) for a full description.

Overall, at 20% contamination with bad leverage points, the difference between R-ALS FIT and R-
INT1 FIT is higher than le~* in less than 1% of the cases. In more than half of the cases (55.9%) the
fit of R-INT1 is better than that of R-ALS which demonstrates that R-INT1 is capable of identifying the
best low rank approximation as well as R-ALS. The results for R-INT2 are similar, as shown in (8).

It is important to verify that the known instabilities of ATLD and SWATLD are not passed to the
integrated procedures. We can check this by looking at the percentage of fault recoveries reported for
all three algorithms for different levels of contamination and different ranks in Table 1. For R = 3,
both in the correct rank estimation case and when over-factoring, the percentage of fault recoveries for
all robust methods is not higher than 1%. Only for the classical estimates on data with 10% and 20%
contamination the percentage increases drastically, coming close to 100%. For R = 5 all percentages are
slightly higher (not shown here).

F=R=3 F=R+1=4
C RALS RINT1 RINT2 C RALS RINT1 RINT2
0% 0.0 0.0 0.0 0.1 12 1.1 0.0 0.0
FR  10% 989 0.0 0.0 0.1 00 1.0 0.0 0.0
20%  99.4 0.0 0.2 0.1 00 0.9 0.0 0.0
0% 0 0 0 0o 22 18 0 0
SWAMPS  10% 0 0 0 0 1 25 0 1
20% 0 0 0 0 2 15 0 0

Table 1: Total percentages of FR and number of swamps (out of 4500 repetitions) by rank and
number of factors for different levels of contamination with bad leverage points.

The next measure of accuracy to look at is the MSE. The results for the four estimators and three
types of data (no outliers, 10% bad leverage points and 20% bad leverage points) are presented in the box
plots in the left panel of Figure 1. The right panel of the same figure presents the angles of the B-loadings
for the four methods and the three contamination types.
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Figure 1: MSE values and angle of B-loadings of classical CP (C), robust CP with ALS (R-
ALS), robust CP with INT1 (R-INT1) and robust CP with INT2 (R-INT2) on data sets without
contamination, and with 10% and 20% bad leverage points respectively.
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Figure 2: CPU time in seconds, robust CP with ALS (R-ALS), robust CP with INT1 (R-INT1)
and robust CP with INT2 (R-INT2) on data sets 20% bad leverage points for different number
of factors.

All four estimators perform equally well on clean data both in terms of MSE and maxsub, however,
when outliers are added to the data (10% and 20%) the classical CP is influenced - the MSE increases
and the quality of the fit of the loadings decreases. There is non much difference in the performance of
the three robust methods in terms of MSE and maxsub. However, if we look at Fig. 2 which presents their
performance in terms of computational time the gain in performance in the two integrated procedures is
obvious. The integrated procedures R-INT1 and R-INT2 perform better than R-ALS both in terms of
median time and variance, with R-INT2 being slightly better in the case of correct factor decomposition
(F = R = 3, left panel). In over-factoring (F' = R+ 1 =4and F' = R+ 1 = 6, middle and right
panels) the roles change and R-INT1 becomes better.

The computational efficiency can also be judged by counting the number of swamps, i.e. the tem-
porary degeneracies which continue for more than 10 iterations and thus slowdown the procedure. This
problem was not significantly manifested in our simulation. As seen in the lower part of Table 1, no
swamp cases are observed when estimating the correct rank and when IR = 3, for none of the estimators
and for none of the contamination levels. Only several cases were observed when over-factoring, for the
classical ALS and the robust R-ALS, however the number of these cases is insignificant when compared
to the total number of 4500 repetitions.
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5. Summary and conclusions

The simulation study shows that R-INT1 is a viable alternative to R-ALS for dealing with outliers in a
three-way setting. Throughout scenarios, it is stable in converging to the correct parameters and does not
appear to model excessive noise, reaching least squares solutions. The integrated strategy ensures higher
efficiency and also proves useful in terms of accuracy when over-factoring. As far as the differences
between R-INT1 and R-INT2 go, they are both solid procedures. R-INT2 is slightly more efficient in
terms of median values, however, in presence of over-factoring, R-INT1 is the top performer. A thorough
presentation of the resulting diagnostics, as well as an analysis carried out on an application will be
provided to further strengthen the comparison and complete this work. Future work should also study
the possibilities for combination with other computational algorithms. The behavior of the algorithms if
collinearity is present will be of great interest as well as their extension with additional constraints.
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