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Abstract: This paper presents an innovative approach leveraging Neuronal Manifold Analysis of
EEG data to identify specific time intervals for feature extraction, effectively capturing both class-
specific and subject-specific characteristics. Different pipelines were constructed and employed to
extract distinctive features within these intervals, specifically for motor imagery (MI) tasks. The
methodology was validated using the Graz Competition IV datasets 2A (four-class) and 2B (two-class)
motor imagery classification, demonstrating an improvement in classification accuracy that surpasses
state-of-the-art algorithms designed for MI tasks. A multi-dimensional feature space, constructed
using NMA, was built to detect intervals that capture these critical characteristics, which led to signif-
icantly enhanced classification accuracy, especially for individuals with initially poor classification
performance. These findings highlight the robustness of this method and its potential to improve
classification performance in EEG-based MI-BCI systems.

Keywords: neural manifold analysis; motor imagery BCI; EEG-based BCI; transfer learning

1. Introduction

The field of Brain–Computer Interfaces (BCIs) has witnessed significant advancements
over the past decades, forecasting exceptional achievements in bioengineering applica-
tions [1–3]. BCIs rely on the measurement of neural activity as a method to determine the
user’s intentions. Suitable command sequences can be produced using BCI applications,
including those based on non-invasive methods such as functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), and electroencephalography (EEG).
Among these, the most widely used BCI systems leverage EEG signals due to their simplic-
ity, affordability, and ability to support effective real-time implementations thanks to their
intrinsic high temporal resolution [4,5]. BCIs are particularly effective in motor imagery
(MI) tasks, where users imagine performing motor movements to control external devices.
Typically, in an MI-based BCI, the user is required to imagine the motor action related to
their body parts (e.g., left hand, right hand, feet, or tongue). It is widely accepted that the
mental imagination of movements involves brain regions similar to those engaged in the
actual execution of these movements [6,7]. Differently from the physical execution, in MI
the movement is blocked at a corticospinal level. However, functional brain imaging studies
demonstrated that patterns of brain activity during motor imagery are similar to those ob-
served during actual movement execution. Specifically, an activation is observed in various
structures involved in the early stages of motor control, such as motor programming and plan-
ning. For example, imagining right-hand or left-hand movements activates the contralateral

Sensors 2024, 24, 6110. https://doi.org/10.3390/s24186110 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24186110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4565-2769
https://orcid.org/0000-0002-3804-1719
https://orcid.org/0009-0009-1220-0919
https://orcid.org/0000-0002-1791-6416
https://orcid.org/0000-0002-5391-168X
https://orcid.org/0000-0001-6813-8282
https://orcid.org/0000-0003-4248-5360
https://doi.org/10.3390/s24186110
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24186110?type=check_update&version=1


Sensors 2024, 24, 6110 2 of 22

hand area, the top-central for feet, and the parietofrontal for tongue MI [8–11]. This neural
activation can be readily detected through the EEG signals [12]. MI-BCI systems promi-
nently depend on sensorimotor rhythms (SMR), event-related potentials (ERPs), visually
evoked potentials (VEPs), and slow cortical potentials (SCPs). Among these, SMR-based
BCI systems offer significant freedom in real-time control and motor imagery activities,
such as movements of the tongue, hand, arm, and feet [13]. Decoding the recorded EEG
signals and mapping the corresponding MI to a command for an external device is the
primary challenge in EEG-based MI-BCI systems. The EEG-based MI-BCIs are crucial
for designing systems that enable specific activities such as controlling and governing
wheelchairs [14], home appliances, speech synthesizers, robotic prostheses [15], post-stroke
rehabilitation [16,17], digital computers, and competitive or collaborative games [18–21].

An EEG-based MI-BCI system encompasses a pipeline involving various steps [18]:
(a) Signal acquisition: EEG signals are collected from the scalp using specialized hardware
while the user performs MI tasks. (b) Signal processing: the goal is to increase the signal-
to-noise ratio of the weak EEG signals, which are often contaminated by artifacts and
interferences such as muscle movements, eye blinks, heartbeats, and powerline noise.
(c) Feature extraction and selection: this involves extracting relevant properties in the time
domain, frequency domain, or time–frequency domain and selecting those that are most
successful in representing the task. (d) Classification: the extracted features are used to
decode the EEG signals. (e) Control: proper commands are then sent to an external device,
such as a wheelchair, based on the decoded EEG signals.

In this work, the focus is on the crucial step in the BCI pipeline: feature extraction. Ex-
tracted suitable features correspond to vital information encapsulated in the signal. Various
techniques can be employed to extract the most informative parts of the input signals, in-
cluding fast Fourier transform (FFT) [22], autoregressive model (AR) [23], Common Spatial
Pattern (CSP) [24], and Wavelet Transform (WT) [25]. This step corresponds to a Neural Man-
ifold Analysis (NMA) [26], where EEG signals are denoised and reorganized, reducing the
high-dimensional input signal space to a more manageable lower-dimensional space [27].
The classification process then converts the features encoded in the manifold generated
by the feature extractor into commands. The more readable this manifold is, the easier
the classification becomes. BCI classification techniques translate these discriminatory
features into decoded motor activities such as tongue movement, left–right movement,
and foot movement. Several classification methods like artificial neural networks (ANN),
linear discriminant analysis (LDA), k-nearest neighbors (k-NN), support vector machines
(SVM), Gaussian Naive Bayes (GNB), and deep learning (DL) have been used for MI-BCI
systems [28]. A major challenge in BCIs is that different users have varying neuronal
responses to the same stimulus, and even the same user can exhibit different neuronal
responses to the same stimulus at different times or conditions. Additionally, calibrating the
BCI system requires acquiring a large number of subject-specific labeled training examples
for each new subject, which is both time-consuming and expensive.

To address these issues, different approaches involving Transfer Learning have been
explored [29–32]. Those studies use data extracted from one or more source domains to
help construct the representation manifold in the target domain, effectively addressing
these problems. In [33], the authors employ DL models for feature extraction in EEG
signals, achieving notable improvements in classification performance through the use of
convolutional neural networks. In [34], a DL approach is used to select samples in the source
neuronal domain that are closest to the data in the target manifold domain, assigning them
high correlation weights. In [35], the authors adapt a DL approach to utilize pre-trained
features from different datasets. Additionally, in [36], a method to extract cross-channel
specific-mutual features is proposed, further enhancing cross-subject generalization.

Nevertheless, several recent studies have explored various methods to improve EEG-
based BCI systems, focusing on feature extraction and classification while highlighting
the importance of addressing cross-subject variability [4,37]. For instance, in [38], the
authors proposed a method for regularizing CSP features to enhance the robustness of BCI
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systems against subject-specific variations. This is crucial since EEG signals often exhibit
large inter-subject variability, making consistent classification challenging. Importantly,
studies utilized NMA techniques, such as Principal Component Analysis (PCA), to detect
spatio-temporal features in EEG inputs, which are useful for increasing task classification
accuracy [39,40]. Additionally, works like [41] focused on time–frequency feature extraction
for MI tasks, emphasizing the importance of selecting optimal time intervals to boost
classification accuracy. Furthermore, ref. [42] introduced a subject-independent approach
for MI classification, demonstrating the potential of using data from multiple subjects to
improve overall classification accuracy. CSP is a widely used technique for spatial filtering
in EEG signals, aiming to maximize the variance difference between two classes. Despite
its success, CSP’s reliance on data from the same subject and specific time intervals often
limits its generalizability across different subjects or sessions.

Consequently, feature extraction in motor imagery has evolved from single-domain
(time, frequency, or spatial) approaches to multi-domain fusion, especially combining
spatial and frequency domain information. Thus, methods for NMA, are employed to
determine patterns of covariance in participants’ responses, extracting separate features for
each class and subject.

In this study, it is proposed a novel approach leveraging NMA to identify optimal
time intervals for feature extraction, which are critical for improving classification perfor-
mance [37]. NMA involves analyzing the EEG signal in a multi-dimensional feature space
to detect intervals that capture class-specific and subject-specific characteristics. By apply-
ing state-of-the-art feature extraction algorithms within these identified ranges, the goal
is to improve the discriminative power of the extracted features. Furthermore, this work
addresses the challenge of subjects with poor classification performance by cross-validating
the extracted features across different subjects. By incorporating features from subjects
with high classification accuracy, significant improvements are achieved for subjects that
initially exhibit poor performance. Traditionally, NMA is used to derive a reduced man-
ifold, enabling more effective feature extraction and, consequently, better classification.
In the present paper, however, an innovative use of NMA is proposed: using a separability
measure on the neural manifolds, it is possible to identify specific temporal segments of the
EEG signal, where, based on manifold analysis, we can extract more relevant features. This
method allows for the construction of multiple manifolds over specific temporal segments,
which can then be combined into a more complex overall manifold. The resulting manifold
demonstrates enhanced discriminability compared with traditional approaches, making
it more effective for classification tasks. To demonstrate the effectiveness of the proposed
approach, particularly suited for the classification of oscillatory components of SMR during
MI tasks, results from two datasets are presented [43–45]: Graz Dataset 2b, which highlights
the robustness of the NMA pipelines in binary classification, and Graz Dataset 2a, a key
benchmark for motor imagery, including a more complex four-class classification problem.
This work develops NMA processing pipelines by building on the insights gained from
the winners of BCI Competition IV [46,47], while also integrating recent advances in deep
learning methods [33]. The performance results in both two-class and four-class motor
imagery tasks in the selected datasets highlight the significant potential of NMA to improve
cross-class and cross-subject classification.

The present paper is organized as follows: Section 2, Materials and Methods, provides
a detailed explanation of the MNA pipelines used in the experiments. This is followed by
the results section (Section 3), which is divided into two parts: Section 3.1 presents results
from Graz Dataset 2b, while Section 3.2 focuses on Graz Dataset 2a. Finally, Section 4
summarizes the findings achieved with the proposed method and discusses potential
avenues for future research and development.

2. Materials and Methods

Our starting point is the FBCSP Algorithm, which was the winner of the Graz BCI
Competition [44,45] and has since become a gold standard in the BCI community. As previ-
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ously mentioned, the core components of an EEG BCI pipeline include several critical steps.
In this paper, the following FBCSP pipeline is employed:

• Signal processing: Filter Bank.
• Feature extraction: common spatial pattern algorithm.
• Feature selection: mutual information-based best individual feature.
• Classification: quadratic discriminant analysis classifier.

In Figure 1, a depiction of the process flow of a BCI system, including its key modules,
is presented. Additionally, in this paper, the standard pipeline was enhanced with further
NMA modules, leading to notable improvements in classification accuracy. In the following
subsections, the modules of the system used to test the methodology will be described.

SUBJECTj

EEG DATA 

ACQUISITION

PROCESSING SELECTION CLASSIFICATIONEXTRACTION

CONTROL

MANIFOLD 

ANALYSIS

EXTRACTED 

MANIFOLD

SUBJECTi

EEG DATA 

ACQUISITION

MANIFOLD 

ANALYSIS

S

S

Figure 1. Depiction of a BCI system, including modules for Signal Acquisition, Feature Extraction,
Feature Selection, and Classification. The system’s ability to discriminate between classes enables
it to send commands to a control system, such as a wheelchair, prosthetic hand, or other BCI-
controlled devices. In the presented approach, this process is augmented with NMA performed on
the EEG signal to design better features that enhance the classification system. Furthermore, this
information, especially for poorly performing subjects, can be improved by incorporating analysis
from other subjects.

2.1. Signal Processing: Filter Bank

After acquisition, the input EEG signal can be represented as a time series X ∈ RNch×T ,
where Nch is the number of channels and T is the number of time samples acquired.
The signal undergoes the first of a series of preprocessing steps. A filter bank comprising
multiple (B = 9) Chebyshev Type II band-pass filters is utilized, i.e., nine Chebyshev
Type II filters, each one designed for a specific band, as described in [45]. Each filter
has a 4 Hz-wide pass band, resulting in nine non-overlapping bands from 4 Hz to 40 Hz,
denoted as {(4b, 4b + 4)}B

b=1. The best bands are selected on a subject-by-subject basis
during feature selection. The attenuation in the stop band is set to −20 dB, and the filter
order is 4, achieving a sharp roll-off in the frequency response.

Thus, starting with an input signal X, the result of the filtering is an output χ ∈ RNch×T×B.
The chosen band-pass frequency ranges allow for a stable frequency response and coverage
of the 4–40 Hz range.

2.2. Feature Extraction: Common Spatial Pattern Algorithm

The CSP algorithm creates a reduced space to maximize the separability of labeled
samples. Typically, CSP approaches are applied when two classes are present, but multi-
class extensions are possible [48]. In this work, the one-versus-rest (OVR) approach is
adopted [45], which allows for discrimination among an arbitrary number K of classes. In
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the OVR–CSP method, selecting m CSP components enables the construction of projection
matrices Wb

k ∈ RNch×2m, one for each band b and for each class k, which can then be applied
to the filtered data χ. These projection matrices are derived from a sample set of labeled
data (training set) during the training phase. Consequently, each filter band and class has
an associated projection matrix Wb

k . In the transformed space, the first m CSP components
have maximum variance associated with class k and minimum variance for the remaining
classes, while the last m components have minimum variance for class k and maximum
variance for others; see [45,48] for details.

The N samples in the input set can be partitioned into K sets {Πk}K
k=1, where Πk

denotes the sample set of the k-th class containing Nk data points. For each band, selecting
the samples χn belonging to class k, the class covariance matrix can be computed as

Sk =
1

Nk
∑

χn∈Πk

χnχT
n (1)

and the corresponding composite covariance matrix is S = ∑k Sk. The complete projection
matrix Wk is obtained by solving the eigenvalue decomposition problem:

SkWk = SWkΛk (2)

where Λk is a diagonal matrix of the eigenvalues, sorted in ascending order, and Wk consists
of the corresponding eigenvectors. The final projection matrix Wb

k is obtained by selecting
the first m and the last m columns of Wk (in the reported tests m = 2, see [45]).

Each time series χn ∈ RNch×T for a single trial and band is projected into a new space
using Wb

k , resulting in V = (Wb
k )

Tχn ∈ R2m×T . From the projected trial V, a covariance
matrix A = VVT is computed. From this matrix A, a vector is obtained by selecting the
elements of the diagonal (the variances) a = A1

1, A2
2, . . . , A2m

2m. Renormalizing this vector
and tacking the logarithmic values ãk = log(a/∥a∥), a feature vector ak of 2m elements for
each class k is obtained. Concatenating features from each class results in an element of the
feature space:

z̃b = (ã1, . . . , ãk) (3)

with z̃b ∈ Rm×2K, i.e., a CSP feature with 2K values. Notice that these features are related
to one band b, thus the total features are z̃ = (z̃1, . . . , z̃B), organized in a space Z̃ ∈ R2mB×K.
These F = 2mB features are subjected to the feature selection phase, described in the
next subsection.

2.3. Feature Selection: Mutual Information-Based Best Individual Feature

The feature selection algorithm is crucial for identifying discriminative features in Z̃
for the subject’s task. The mutual information-based best individual feature (MIBIF) was
the winning algorithm of the BCI Competition [45,49]. Feature selection is executed on
the training set by selecting the most discriminative CSP features based on the mutual
information computed between each feature and the corresponding motor imagery classes.
A parameter is chosen to select a number of D features. The N samples in the manifold
can be partitioned into K sets {Πk}K

k=1, where Πk denotes the sample set of the k-th class
containing Nk data points.

A set of F = 2m · B · K features, z̃n = (z̃1
n, . . . , z̃F

n) ∈ RF, is associated with an
input trial xn belonging to a specific class k. For each j ∈ [1, . . . F], the mutual in-
formation M

(
z̃j

n; k
)

with each class label k can be computed. It is possible to define

M
(

z̃j
n; k

)
= H(k)− H

(
k|z̃j

n

)
, where H(k) = −∑K

k=1 P(k) log2 P(k) is the entropy over the

choice of k, and the conditional entropy H
(

k|z̃j
n

)
= −∑K

k=1 p
(

k|z̃j
n

)
log2 p

(
k|z̃j

n

)
.
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The conditional probability p
(

k|z̃j
n

)
of class k given the j-th feature z̃j

n is estimated.

Initially, the probability is constructed such that, given a class k, the j-th feature z̃j
n is found:

p
(

z̃j
n|k

)
=

1
Nk

∑
z̃k∈Πk

ϕ
(

z̃j
n − z̃j

k, h
)

(4)

where ϕ(x, h) = 1√
2π

e−(x2/2h2) is a Gaussian kernel with an attenuation parameter h.

Then the probability is computed using Bayes’ theorem, p
(

k|z̃j
n

)
∝ p

(
z̃j

n|k
)

p(k), where

p(k) = Nk/N. The resulting selected features z lie in the manifold Z ∈ RD. In the current
implementation, D = 4 · K. To keep a conservative approach, the twin CSP feature is
preserved if it is not included in this set. Thus, in the case where none of the twin CSP
features were already included in the set D could raise to D = 8 · K (see [49]).

2.4. Classification: Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA) is a widely used approach for classification [50].
Given a manifold Z ∈ RD with N data samples, each data sample zn ∈ Z belongs to one of
K classes and is represented by a one-hot encoded label vector dn such that if zn belongs
to the k-th class, then dn(k) = 1, where dn ∈ {0, 1}K. Once again, the N samples in
the manifold can be partitioned into K sets {Πk}K

k=1, where Πk denotes the sample set
of the k-th class containing Nk data points. QDA models each class with a multivariate
Gaussian distribution:

P(zn|dn(k) = 1) = Nk(zn; µk, Σk) (5)

where µk and Σk are the mean vector and covariance matrix for each class, respectively.
The decision boundaries in QDA are designed to enhance class separability by maximizing
the within-class scatter:

Dwithin =
K

∑
k=1

∑
zn∈Πk

(zn − µk)(zn − µk)
⊤ (6)

and the between-class scatter:

Dbetween =
K

∑
k=1

Nk(µk − µ)(µk − µ)⊤ (7)

where µ is the global mean of the N input samples. The quadratic discriminant functions
can be written as

log P(d(k) = 1|z) ∝ δk(z) = −1
2

log |Σk| −
1
2
(z − µk)

⊤Σ−1
k (z − µk) + log

(
Nk
N

)
(8)

from the relation P(d(k) = 1|z) ∝ P(z|d(k) = 1) · P(k). This allows computation of the
score of a new signal time series z in the manifold for belonging to the k-th class.

2.5. Neural Manifold Analysis

In the previous subsections, a procedure for each EEG trial x ∈ RT , considered a time
series, was formalized to extract points in a reduced manifold z ∈ Z in such a way that MI
classes can be handled with a multi-class classifier.

In this subsection, an approach utilizing a NMA on EEG data is presented (see Figure 1)
to reorganize time series by identifying specific time intervals, capturing class-specific and
subject-specific characteristics, and improving class discriminability. This method involves
analyzing the EEG signal in a multi-dimensional feature space to detect intervals that
best capture the relevant features corresponding to the different MI tasks. Additionally, a
cross-validation of the extracted time features across subjects is performed, significantly im-
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proving classification accuracy for challenging subjects. This underscores the reliability and
potential of the presented method for enhancing cross-subject classification in EEG-based
BCI systems.

Different approaches to analyzing acquired neuronal signals involve PCA, PPCA,
GPFA [51], demixed PCA [52], pi-Variational Auto Envoders (VAEs) [53], UMAP [54],
or frameworks like MIND [55], LFADS [56], and CEBRA [57,58]. NMA aims to uncover
the underlying structure of high-dimensional neuronal data by projecting it into a lower-
dimensional space where the data’s intrinsic properties are more apparent. Techniques such
as PCA [26,40] are applied to reduce the dimensionality of the EEG data while preserving
its most significant features. This step transforms the high-dimensional EEG signals into a
more manageable lower-dimensional space, capturing the essential patterns and structures
inherent in the data.

Movement planning functions in the brain are hypothesized to occur in a low-dimensional
subspace of movements called movement primitives, often corresponding to a reduced
neuronal manifold. These neuronal primitives enable the control of multiple degrees
of freedom of movement with fewer control signals [59,60]. To quantitatively compare
the differences between the encoded variables (such as direction and task), is considered
an H-dimensional neuronal manifold, formed by H sub-manifolds identified by a set
of elements {s1, . . . , sH}, resulting in a neural set of sub-manifolds or dictionary [60–62],
emerging from the space reduction with PCA. Each EEG trial, i.e., neural trajectories, can
be approximated as

x(t) =
H

∑
h=1

ch(t) · sh (9)

with t ∈ T, where ch(t) are the coefficients of the decomposition with respect to the sub-
manifold h. This can be viewed as an H-dimensional trajectory in RH . For each trajectory,
is computed a separability measure in each direction of RH in a supervised manner with
respect to the classes of the dataset. The N samples in the input set can be partitioned into
K sets {Πk}K

k=1, where Πk denotes the sample set of the k-th class containing Nk data points.
For each class, can be selected the coefficient ch

k(t) relative to the trials of the corresponding
class x ∈ Πk.

Given these trajectories in each sub-manifold, a separability measure reflecting the
probability of the trajectories being separated is computed, and it is used as a probability of
separation among classes. For simplicity, a one-way ANOVA is performed at each time step
among the values ck(t), obtaining a p-value that measures the separability of the classes
over time. The more this p-value approaches zero, the more separable the classes are.
Additionally, using a post hoc Tukey test [63], the separability measure pij between two
distinct classes can also be obtained. By studying the trend of these measures, the minimum
values where the classes are most separated can be identified. Corresponding to these
values, the time s of maximum separability among classes (arg mint∈T p(t)) and the time
sij of maximum separability between class i and class j (arg mint∈T and p(t)<0.05 pij(t)) can
be determined.

Whenever s and sij are computed, these times are used to organize new trials
x ∈ {x | [s − ∆t, s + ∆t]} or x ∈ {x | [sij − ∆t, sij + ∆t]}, respectively. On these new trials,
the FBCSP procedure is performed to obtain better features and improve classification [64].
Seven selected viable pipelines for trial pre-processing are presented, followed by an ex-
planation of how these pipelines are applied to generate new trials. In the results section,
the effectiveness of these pipelines in improving classification accuracy is demonstrated.

2.6. NMA Pipelines

In the FBCSP approach [44], the analysis interval corresponds to the entire period
considered informative for the task (e.g., in the presented experiments, T corresponds to
[0.5, 2.5], see Section 3). However, using CSP to extract a unique multi-dimensional point
over this entire interval may discard valuable information within the noise. Moreover,
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splitting intervals and aggregating them afterwards can be computationally expensive due
to the numerous potential choices, and arbitrary splits may introduce additional problems,
discarding critical information. In this framework, a guided procedure that extracts crucial
information, enhancing classification, is proposed.

The starting point is to use the entire interval of interest, as done in standard FBCSP.
Here, various pipelines are explored to form new trials x in different intervals, aiming to
improve the procedure. Once defined T as the original motor imagery interval, NMA is
performed over all T to identify interval of interests for the pipelines: Ts = [s − ∆T, s + ∆T],
where s is the time of maximum separability found with the NMA procedure;
Tsij = [sij − ∆T, sij + ∆T], where sij is the maximum time of separability between classes i
and j identified by the NMA procedure, where i and j are chosen looking at the confusion
matrix of a classification with FBCSP procedure; T0

sij
= [sij − ∆T, sij + ∆T], where sij is the

maximum time of separability between classes i and j identified by the NMA procedure,
where i and j are chosen looking at the confusion matrix of a classification with Pipeline 0
procedure (see below).

Thus, the following pipelines are realized in this study with NMA:

FBCSP: The entire EEG signal interval T, during which the motor imagery task is
performed, resulting in trials x ∈ RNch×T .

Pipeline 0: Reduced EEG trials x ∈ RNch×T0 centered on the maximum separability time
point among classes.

Pipeline 1: For each trial, two time series are obtained: one corresponding to standard
FBCSP x1 ∈ RNch×T and the other to Pipeline 0 x2 ∈ RNch×Ts . The fea-
tures obtained from each FBCSP procedure are concatenated and sent to
the classifier.

Pipeline 2: For each trial, two time series are obtained: x1 ∈ RNch×T and
x2 ∈ RNch×Ts . These signals are concatenated to form a new time series
x = [x1, x2] ∈ RNch×T+Ts , on which the feature extraction procedure is applied.

Pipeline 3: For each trial, two time series are obtained: one corresponding to standard

FBCSP x1 ∈ RNch×T and the other to x2 ∈ RNch×Tsij , corresponding to the max-
imum separability time point between classes i and j. The features obtained
from each FBCSP procedure are concatenated and sent to the classifier.

Pipeline 4: For each trial, two time series x1 ∈ RNch×T and x2 ∈ RNch×Tsij are obtained. These

signals are concatenated to form a new time series x = [x1, x2] ∈ RNch×T+Tsij ,
on which the feature extraction procedure is applied.

Pipeline 5: For each trial, two time series are obtained: one corresponding to stan-

dard FBCSP x1 ∈ RNch×T and the other to x2 ∈ RNch×T0
sij , corresponding

to the maximum separability time point between classes i and j. The fea-
tures obtained from each FBCSP procedure are concatenated and sent to
the classifier.

Pipeline 6: For each trial, two time series x1 ∈ RNch×T and x2 ∈ RNch×T0
sij are obtained. These

signals are concatenated to form a new time series x = [x1, x2] ∈ RNch×T+Tsij ,
on which the feature extraction procedure is applied.

Note that the intervals T, Ts, Tsij , and T0
sij

are all subject-specific. However, combining
this information from different subjects can further enhance the accuracy of a BCI system,
as demonstrated in Section 3.

3. Experimental Results

This section is divided into two subsections, each corresponding to a different dataset.
The first subsection covers tests on a two-class dataset, Graz Dataset 2b, while the second
subsection focuses on a four-class dataset, Graz Dataset 2a. Results from both datasets are
presented and thoroughly discussed.
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3.1. Tests on Graz Dataset 2b

This part provides a brief description of the Graz Dataset 2b, followed by a report and
discussion on the improvements introduced by NMA. Comparisons are made with the
approaches that demonstrated the best overall performance across all subjects among the
algorithms submitted to the BCI Competition IV [46,47].

3.1.1. Graz Dataset 2b Description

The Graz Dataset 2b [65] consists of EEG recordings from nine right-handed subjects
who participated in a two-class motor imagery study: left hand (class 1) and right hand
(class 2). EEG data were recorded using three bipolar electrodes placed at positions C3,
Cz, and C4. The experiment consisted of five sessions, with the first two dedicated to
training without feedback (screening sessions) and the last three incorporating real-time
feedback. During the screening sessions, subjects sat in front of a computer screen. After 3 s,
a cue in the form of an arrow (pointing left or right) indicating the motor imagery task
to perform appeared for 1.25 s. Subjects were instructed to continue the motor imagery
task (which involved imagining the movement of either their right or left hand) until the
fixation cross disappeared at 7 s. A short pause followed, with a black screen (see Figure 2a).
During the feedback session, at the beginning of each trial (second 0), the feedback (a gray
smiley) was centered on the screen. At second 2, a short warning beep (1 kHz, 70 ms)
was given. From second 3 to 7.5, a visual cue was presented, and depending on the cue,
the subjects were required to move the smiley towards the left or right side by imagining
the corresponding hand movement. During this feedback period, the smiley turned green
when moved in the correct direction and red if incorrect. The smiley’s distance from the
origin was adjusted based on the integrated classification output over the past two seconds.
Additionally, the classifier output influenced the curvature of the smiley’s mouth, making
it appear happy (corners of the mouth upward) or sad (corners downward). At second 7.5,
the screen went blank, followed by a random interval between 1.0 and 2.0 s. Subjects were
instructed to keep the smiley on the correct side for as long as possible, continuing the
MI task throughout the trial (see Figure 2b). The training data comprised the first two
sessions (screening) and the third session (with feedback), totaling 240 trials without visual
feedback and 160 trials with feedback (named BT). The evaluation data were drawn from
the remaining two sessions, consisting of 320 trials (named BE). The dataset is open and
freely available at www.bbci.de/competition/iv/ (accessed on 2 February 2024).
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Figure 2. Cont.
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Figure 2. Graz Dataset 2b MI timing scheme of the paradigm. (a) Screening session: Subjects sat in
front of a computer screen. After t = 3 s, a cue in the form of an arrow (left or right) appeared for
t = 1.25 s, indicating the MI task to perform. Subjects were instructed to continue the MI task until
the fixation cross disappeared at t = 7 s, followed by a short break with a black screen. (b) Feedback
session: At the beginning (t = 0 s), a gray smiley appeared on the screen. From t = 3 s to t = 7.5 s,
a visual cue was presented, and the subject started the MI hand movement. During this feedback
period, the smiley turned green when the motor imagery moved in the correct direction and red if
incorrect. After this period, the screen went blank, and a new trial began.

3.1.2. Performance Comparison on Graz Dataset 2b

This section illustrates how the MNA approach can be effectively applied in a binary
classification task with a limited number of channels (3), showing its potential for improving
performance. Table 1 presents the results of 10-fold cross-validation conducted on the BT
session, comparing NMA and FBCSP. Apart from Pipeline 0, every pipeline utilizing NMA
demonstrates notable improvements across different subjects, consistently achieving higher
accuracy compared with the FBCSP. The parameters learned during the BT session were
subsequently used to evaluate performance on the BE session, which served as a test
set. Table 2 presents the results obtained from the BE session on the Graz Dataset 2b,
with the trained models assessing generalization capabilities in a new session. A new
model is added for comparison, a ShallowConvNet (SCN) architecture [33]. SCN consists
of two convolutional layers (temporal, then spatial), a squaring nonlinearity ( f (x) = x2),
an average pooling layer, and log nonlinearity ( f (x) = log(x)). The SCN architecture was
specifically designed for oscillatory signal classification (by extracting features related to
log-band power). The accuracy results on the BE session show that the pipelines introduced
in this paper outperform both FBCSP and SCN in the majority of subjects, demonstrating
superior classification accuracy in distinguishing between left and right hand movements.
This dataset effectively serves as a testbed, illustrating that even with only two classes,
the NMA approach can successfully identify intervals that enhance feature separability.
The following section extends this approach to a multi-class scenario, where NMA is
used to isolate intervals that improve the separability of specific classes that are otherwise
poorly distinguishable.
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Table 1. Accuracy results from the BT sessions of the Graz 2b Dataset, performing 10-fold cross-
validation. Each pipeline involving NMA demonstrates improvements in different subjects. Apart
from Pipeline 0, each pipeline shows increased accuracy compared with the FBCSP. Values for
pipelines that outperform FBCSP are in bold. The best pipeline per subject is highlighted in green.

BT Session
Accuracy [%]

Subject [#] FBCSP Pipeline 0 Pipeline 1 Pipeline 2 Best Pipelines
1 71.6 65.8 74.0 73.0 74.0
2 55.2 61.5 58.0 60.3 60.3
3 61.3 53.3 58.8 62.0 62.0
4 93.4 89.3 92.4 94.0 94.0
5 83.3 81.4 84.0 83.8 84.0
6 72.2 68.0 73.3 74.3 74.3
7 73.1 73.8 78.0 76.5 78.0
8 65.1 68.2 68.4 66.8 68.4
9 70.9 69.0 72.8 71.0 72.8

mean ± SE 71.8 ± 3.8 70.0 ± 3.5 73.3 ± 3.7 73.5 ± 3.5 74.2 ± 3.5

Table 2. Results from the BE session of Graz Dataset 2b, using models trained on the BT session to
assess generalization capabilities in a new session, are presented. Accuracy results higher than those
of FBCSP and SCN are shown in bold. The best approach for each subject is highlighted in red.

BE Session
Accuracy [%]

Subject [#] FBCSP SCN Pipeline 0 Pipeline 1 Pipeline 2 Best Pipelines
1 66.3 76.2 64.1 65.0 65.3 65.3
2 56.1 51.0 55.4 58.6 57.9 58.6
3 51.3 53.4 55.3 59.1 58.8 59.1
4 94.4 95.7 95.9 96.6 95.9 96.6
5 87.2 87.2 83.1 88.8 86.3 88.8
6 76.3 77.6 65.6 77.2 78.1 78.1
7 75.6 76.3 86.3 78.8 74.7 86.3
8 86.3 75.6 86.3 89.4 87.5 89.4
9 82.8 86.3 77.5 82.8 80.6 82.8

mean ± SE 75.1 ± 4.9 76.8 ± 5.1 74.4 ± 4.9 77.3 ± 4.4 76.1 ± 4.4 78.3 ± 4.7

3.2. Tests on Graz Dataset 2a

This subsection provides a brief overview of the Graz Dataset 2a and compares
the performance improvements introduced by NMA in a multi-class problem to other
approaches, such as FBCSP and SCN [33], both of which have demonstrated effectiveness
on this dataset. Additionally, this section demonstrates how features extracted from one
subject can be effectively leveraged to improve classification performance in another subject.

3.2.1. Graz Dataset 2a Description

The Graz Dataset 2a [43] for the BCI Competition IV is specifically designed to sys-
tematically study EEG responses associated with various motor imagery tasks, thereby
facilitating the analysis of brain activity patterns. This dataset is particularly valuable due
to its complexity, involving four distinct motor imagery classes.

The dataset includes EEG data from nine subjects participating in a cue-based BCI
paradigm involving four motor imagery tasks: imagining the movement of the left hand
(class 1), right hand (class 2), both feet (class 3), and tongue (class 4). During the experiment,
subjects sat in front of a computer screen. Each subject completed two sessions, named A
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Training (AT) and A Evaluation (AE), recorded on different days. Each session includes
recordings from three EOG channels and twenty-two EEG channels. However, only the
EEG channels were considered. The registered session consists of six runs separated by
short breaks. Each run included 48 trials (12 for each class), resulting in a total of 288 trials
per session.

At the start of each trial (t = 0 s), a fixation cross appeared on the black screen,
accompanied by a short acoustic warning tone. After two seconds (t = 2 s), a cue in the
form of an arrow (left, right, down, or up) appeared for 1.25 s, indicating the motor imagery
task to perform. Subjects were instructed to continue the MI task until the fixation cross
disappeared at t = 6 s, followed by a short break with a black screen (see Figure 3 for a
detailed depiction of the task recording). The dataset is open and is freely available at
www.bbci.de/competition/iv/ (accessed on 02 February 2024).
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IMAGERY

Figure 3. Graz Dataset 2a MI Task: timing scheme of the paradigm: subjects sat in front of a computer
screen. After t = 2 s, a cue in the form of an arrow (left, right, down, or up) appeared for t = 1.25 s,
indicating the MI task to perform. Subjects were instructed to continue the motor imagery task until
the fixation cross disappeared at t = 6 s, followed by a short break with a black screen.

3.2.2. Enhancing Class Separation via NMA

NMA allows for the detection of features that are more discriminative concerning
motor imagery tasks. By applying the NMA procedure to each subject, subject-specific
intervals such as T, Ts, Tsij , and T0

sij
can be identified, enabling the refinement of features

for the classifier. A series of figures is provided to clearly illustrate the method. In Figure 4,
the results for a sample subject (Subject 9) are reported, depicting the computation of the
separability measure of the trajectories among all classes. For this subject, two directions
explain more than 95% of the variance. Panels a and b in Figure 4 display the separability
measure for all classes across two directions. Lower values indicate greater separation,
allowing us to identify optimal times (e.g., T and Ts; see Section 2) for centering the time
series analysis.

Similarly, Figure 5 illustrates the separability measure of the trajectories between pairs
of specific classes for the same subject. This is again shown for two directions, where lower
values signify greater separation, enabling the identification of times (e.g., Tsij , T0

sij
, see

Section 2) for focusing the time series analysis.
From the classification phase, confusion matrices for the four classes can be constructed

for each subject using both FBCSP and Pipeline 0. Figure 6 shows the confusion matrix
obtained with FBCSP for a sample Subject 9. These confusion matrices are utilized to
detect the intervals Tsij and To

sij
, respectively, based on the minimum separability measure

between two classes detected by NMA.

www.bbci.de/competition/iv/
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Figure 4. Results for Subject 9 showing the computation of the separability measure of the manifold
trajectories among all classes. We present the probability pSep(t) of trajectory separation under the
null hypothesis of no effect among classes. Above each plot, the percentage of explained variance
(EV) is reported for each manifold direction, with two manifold directions accounting together for
over 95% of the variance. A one-way ANOVA [63] was performed at each time step among the
values ck(t), yielding a p-value that quantifies the separability of the classes over time. The closer this
p-value is to zero, the more separable the classes are. Based on these values, the time s of maximum
separability among classes (arg mint∈T pSep(t)) can be identified.
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Figure 5. Results for Subject 9, showing the computation of the separability measure of the manifold
trajectories one class versus the other, following the one-way ANOVA test (see Figure 4). A post
hoc Tukey test was used to obtain the separability measure pSep

ij (t) between two distinct classes.
By analyzing the trend of these measures, the minimum values where the classes are most separated
can be identified. Based on these values, the time sij of maximum separability between class i and

class j (arg mint∈T and pSep(t)<0.05 pSep
ij (t)) can be determined.
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Figure 6. Confusion Matrix Aij obtained with FBCSP for a sample Subject 9 for the four classes:
(1) left hand, (2) right hand, (3) feet, and (4) tongue. Each row represents the true instances in
class i, while each column represents the instances in the predicted class j. Thus, the diagonal
elements Aii represent correctly predicted instances, while the off-diagonal elements correspond to
misclassifications. In the figure, each distinct color highlights the reciprocal misclassification between
pairs of classes, visually illustrating the degree of confusion in classification results. Consequently,
arg maxi,i(Aij + Aji) gives the value of the worst class pair, in this case, 2 vs. 4 (right hand vs. tongue).
Consequently, it is possible to select the interval Tsij based on the separability between these two
classes detected by NMA.

To further clarify the analysis for Subject 9, 2D trajectories of the coefficients c̄1
k(t)

against c̄2
k(t), averaged for each class, are plotted (see Figure 7), where k corresponds to

one of the four motor imagery classes: left hand, right hand, feet, and tongue. These plots
highlight the points of maximum separation among the classes (crosses in blue rectangles)
and between right hand and tongue (crosses in red rectangles). The same trajectories
are also depicted as 2D ellipsoids (see Figure 8), illustrating c̄1

k(t) and c̄2
k(t) against time,

with the ellipsoid dimensions based on the standard deviation for each manifold sub-
dimension. This further illustrates the points of maximum separation among classes,
specifically between right hand and tongue.
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Figure 7. Two−dimensional trajectories of the coefficients c̄1
k(t) against c̄2

k(t) for the manifold
directions of Subject 9, averaged for each class, where k corresponds to one of the four motor imagery
classes: left hand, right hand, feet, and tongue. These plots highlight the points of maximum
separation among the classes, indicated by crosses in blue rectangles, and specifically between right
hand and tongue, indicated by crosses in red rectangles (note that black borders are drawn around
the right hand and tongue points).
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Figure 8. Two−dimensional ellipsoids for manifold directions of Subject 9, showing coefficients c̄1
k(t)

and c̄2
k(t) against time, where k corresponds to one of the four motor imagery classes: left hand, right

hand, feet, and tongue. The dimensions of the ellipsoids are based on the standard deviation for
each manifold sub-dimension. This illustration further highlights the points of maximum separation
among the classes, and specifically between the right hand and tongue classes.

Table 3 shows the results from the AT session of the Graz Dataset, performing 10-fold
cross-validation. Each pipeline involving NMA demonstrates improvements in different
subjects. Apart from Pipeline 0, each pipeline shows improvements in accuracy compared
with the FBCSP winner of the BCI competition. Moreover, by choosing the most success-
ful pipeline for each subject, it is evident that the presented method brings significant
improvements over the state-of-the-art algorithm.

Table 3. Accuracy results from the AT session of the Graz Dataset 2a, performing 10-fold cross-
validation. Each pipeline involving NMA demonstrates improvements in different subjects. Apart
from Pipeline 0, each pipeline shows increased accuracy compared with the FBCSP winner of the BCI
competition (considered as a benchmark). Values for pipelines that outperform FBCSP are in bold.
The best pipeline per subject is highlighted in green. Notice that apart from Pipeline 0, each pipeline
achieves higher average accuracy across subjects compared with FBCSP.

AT Session
Accuracy [%]

Subject [#] FBCSP Pipeline 0 Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5 Pipeline 6 Best Pipelines
1 78.1 66.3 77.4 76.0 80.9 79.5 75.3 79.9 80.9
2 46.5 45.1 49.7 46.2 49.3 50.7 49.3 53.1 53.1
3 81.9 75.0 84.7 83.7 79.5 86.8 81.9 87.2 87.2
4 49.3 49.0 54.5 51.4 53.5 52.8 52.1 54.5 54.5
5 58.0 56.3 55.6 65.5 54.9 60.1 53.8 59.0 65.5
6 50.0 52.4 58.0 56.3 52.8 53.5 55.6 52.8 58.0
7 78.8 77.8 80.6 84.4 79.2 76.7 76.7 79.5 84.4
8 85.4 84.7 88.9 83.0 83.0 86.8 83.7 85.1 88.9
9 83.3 80.2 83.0 79.5 78.8 85.1 86.5 83.7 86.5

mean ± SE 67.9 ± 5.5 65.2 ± 5.0 70.3 ± 5.2 69.5 ± 5.0 68.0 ± 4.9 70.2 ± 5.2 68.3 ± 5.1 70.5 ± 5.0 73.2 ± 5.1

The same comparison was conducted on the AE session, utilizing the model trained
on the AT session to evaluate its generalization capabilities in a new session. This aligns
with the spirit of the BCI competition, where the AE session served as the test set for
comparing methods, and the AT session was used for system tuning. As shown in Table 4,
the accuracy results are lower in the AE session compared with the AT session, as ex-
pected. However, the presented method consistently defines pipelines that outperform
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the competition winner and demonstrate better accuracy than the ones of FBCSP and
SCN. Interestingly, in the case of four-class classification, the performance gap between
NMA-based pipelines and other approaches appears to widen. This suggests that as the
number of classes increases, our separability properties allow the NMA-based approach to
construct manifolds that more effectively distinguish among different conditions, leading
to improved discrimination. By selecting the best pipeline for each subject, the proposed
method achieves superior accuracy compared with the FBCSP and SCN approaches, which
have been used as benchmarks for SMR classification.

Table 4. Results on the AE session of Graz Dataset 2a, using the models trained on the AT session to
assess generalization capabilities in a new session. Accuracy results higher than those of FBCSP and
SCN are shown in bold. The best approach for each subject is highlighted in red.

AE Session
Accuracy [%]

Subject [#] FBCSP SCN Pipeline 0 Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5 Pipeline 6 Best Pipelines
1 67.8 71.4 57.3 67.7 66.7 67.7 71.2 71.2 71.9 71.9
2 47.5 39.2 46.9 49.0 48.3 45.1 49.0 44.1 46.2 49.0
3 83.3 82.5 77.1 84.4 82.3 83.7 83.7 82.6 81.3 84.4
4 53.5 58.7 53.1 57.6 58.3 55.6 63.2 54.5 57.6 63.2
5 32.4 44.3 38.2 36.8 43.1 35.8 39.2 36.5 38.5 43.1
6 42.6 46.9 41.3 42.7 43.8 47.9 42.4 42.0 43.4 47.9
7 80.6 76.9 74.7 78.1 83.3 78.1 78.8 78.1 78.1 83.3
8 82.2 74.8 77.1 79.2 80.6 81.3 80.9 80.9 80.2 80.9
9 71.7 75.9 70.1 71.5 77.1 71.5 73.3 77.1 77.1 77.1

mean ± SE 62.4 ± 6.3 63.4 ± 1.9 59.5 ± 5.2 63.0 ± 5.7 64.8 ± 5.6 63.0 ± 5.8 64.6 ± 5.7 63.0 ± 6.2 63.8 ± 5.8 66.7 ± 5.5

3.2.3. Cross-Subjects Manifold Sharing

Until now, each result was obtained by analyzing the manifolds of specific subjects
and attempting to improve classification by enhancing specific features whenever NMA
detected them. However, this section shows that this analysis can be extended further.
By leveraging the capabilities of certain subjects who excel in class discrimination, it is
possible to augment the performance of subjects with poorer classification abilities. Specifi-
cally, this approach imports results of MNA from high-performing subjects and projects
them onto other subjects. This approach combines previous BCI systems (explained in the
previous subsection) with new features detected with the aid of other successful subjects.

Figure 9 illustrates the results of this hybridization approach. This combined confusion
matrix shown presents the classification performance when subject i uses an NMA insight
j from another subject. Each matrix element Aij indicates the percentage improvement in
accuracy compared with the FBCSP and SCN benchmarks. The diagonal elements represent
pipelines using only NMA from the same subject, while the off-diagonal elements show
results using pipelines augmented with the best features obtained through NMA analysis
from other successful subjects.

This figure demonstrates that augmenting features by NMA from other subjects
significantly enhances the BCI system’s classification capabilities. This approach high-
lights the potential of cross-subject NMA information sharing in improving overall system
performance, showcasing how knowledge transfer among subjects can lead to better gen-
eralization and more robust BCI systems. Table 5 shows the accuracies on the AE session
when using the best NMA result per subject (computed in the previous subsection) and the
best NMA result across subjects. The results demonstrate that NMA information shared
across subjects can further improve classification performance.

Finally, to provide insight into the learned features, the frequency bands (see Figure 10)
and topographic maps (Figure 11) are presented, both obtained from the CSP projection
matrix of the first selected features. These figures illustrate the characteristic patterns for dif-
ferent motor imagery tasks: a contralateral pattern for left hand and right hand, top-central
activation for feet [8,9], and parietofrontal activation for tongue [44]. Notably, several
features are “borrowed” from other subjects, demonstrating that cross-subject features
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can significantly enhance accuracy. This cross-subject feature borrowing is particularly
beneficial in improving the robustness and generalization of the BCI system, making it
more adaptable to various users. The integration of these features across subjects high-
lights the potential of NMA to uncover critical patterns that are not only subject-specific
but also generalizable across different individuals, further strengthening the classification
performance and reliability of EEG-based BCI systems.
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Figure 9. The figure illustrates the results of the cross−subject NMA approach. The confusion matrix
presents the classification performance when subject i uses NMA insights from subject j. Each matrix
element Aij indicates the percentage improvement in accuracy compared with the FBCSP benchmark.
Diagonal elements represent pipelines using only NMA from the same subject, while off-diagonal
elements show results using pipelines augmented with the best features obtained through NMA
analysis from other successful subjects.

Table 5. Comparison of accuracies on the AE session of Graz Dataset 2a between the FBCSP and SCN
benchmarks, the best NMA result per subject, and the best NMA result across subjects. The values
clearly demonstrate that sharing NMA information across subjects can further improve classifica-
tion performance. The highest accuracy for each subject is highlighted in bold.

AE Session

FBCSP SCN NMA per Subject NMA Cross Subjects

Subject [#] Accuracy [%]

1 67.8 71.4 71.9 72.6
2 47.5 39.2 49.0 51.7
3 83.3 82.5 84.4 84.4
4 53.5 58.7 63.2 64.2
5 32.4 44.3 43.1 43.1
6 42.6 46.9 47.9 48.6
7 80.6 76.9 83.3 84.4
8 82.2 74.8 80.9 81.3
9 71.7 75.9 77.1 78.5

mean ± SE 62.4 ± 6.3 63.4 ± 5.5 66.7 ± 5.5 67.6 ± 5.4
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Figure 10. Statistics of the successful frequency bands for each subject, sorted and obtained from the
CSP projection matrix of the first selected feature per subject. The figure presents the distribution of the
most effective frequency bands that contribute to the classification accuracy across different subjects.
Each rectangle represents the frequency band that was most frequently selected for optimal feature
extraction, highlighting the variability and commonality of effective frequency ranges among subjects.
This analysis underscores the significance of individual–specific frequency bands in enhancing
the performance of motor imagery tasks in BCI systems. The detailed examination of these bands
provides valuable insights into the neural oscillatory patterns that are critical for accurate classification.
For further details, refer to the main text.
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Figure 11. Topographic maps obtained from the CSP projection matrix for the first selected feature
per subject. These maps illustrate the best feature per class, ordered by classification accuracy per



Sensors 2024, 24, 6110 19 of 22

class. The topographic maps highlight characteristic spatial patterns for different motor imagery tasks:
contralateral patterns for left and right hand movements, top–central activation for foot movements,
and parietofrontal activation for tongue movements. In the accompanying table, three values are
indicated: the subject from which the feature is derived (with features borrowed from another subject
highlighted in bold), the Pipeline Pl from which the feature is extracted, and the reference interval to
which the feature corresponds (see Section 2.6). It is notable that several features are borrowed from
other subjects, and certain subjects contribute more frequently to these feature–lending scenarios. This
suggests that features from high–performing subjects can be effectively used to prototype efficient
BCI systems.

4. Conclusions

The presented study demonstrates the significant potential of integrating NMA with
traditional EEG-based MI-BCI systems to enhance feature extraction and classification
accuracy. By identifying specific time intervals that capture class-specific and subject-
specific characteristics, the presented approach has demonstrated the ability to enhance
the performance of MI-BCI systems, particularly for challenging subjects. This method not
only refines the features for individual subjects but also leverages cross-subject information
to further boost classification accuracy. The primary objective of this paper was to develop
a method specifically designed for classifying the oscillatory components of sensorimotor
rhythms during MI tasks. The Graz Datasets 2a and 2b, widely recognized benchmarks in
this field, were utilized to validate the proposed approach. This work builds on the most
efficient existing methods tailored for MI tasks (such as the FBCSP algorithm, the winner
of the BCI competition, and SCN, specifically designed for MI tasks). By introducing
NMA-based preprocessing to create novel MI-BCI pipelines, the discriminability of trials
is significantly improved, as features become more separable with respect to distinct
motor imagery classes. The presented results demonstrate that incorporating NMA in the
preprocessing stage enhances the performance of established algorithms. As detailed in
Section 3, the results underscore the robustness and adaptability of the presented approach,
paving the way for more reliable and efficient MI-BCI systems.

Future research directions could involve incorporating successful neural network
approaches, such as SCN, which has been shown to be effective for SMR classification,
by completely replacing the CSP modules within the pipeline. While DL techniques
typically automate feature extraction and selection, they could potentially benefit from
a preprocessing phase that begins with manifold analysis. Furthermore, an intriguing
possibility would be to develop a conditional VAE [66]—a deep VAE model conditioned
on the separability properties in NMA outlined in our Methods section. This approach
could further optimize the feature selection process, contributing to more refined and
user-friendly BCI applications.
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