
Vol.:(0123456789)

https://doi.org/10.1007/s10853-024-10529-3

J Mater Sci 

Polymers & biopolymers

Prediction and validation of fire parameters 
for a self‑extinguishing and smoke suppressant 
electrospun PVP‑based multilayer material 
through machine learning models

Aurelio Bifulco1,* , Immacolata Climaco1, Angelo Casciello1, Jessica Passaro2, 
Daniele Battegazzore3, Viviana Nebbioso1, Pietro Russo2, Claudio Imparato1, Antonio Aronne1, and 
Giulio Malucelli3

1 Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 
80125 Naples, Italy
2 Institute for Polymers, Composites and Biomaterials-National Council of Research, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
3 Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy

ABSTRACT
Electrospinning is a technology largely employed to obtain polymer fibers with 
different functionalities. The electrospinning of polyvinylpyrrolidone (PVP) in the 
presence of silica nanoparticles, and the subsequent thermal treatment of these 
electrospun PVP-silica fibers, allows for the manufacturing of a self-extinguishing 
material stable in polar solvents. However, this material lacks consistency and 
does not sustain any load: this strongly limits its application in many indus-
trial fields (e.g., the aerospace sector). Herein, we used cross-linked electrospun 
PVP-silica blankets and  TiO2 nanoparticles to coat hemp blankets, producing a 
multilayer material (MM) by surface charge interaction. The MM exhibited lower 
stiffness than the original hemp fabric but still good mechanical behavior, V0 class 
at the UL 94 vertical burning test, and good stretchability even after direct flame 
exposure. Further, burn-through and cone calorimetry tests revealed that MM is 
an excellent smoke suppressant and fireproof fabric, with very low total smoke 
release values (as low as 4.9 vs. − 33.3  m2/m2 measured for hemp) and its structure 
remained intact for at least − 1 min. Finally, as all the aforementioned experimen-
tal activity, though necessary and unsubstantial, is usually quite time-consuming, 
two Machine Learning models were developed and exploited to predict the fire 
performances related to the multilayer material. Despite the incomplete start-
ing datasets, the implemented models accounted for a successful prediction of 
the target parameters (namely, Time to Ignition and peak of Heat Release Rate), 
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thanks to the assistance of ChatGPT and the exploitation of made-on-purpose 
decision trees.

GRAPHICAL ABSTRACT

Introduction

Electrospinning is a well-known technology for manu-
facturing polymer nanofibers with multiple architec-
tures [1, 2]. The wide application of such methodol-
ogy is mainly due to its capability to produce micro/
nanofibers ranging from 2 nm to several micrometers, 
while conventional processes only allow for the fab-
rication of larger continuous fibers. Owing to these 
peculiarities, electrospinning is frequently applied 
in medical areas (e.g., tissue engineering), where 
nanofibers exhibiting specific electronic and photo-
catalytic properties are highly desired [1, 3, 4]. On the 
other side, recently, the demand for electron nanofib-
ers with excellent thermal behavior, flame retardancy, 
and mechanical response is increasing, as they can 
be employed to obtain multifunctional nanofibrous 
nonwovens, air filtration membranes, fire protective 
coatings, and reinforced polymeric composites [5–8]. 
However, many products based on polymer electro-
spun nanofibers, especially the ones produced start-
ing from safe and sustainable poly(vinyl pyrrolidone) 
(PVP) and poly(vinyl alcohol) (PVA), do not show 
good mechanical properties, making them suitable as 
reinforcements but not as structural components [9, 
10]. This issue can be overcome through the incorpo-
ration of solid particles into the polymer matrix: as a 
result, its mechanical performances, such as stiffness, 
toughness, and impact strength, improve [11–13]; 

however, in the case of micro/nanofibers the effective-
ness of fillers in contrasting this issue is limited. PVP-
based nanofibers can be used for the preparation of 
materials employed in medicine and other biological 
systems [14, 15], although the high PVP solubility in 
water strongly limits the application of its electrospun 
blankets, causing low durability at different operative 
conditions [16, 17]. To overcome this limitation, the 
crosslinking of electrospun polymeric nanofibers by 
thermal treatment is one of the most feasible possibili-
ties [5, 18, 19], though it often leads to an unwanted 
shrinkage of the annealed samples. Newsome et al. 
demonstrated that the incorporation of sub-microme-
ter silica particles into electrospun PVP fibers can pre-
vent the occurrence of shrinkage phenomena during 
their crosslinking by heat treatment at 200 °C, leading 
to high-quality water- and moisture-resistant compos-
ite fibers [20]. Following a similar procedure, Passaro 
et al. produced crosslinked silica/PVP electrospun 
composite fibers showing high water resistance and 
negligible shrinkage [19, 21].

In the context of sustainability, natural fibers such 
as kenaf, hemp, flax, and jute are becoming more and 
more crucial to developing greener fiber-reinforced 
polymeric composites, as their exploitation results in 
a remarkable reduction of weight,  CO2 release, and 
costs [22–24]. Among the natural fibers, hemp can be 
employed in several industrial applications; recent 
statistics confirm, for the U.S. market, an expected 
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value of USD 16.75 billion, with a compound annual 
growth rate of 17.1% from 2023 to 2030 [25]. One draw-
back related to the use of sustainable hemp fibers is 
their high flammability: thus, many chemical strate-
gies have been developed to flame retard these fibers 
[26]. However, most of these methodologies consist of 
time-consuming procedures involving low sustainable 
nitrogen- and phosphorus-based compounds, causing 
high energy utilization and the depletion of natural 
resources [27, 28]. In this context, the deposition via 
sol–gel chemistry of blankets made of crosslinked sil-
ica/PVP electrospun composite fibers on hemp rugs 
may represent an effective, affordable, and timesav-
ing approach to preparing self-extinguishing multi-
layer materials, without the use of any N- or P-based 
compounds.

For these reasons, in this work, we thoroughly 
investigated a multilayer material composed of hemp 
rugs coated using blankets made of crosslinked sil-
ica/PVP electrospun composite fibers. The adhesion 
between these materials was obtained by electrostatic 
interactions. An acidic solution containing titanium 
dioxide nanoparticles was employed along the process 
to tune the proper surface charge on the PVP-based 
blankets. We deeply investigated the fire behavior 
and flammability of the produced multilayer material, 
together with its mechanical response. The multilayer 
material kept the sustainable features of its compo-
nents unchanged, but showed self-extinguishing capa-
bility, excellent smoke suppressant behavior, and very 
good mechanical strength, overcoming all the limita-
tions of hemp rugs and PVP-based blankets.

Finally, to overcome the restraints related to the 
need to (1) perform a huge number of destructive 
tests and (2) synthesize and characterize several flame 
retardant formulations, aiming to design new effective 
flame retardant polymeric and textile materials, we 
developed and implemented two robust and reliable 
models through a Machine Learning (ML) approach, 
suitable for predicting two parameters (i.e., Time to 
Ignition and peak of Heat Release Rate, from forced-
combustion tests) for the investigated electrospun 
PVP-based multilayer material. Artificial intelligence 
models, especially ML ones (e.g., artificial neural net-
works, decision trees) and metaheuristic algorithms 
(e.g., grey theory-white shark optimizer), are being 
increasingly applied in the predictive study and opti-
mization of morphological, mechanical, viscoelastic, 
and functional (e.g., soundproofing) properties of new 
polymeric and textile products [29–32], overcoming 

the main limitations of numerical simulation models 
[33]. Some literature reports thoroughly discuss the 
application of ML models on different input data also 
for the prediction of thermal and fire performances 
of polymeric materials [34–37]. Indeed, ML is one of 
the most reliable predictive methods, as it does not 
involve any arbitrary assignment or the use of prede-
termined equations, but it learns information directly 
from data relying on algorithms (e.g., locally weighted 
regression algorithms) or computational systems [31, 
38].

However, it frequently occurs that the available 
dataset, employed for building the machine learning 
model, shows several missing experimental values. 
This may negatively affect the accuracy of the neural 
network and thus the prediction. To overcome this 
issue, after a statistical evaluation of these datasets 
and their distributions, chat generative pre-trained 
transformer (ChatGPT), a chatbot developed by Ope-
nAI, can replace the missing values with mean, mode, 
or median, and suggest the best ML model, suitable 
for the prediction of specific parameters [39–41]. This 
quite new strategy was recently demonstrated by 
Bifulco et al. [42] and Amor et al. [32, 43, 44].

Therefore, in this work, we aim to demonstrate that 
the integration of ChatGPT to perform a data improve-
ment and the implementation of well-designed ML 
models allow for the prediction of fire behavior with 
satisfactory accuracy, even when some input data 
are missing. These findings may pave the way for 
the design and implementation of novel and reliable 
AI-based tools in materials science and technology, 
which, far from aiming to skip the always required 
experimental activity, can significantly help the 
researchers in reducing the time efforts, leading to the 
envisaged research objectives.

Materials and methods

Materials

Hemp (H) sheets, supplied by MAEKO S.r.l. (Milan, 
Italy), were used without any pretreatment. Tetraethyl 
orthosilicate (TEOS, > 99%), ammonium hydroxide 
(30–33%  NH3 in  H2O), ethanol (99.8%), polyvinylpyr-
rolidone (PVP, MW: 1300000 g  mol−1), purchased from 
Sigma-Aldrich (Merck KGaA, Darmstadt, Germany), 
were used to produce the PVP-silica blankets. Tita-
nium dioxide nanoparticles  (TiO2 P90) from Evonik 
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(Hanau-Wolfgang, Germany), hydrochloric acid (37 
wt.%), and acetic acid (98%) from Sigma-Aldrich were 
used for the preparation of the multilayer.

Manufacturing of the multilayer material

PVP-silica blankets were fabricated by electrospin-
ning, following the same procedure previously 
reported [21]. The  SiO2 nanoparticles were prepared 
through the Stöber sol–gel method using TEOS as 
a precursor. A suspension (40 wt.%) of silica parti-
cles in ethanol was mixed with an ethanol solution 
(20 wt.%) of PVP. The resulting suspension was elec-
trospun under a voltage of 30 kV at room tempera-
ture and a humidity of (45 ± 10)%, ensuring a flow 
rate of 0.100 mL  min−1. The electrospun non-woven 
mats were dried at 80 °C for 60 min, then slowly heat-
treated from 150 to 200 °C, and finally kept for 6 h at 
200 °C. Such thermal treatment makes the PVP matrix 
of the composite mats resistant to humidity, without 
significant shrinkage, thanks to the backbone of silica 
nanoparticles embedded into the fibers. Moreover, the 
sol–gel silica particles are partly exposed at the fib-
ers’ surface, which allows for their surface chemistry 
exploitation [21, 45].

The hemp/PVP-silica multilayer material was pre-
pared favoring the adhesion between the blankets 
through electrostatic interaction, as in a layer-by-layer 
manufacturing approach. In a typical procedure, first, 
a single layer (5 × 5 × 0.1  cm3) of hemp was soaked for 
5 min in a water solution, acidified by using HCl, 
at pH 2.5, which is slightly higher than the isoelec-
tric point (2.0–2.5) of silica nanoparticles, but lower 
than that of hemp (> 3.0) [46]. The deposition of one 
PVP-silica blanket (5 × 5 × 0.05  cm3) was performed 
on each side of the hemp sample, assisted by electro-
static interaction. To improve the adhesion of blankets 
with hemp in the bilayered material (named H-2PVP), 
this was thermally treated in an oven for 1 h at 80 °C. 
H-2PVP was further coated by 4 layers of PVP-silica 
blankets on each side to improve its fire behavior (see 
Sect. "Mechanical robustness and flammability behav-
ior of the multilayer material"). To obtain a good elec-
trostatic interaction and thus a satisfactory adhesion 
between the PVP-silica blankets, H-2PVP was soaked 
for 5 min in a water suspension of  TiO2 nanoparticles 
(0.1 M), acidified by using acetic acid (at pH 5). Then, 
H-2PVP was kept in an oven for 1 h at 80 °C to support 
the condensation reactions between Si–OH and Ti–OH 
groups and ensure a neutral charge on the surface of 

the bilayered material. To create a positive charge on 
the surface of the thermally treated H-2PVP, 2 mL of 
the solution containing  TiO2 particles at pH 5 were 
uniformly distributed on its surface before laying a 
dried PVP-silica blanket, which is expected to become 
negatively charged at that pH value. To promote the 
electrostatic interaction and the adhesion of the PVP-
silica blanket on the surface of H-2PVP, the blanket 
was roll-pressed with a glass rod, removing the excess 
solution, and then the sample was kept in an oven for 
20 min at 80 °C. This procedure was repeated on the 
other side of H-2PVP and for further three times (a 
total of 10 PVP-silica layers) to obtain a multilayer 
material (named H-10PVP). Finally, H-10PVP under-
went a thermal treatment at 80 °C for 1 h to achieve 
a dried sample that appeared completely different, 
when compared to the material assembled by the 
simple deposition of five PVP-silica blankets on each 
side of a hemp layer (named H-as10PVP). The whole 
procedure is schematized in Fig. 1A and the two mul-
tilayer samples are shown in Fig. 1B.

Experimental characterization

The weight per unit area was measured for hemp 
and H-10PVP multilayer samples by weighing a sam-
ple with a specific area of 25  cm2. The following val-
ues were obtained: 234 g/m2 for H and 428 g/m2 for 
H-10PVP.

The washing fastness of multilayer material was 
evaluated by employing a solution containing 4 g/L of 
commercial detergent; the liquor ratio was 50:1. Each 
washing step was performed at 40 °C for 5 min. After 
each washing cycle, the fabric was removed, squeezed, 
and rinsed with tap water. Then, repeated washing 
was carried out until a total of 250 min was reached 
[46, 47].

The chemical analysis of the material was per-
formed by Fourier-transform infrared (FTIR) spec-
troscopy in Attenuated Total Reflectance (ATR) mode, 
using a Nicolet 5700 spectrometer (ThermoFisher, 
Waltham, MA). The spectra were collected from 32 
scans with a resolution of 4  cm−1. The char samples 
produced after flame spread tests were also analyzed 
by ATR-FTIR spectroscopy.

The surface morphology and chemical composition 
of the prepared material and the residual char were 
examined using an EVO 15 scanning electron micro-
scope (SEM) from Zeiss (Oberkochen, Germany), cou-
pled with an Ultim Max 40 energy-dispersive X-ray 
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(EDX) micro-analyzer (Oxford Instruments, High 
Wycombe, UK).

The thermal behavior of H-10PVP was studied by 
thermogravimetric analysis (TGA), using a simultane-
ous thermoanalyser SDT Q600 (TA Instruments, New 
Castle, DE, USA) under  N2 and air with a gas flow of 
100 mL/min, in the temperature range 25–800 °C at a 
heating rate of 10 °C/min.

The flammability of the multilayer material was 
investigated, like in the case of polymer-based com-
posites, using the Underwriters Laboratories 94 
(UL 94) vertical burning test, following the ASTM 
D3801 standard. The size of the test specimens was 
125 × 13 × 3  mm3 and the burning test was repeated 
until five consecutive readings.

Burn-through tests were performed on bare hemp 
and H-10PVP to evaluate their resistance toward the 
frontal application of a flame. A small-scale butane 
burner apparatus (Cadrim, China) was used to carry 
out the tests. The flame temperature was about 1200 °C 
and the generated front heat flux was around 170 kW/
m2. The temperatures at the backside of the specimens 
(10 × 10  cm2) and related burn-through time and igni-
tion time were monitored by an InfraRed camera 
Thermo Gear G100/G120 (NEC Avio Infrared Tech-
nologies Co., Tokyo, Japan). Details about the experi-
mental setup and procedure are described in Figure S1 
and in a previous work [48].

The fire behavior of bare hemp and multilayer blan-
kets was evaluated by a cone calorimeter (Noselab 
ATS, Monza, Italy), operating with an irradiative heat 
flux of 35 kW/m2 (ISO 5660 standard). The cone calo-
rimetry tests were performed on 10 × 10  cm2 specimens 
to determine the time to ignition (TTI, s), time to flame 
out (TTFO, s), total heat release (THR, MJ/m2), heat 
release rate (HRR, kW/m2), peak of the heat release 
rate (pkHRR, kW/m2), total smoke release (TSR,  m2/
m2), specific extinction area (SEA,  m2/kg), carbon mon-
oxide and carbon dioxide yields (kg/kg).

The tensile properties of the hemp fabric and 
H-10PVP were evaluated using an Instron Mod. 4505 
dynamometer. Specifically, three rectangular strips for 
each type of sample, having a width of 30 mm and 
preliminarily conditioned at room temperature and 
50% relative humidity for 2 days in a climatic chamber, 
were tested by setting a crosshead speed of 2 mm/min.

Machine learning modelling and design 
strategy

Cone calorimetry test is useful to deeply investi-
gate the fire behavior of a flame retardant polymeric 
material. It is a disruptive test, which normally 
needs three specimens to provide reliable results. 
This forced-combustion test is performed in air 
atmosphere and the flaming combustion of volatiles, 

Figure 1  a Scheme of the fabrication procedure of hemp/PVP-
silica bilayer (H-2PVP) and multilayer (H-10PVP) materials; 
b photographs of H-10PVP and H-as10PVP samples; c SEM 

image, ATR-FTIR spectrum and EDX elemental analysis results 
for H-10PVP; d SEM image, ATR-FTIR spectrum and EDX 
results for H-10PVP after laundry cycles.
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generated by heat radiation, is triggered through a 
spark igniter. Among the possible fire parameters 
(see Sect. "Thermal and fire performances of the 
multilayer material"), which can be measured by 
cone calorimetry tests, TTI and pkHRR are particu-
larly useful for fire scientists to study the effect of a 
specific flame retardant on a polymer-based mate-
rial. These two parameters can also be evaluated by 
additive molar group contributions; however, both 
methods are time-consuming [49, 50]. Besides, the 
forced-combustion test is not only a disruptive meas-
urement, but it also requires an expensive apparatus 
that is frequently not available in many research lab-
oratories and companies. Recently, as an alternative 
to these approaches, some works have demonstrated 
that machine learning models enable the prediction 
of cone calorimetry parameters of many polymeric 
systems [42]. The application of machine learning 
(ML) models allows to avoid the use of time-consum-
ing procedures and expensive instruments, reducing 
the number of measurements, and the loss of mate-
rial during the screening operations in the design of 
experiments. However, in the prediction of materi-
als’ physico-chemical properties by machine learn-
ing, the lack of complete and large datasets is one 
of the major drawbacks. Most of the available and 
suitable datasets in the literature are characterized 
by a large presence of missing values, which makes 
it difficult to train efficient models [51].

Herein, by the application of KNIME, an open-
source software for managing data science [52], we 
employed different machine learning models (i.e., 
artificial neural networks and decision trees) to pre-
dict the TTI and the pkHRR of the multilayer material 
(H-10PVP) from its weight per unit area, cone calorim-
etry parameters, TGA data, and vertical flame spread 
test results (see the input dataset in Table S1). The 
input parameters (IPs) for the models, together with 
their symbols and meanings, are listed in the rows 
and columns of Table S1. More in detail, the columns 
of the IPs are weights per unit area, cone calorimetry 
parameters, TGA data, and vertical flame spread test 
results of functionalized and neat textile materials (see 
column of references in Table S1), whose experimen-
tal values were found in the literature [53], including 
hemp, i.e., the material selected for this research work. 
H was taken into account to complete the input data-
set, as it represents the true reference and counterpart 
of H-10PVP, therefore it is crucial to keep a high accu-
racy for the models.

The four stages performed in this study for the pre-
diction of the cone calorimetry data (TTI and pkHRR) 
related to H-10PVP are reported in the workflow of 
Fig. 2. In the first stage, as above mentioned, the IPs 
dataset, for the machine learning models, is built by 
using laboratory measurements (see following sec-
tions), in the case of H and H-10PVP, and data found 
in the literature for the other textile materials. The 
second stage involves the execution of data pre-pro-
cessing operations by generative model ChatGPT. As 
reported in Table S1, the IPs dataset shows some miss-
ing values; this aspect may reduce the predictive capa-
bility of the ML models. Considering the data distribu-
tion and statistical analysis, ChatGPT was employed 
to enhance the starting IPs dataset by replacing each 
missing value with the most suitable statistical indi-
cator (i.e., mean, median or mode). In particular, the 
GPT-4 model was chosen among the various models 
provided by OpenAI, given its ability to take in input 
and process excel files, in which our data were stored. 
Before running ChatGPT, textile materials in Table S1 
were grouped based on their chemical-physical simi-
larity and a specific number (see “SAMPLE ID” col-
umn) was associated to each cluster. This preliminary 
clustering operation allows to (i) estimate more repre-
sentative statistical indicators, as ChatGPT can work 
separately on small portions of data rather than on the 
whole dataset, and (ii) apply stratified sampling dur-
ing model training, so training and validation datasets 
will have a similar number of samples for each group. 
To prevent negative effects along the training of the 
models, the new IPs dataset (Table S2), containing the 
statistical indicators found by ChatGPT, was further 
modified through the removal of nine rows and one 
column, as their missing values could not be obtained 
with the generative model. After this cleaning opera-
tion, the resulting IPs dataset (Table S3) was used (see 
Fig. 2) to determine the best regression models to be 
applied on the available data. Due to the low number 
of data, the input dataset was not submitted to features 
selection techniques (e.g., principal component analy-
sis). Also, the data were not normalized to prevent any 
change of scale altering the significance of the param-
eters (i.e., chemical-physical properties of the textiles) 
and negatively influencing the training of the artifi-
cial neural networks (ANNs). There are several tools 
that can be employed to improve the quality of very 
wide input dataset, for example the methods based 
on cooperative game theories (e.g., Shapley Additive 
Explanations). These methods allow for increasing 
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transparency and interpretability of machine learn-
ing models, revealing the influence of each feature 
on the model’s output and thus making possible the 
development of more accurate and reliable prediction 
algorithms [30].

ChatGPT could recommend two different types of 
ML models for the prediction of our parameters: an 
ANN model enhanced with a K-Nearest Neighbors 
(K-NN) algorithm performing a local weighted regres-
sion (LWL), and a Gradient Boosted Trees (GBTs) 
model, which is a particular ensemble of decision tree. 
In the third stage, ANN and GBTs models are applied 
to the IPs dataset and trained by the data science soft-
ware KNIME. To achieve the best overall performance, 
optimization methodologies were also carried out to 
properly tune the hyperparameters of the models 
based on the validation data. Finally, in the fourth 
stage, the predictions provided by the regression 
models were collected and compared with the actual 
values of multilayer’s parameters (TTI and pkHRR), 
experimentally measured in laboratory (Sect. "Ther-
mal and fire performances of the multilayer material").

By comparing the actual values with the predicted 
ones, the Mean Absolute Percentage Error (MAPE) 
of each model was evaluated to identify the one giv-
ing the best results. The estimation of MAPE for a 
regression model allows to quantify its effectiveness 
and reliability by Eq. 1, where N is the number of 
observations:

MAPE is largely used in the field of regression anal-
ysis as percentage errors represent very intuitive indi-
cators to understand model performances [54]. Table 1 
displays an indicative outline to evaluate the goodness 
of a model based on the resulting MAPE value [55].

In view of the above, it is worth noticing that there 
is a strict interaction among the selected, designed, 
produced, and experimentally characterized mul-
tilayer material, ChatGPT, and the developed ML 
models. In fact, ChatGPT is fed by the input dataset, 
characterized by the presence of missing values, of 

(1)

MAPE (% ) = 100 ×
1

N

N∑
i=1

||Actual value
i
− Forecasted value

i

||
Actual value

i

Figure 2  Workflow reporting the four stages used to predict TTI (s) and pkHRR (kW/m2) values.
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properties related to both the investigated multilayer 
and other materials that fall into the same class. The 
input dataset of properties is implemented by Chat-
GPT that finds suitable statistical indicators for com-
pleting the raw dataset. Once completed, the dataset 
is exploited for developing the ML models. Finally, 
the prediction of the parameters is compared with the 
actual values (i.e., those experimentally estimated).

Results and discussion

Manufacturing and chemical characterization 
of the multilayer material

The preparation of the multilayer material was 
designed based on the surface charge of the compo-
nents at specific pH values so that the adhesion of 
PVP-silica blankets on the hemp rugs was promoted 
by electrostatic interaction. In the presence of charge-
determining ions, the nature of a metal or metalloid 
(M) atom and the acidity of M-OH groups on the 
surface of inorganic nanoparticles directly influences 
their surface charge [56, 57]. The point of zero charge 
(PZC) represents the pH, at which the surface is not 
charged: therefore, at pH < PZC the surface is posi-
tively charged, whereas at pH > PZC it is negatively 
charged [56, 58]. As demonstrated in some previous 
works, the surface of the PVP-silica blanket is prac-
tically composed of silica, full of silanol groups [56, 
58]. This finding is confirmed by the FTIR spectrum of 
PVP-silica (Figure S2), dominated by the intense vibra-
tional band due to Si–O stretching at about 1090  cm−1, 
with the bands at lower wavenumbers assigned to the 
stretching of Si–OH bonds (796  cm−1) and the bending 
of Si–O-Si groups (584  cm−1). As the PZC of silica is 
about 2.0, at pH 2.5 its surface is expected to exhibit 
a negative charge, while hemp should be character-
ized by a positive charge, having a PZC around 6 [59]. 
A bilayered sample (H-2PVP) was obtained by the 

deposition of one PVP-silica blanket on each side of 
the hemp blanket, as described in Sect. "Manufactur-
ing of the multilayer material" and Fig. 1A.

Unlike PVP-silica alone, which achieved self-extinc-
tion [21], H-2PVP was not self-extinguishing during 
vertical flame spread test. For this reason, H-2PVP was 
further coated by 4 layers of PVP-silica blankets on 
each side to achieve self-extinction and V0 flammabil-
ity class (see Sect. "Mechanical robustness and flamma-
bility behavior of the multilayer material"). Similarly 
to silica nanoparticles in the PVP fibers, commercial 
titanium oxide particles are rich in surface hydroxyl 
groups, as proved by the FTIR spectrum showed in 
Figure S2. Due to the different acidic characters of 
Si–OH and Ti–OH groups, the PZC of titanium diox-
ide is higher than that of silica (around 6) [57, 60, 61]. 
Therefore, at pH 5, the  TiO2 nanoparticles should be 
positively charged and thus encouraged to match 
the negatively charged silica particles and establish 
a cross-condensation. Owing to this straightforward 
manufacturing procedure, it is likely to expect strong 
interactions between the components of H-10PVP mul-
tilayer blanket, which appeared compact and uniform, 
as well as flexible (Fig. 1B).

The SEM images of H-10PVP (Fig. 1C) show the 
typical morphology of nonwoven electrospun fibers, 
with a multimodal diameter distribution, as previ-
ously reported [21, 57] and a rough surface revealing 
the embedded  SiO2 nanoparticles. The surface chem-
istry of the multilayer was investigated by ATR-FTIR 
spectroscopy and EDX analysis. The FTIR spectrum 
of H-10PVP confirms that hemp is thoroughly cov-
ered by the fiber mats, since it closely resembles that 
of bare mats (see Figure S2), showing the abovemen-
tioned bands due to silica and the bands between 1700 
and 1300  cm−1 ascribed to PVP. The EDX elemental 
distribution, reported in the inset of Fig. 1C, agrees 
with the approximate composition of the hybrid fibers 
and reveals also the presence of  TiO2, which is hardly 
detectable by FTIR because of its low concentration.

To additionally prove the good adhesion of each 
layer in H-10PVP, the stability of PVP-silica blankets 
in a polar solvent, and the firm anchoring of titanium 
dioxide nanoparticles to the surface, the multilayer 
material underwent washing fastness tests. From the 
photograph, SEM image, and EDX data of the blankets 
after washing (Fig. 1D) it is possible to observe that 
the morphology and surface chemistry of the sample 
appear practically unmodified, as further confirmed 
by the FTIR spectrum (Fig. 1D), which is virtually 

Table 1  Assessment and evaluation of prediction effectiveness 
by the interpretation of Mean Absolute Percentage Error (MAPE)

MAPE Interpretation

 < 10 Highly accurate forecasting
10–20 Good forecasting
20–50 Reasonable forecasting
 > 50 Inaccurate forecasting
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identical to that of the as-prepared sample. These 
results confirm the resistance of the multilayer mate-
rial to repeated washing cycles.

Mechanical robustness and flammability 
behavior of the multilayer material

Unlike H-as10PVP which resembled wadding, 
H-10PVP exhibited notable mechanical strength and 
tensile response (see Sect. "Tensile behavior of the 
multilayer material"), stretchability, and structural 
compactness (see Fig. 1B). To prove these characteris-
tics, H-10PVP (10 × 10 × 0.3  cm3) was fixed at a metallic 
support and some glass marbles (total weight: 44.6 g) 
were placed on it. The sample did not break (Video 1), 
throughout the whole test, while H-as10PVP imme-
diately lost its structural integrity after a few seconds 
(Video 2).

As previously mentioned, the procedure for the 
multilayer material preparation was continued up 
to the deposition of 5 double layers of PVP-silica 
because H-10PVP was found to exhibit V0 rate dur-
ing vertical flame spread tests. More in detail, the 
sample (1.3 × 12.5 × 0.3  cm3) captured the flame but 
this latter could not propagate along the sample, due 
to the formation of a ceramic and continuous carbo-
naceous residue, during the first combustion stages. 
Therefore, the flame immediately extinguished after 
its application, also resulting in the production of an 
almost inappreciable amount of smoke. Besides, it 
is worth mentioning that H-10PVP still showed its 
good mechanical behavior and structural compact-
ness after the flammability test, which is likely due 
to the hemp layer remained practically undamaged 
after the flame exposure, thanks to the effective heat 
shielding effect exerted by the PVP-silica fibers (see 
Sect. "Mechanical robustness and flammability behav-
ior of the multilayer material"). The negligible release 
of smoke and the absence of any dripping phenom-
ena make this multilayer material a promising smoke 
suppressant textile, showing the consistency of the 
easily flammable and not classifiable (according to 
UL 94 vertical flame spread test) hemp rugs, in terms 
of mechanical strength, and the very low flammabil-
ity of the nonwoven PVP-silica blankets. By using a 
configuration similar to that adopted for testing the 
mechanical strength of H-10PVP, the robustness of 
the multilayer material was also evaluated through 
the application of a gas lighter’s flame to its sur-
face, while the back side was sustaining a load (glass 

marbles of total weight = 44.6 g). Video 3 shows that 
H-10PVP does not capture the flame and the material 
preserves its structural integrity throughout the whole 
test, holding the load without any detrimental effect 
on its mechanical behavior. Besides, it is worth high-
lighting that after this test, H-10PVP also preserves 
its stretchability (Video 4) and mechanical strength, 
which means that the hemp layer probably undergoes 
only slight damage.

To investigate the burn-through resistance of the 
multilayer material, H-10PVP (10 × 10 × 0.3  cm3 panel) 
was firmly fixed in vertical position (see Figure S1) 
and the flame of a butane gas blowpipe was directed 
perpendicular to the surface of the specimen, at an 
adequate distance to let the flame tip brush its mid-
dle. An IR camera was employed to record the back 
temperature  (TB) profile at the sample surface during 
the burn-through test. Burn-Through time (BTT) indi-
cates the time, at which the material loses its struc-
tural integrity. It was possible to observe that during 
the flame application, an abundant amount of a white 
ceramic char forms, while the PVP layers undergo a 
fast decomposition (Video 5). As shown in Fig. 3A, H 
captures the flame after only 3 s  (TB = 140 °C), while 
H-10PVP requires around 21 s, revealing a very low 
surface flammability. Moving from the TTI point, 
the  TB of H-10PVP changes very slowly compared 
to that of H, probably due to the ceramic insulating 
char that slows down the heat exchange at the bound-
ary layer and acts as a thermal barrier (Fig. 3B). Con-
cerning H-10PVP, when the first PVP layers are fully 
degraded, the flaming combustion stops and the char 
starts its additional function of fire shield, protecting 
the underlying material, even at very high tempera-
tures (> 600 °C). After almost 1 min  (TB = 705 °C) of 
flame application, H-10PVP still appears structurally 
intact. The flame does not burn through the sample: 
indeed, its back surface is free of holes and only mar-
ginally burned. Conversely, the hemp sample gives a 
BTT of around 18 s  (TB = 594 °C), which further under-
lines the low surface flammability and high burn-
through resistance of H-10PVP.

Thermal and fire performances 
of the multilayer material

To investigate the thermal decomposition profile of 
the multilayer material, thermogravimetric analysis 
was performed under nitrogen and air atmosphere 
(Table 2). The same measurements were carried out 
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on PVP-silica and hemp to study the main differences 
with H-10PVP. The presence of hemp in the multilayer 
materials results in a beneficial effect on the pyrolysis 
of H-10PVP, as it starts to decompose at higher  T10% 
compared to PVP-silica. On the other side, H-10PVP 
is also made of PVP-silica blankets, which are full of 
silica and titanium dioxide nanoparticles, both causing 

an anticipation of  T10% and a significant increase in 
the residual char at 800 °C, compared to hemp. Both 
the inorganic species show weak acidic characteris-
tics promoting the dehydration of the polymer matrix 
and its charring behavior. Therefore, the ceramic 
char formed from the decomposition of H-10PVP, 
especially its first layers, lower the heat exchange at 

Figure 3  Results of the burn-through test on hemp and H-10PVP multilayer sample: a Back temperature of the sample as a function of 
time; b IR camera images taken at different times, with the indication of the TTI and BTT.

Table 2  Thermal data 
evaluated from TGA curves 
of all samples in  N2 and 
air.  T10% is the temperature, 
at which 10 wt.% loss is 
recorded.  Tmax1 and  Tmax2 are 
the temperatures, at which 
the weight loss rate reaches 
the maximum; the residues at 
 Tmax1 and  Tmax2, and 800 °C 
are also reported

Sample T10% (°C) Tmax1 (°C) Tmax2 (°C) Residue (wt.%) at

Tmax1 Tmax2 800 °C

Nitrogen
PVP-silica 240 369 – 74 – 47
H 285 358 – 45 – 12
H-10PVP 303 340 – 69 – 34
Air
PVP-silica 287 331 512 78 52 44
H 270 340 398 54 10 0
H-10PVP 247 362 572 76 56 45
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the boundary phase and act as thermal shield for the 
underlying material during the pyrolysis [21, 62]. In 
air atmosphere, the presence of acidic inorganic par-
ticles in H-10PVP leads to the lowest  T10%; however, 
silica and titanium dioxide nanoparticles also boost 
the barrier effect of char toward the oxygen diffusion, 
shifting the main mass losses to higher temperatures 
and allowing for a residual mass at 800 °C comparable 
to that of PVP-silica, attesting a protective effect on the 
hemp substrate (Table 2).

Given the above, the combined use of PVP-silica 
blankets, titanium dioxide nanoparticles, and hemp 
in manufacturing the multilayer material concurs to 
obtain a product with good overall thermal stability.

To shed light on the flame retardant mechanisms 
taking place during the combustion of H-10PVP, its 

fire behavior was studied, in comparison to that of 
hemp alone, through forced-combustion tests by 
cone calorimetry. Figure 4A and Tables 3 and 4 show 
that the deposition of PVP-silica blankets on hemp 
completely changes its fire performance. The com-
bustion of H-10PVP starts with the decomposition of 

Figure 4  a Heat release rate (HRR) curves for hemp and H10-
PVP from cone calorimetry tests; b SEM images, FTIR spec-
tra and EDX elemental analysis data of char samples collected 

in two different spots of the H10-PVP after burn-through tests 
(CHAR 1 and CHAR 2); C Schematic representation of the flame 
retardant mechanism occurring in the multilayer material.

Table 3  Results from cone calorimetry tests for the investigated samples

TTI = Time To Ignition, TTFO = Time To Flame Out, THR = Total Heat Release, HRR = Heat Release Rate, pkHRR = peak of Heat 
Release Rate

Sample TTI (s) TTFO (s) T HR (MJ/m2) ΔTHR (%) HRR (kW/m2) ΔHRR (%) pkHRR 
(kW/m2)

Residue (wt.%)

H 18 47 2.2 – 15.7 – 98.2 1.1
H-10PVP 22 96 4.4  + 50 23.1  + 47 84.0 34.8

Table 4  Smoke parameters from cone calorimetry tests for the 
investigated samples

TSR = Total Smoke Release, SEA = Specific Extension Area

Sample TSR  (m2/
m2)

ΔTSR 
(%)

SEA 
 (m2/kg)

ΔSEA 
(%)

CO/CO2

H 33.3 – 233 – 0.06
H-10PVP 4.9 − 85 37 − 84 0.11
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PVP, which is a well-known easily flammable poly-
mer [21, 63], and it is followed by the formation of 
a ceramic layer that protects the underlying part of 
the sample from further degradation [64, 65]. Prob-
ably, the largest amount of hemp is allocated in this 
underlying part, which is only poorly influenced by 
the combustion process, due to the ceramic layer act-
ing as an efficient barrier toward both heat and oxy-
gen diffusion. Considering the multilayer material, 
silica nanoparticles compose the skeleton of PVP fib-
ers, as demonstrated in a previous work [57], and its 
surface is characterized by the presence of titanium 
dioxide nanoparticles. Both these aspects account 
for an increase of the time to ignition of H-10PVP 
compared to the one of H (Table 3). In the case of 
H-10PVP, the release of combustible gases and heat 
propagation are significantly hindered by the inor-
ganic species, which are intimately bonded to the 
polymer matrix. As shown in Fig. 4A and Table 3, 
during the combustion of the multilayer material, 
the heat is released over a longer time, which may 
be beneficial in all the applications where H-10PVP 
is employed as a passive fire protection component.

Unlike H, the combustion of H-10PVP causes 
the production of a huge amount of residual char 
(Table 3), likely ascribed to (1) the acidic characters 
of Si–OH and Ti–OH groups promoting the dehydra-
tion of the PVP matrix and its carbonatization, and 
(2) the formation of inorganic polymeric substruc-
tures, containing silicon- and titanium-based moie-
ties, able to boost the thermal shielding action of the 
carbonaceous material [65, 66]. The peculiar chemi-
cal composition of H-10PVP allows for the occur-
rence of the above flame retardant mechanisms in 
both condensed and gas phases during the combus-
tion, as also supported by the slight increase in CO/
CO2 (Table 4), which are responsible for the different 
flame retardant features of the multilayer material 
compared to hemp.

This flame retardant action enables H-10PVP to 
work as an outstanding smoke suppressant, as it 
shows a remarkable decrease of both TSR (85%) and 
SEA (84%), compared to H. The inorganic nanostruc-
tures do not affect only the time to ignition but also the 
total smoke release, as the inorganic polymeric sub-
structures in the residual char contribute to reducing 
the release of combustible volatiles, the diffusion of 
oxygen, and the production of smoke gases (e.g., phe-
nol, cresol, carbon dioxide, naphthalene, anthracene) 
during the combustion of the multilayer material [66].

To further investigate the phenomena taking place 
in the condensed phase, the residual char obtained 
from the combustion of H-10PVP, submitted to the 
flame of a small-scale butane burner (see Sect. "Ther-
mal and fire performances of the multilayer mate-
rial"), was deeply studied by ATR-FTIR and SEM–EDX 
analysis (Fig. 4B). Figure 4B gives a complete over-
view of the chemical compositions and morphologies 
related to different portions (CHAR 1 and CHAR 2) 
of char arising from the tested sample. Both CHAR 1 
and CHAR 2 show the same functional groups of the 
unburned sample, also confirming a significant reten-
tion of silicon and titanium after the combustion. The 
amount of silicon and titanium progressively increases 
moving from CHAR 1 to CHAR 2, while the content 
of carbon strongly decreases, especially in comparison 
with the elemental composition of the unburned mate-
rial. It is worth mentioning that the EDX analysis does 
not detect the presence of carbon in the case of CHAR 
2 (Fig. 4B), as it forms in the region where the flame 
is applied during the burning test, causing the gen-
eration of a compact and continuous ceramic shield 
made of inorganic polymer substructures (i.e., Si–O-Ti 
moieties). From a morphological point of view, Fig. 4B 
provides clear evidence that the PVP-silica fibers are 
still present in CHAR 1 and CHAR 2, though the ones 
in CHAR 2 are most likely composed of inorganic 
polymers rising from cross-condensed substructures 
(Fig. 4C). This ceramic char looks so effective in pro-
tecting the underlying material that it is possible to 
observe some residual hemp with its characteristic 
texture: this finding may explain the good mechani-
cal properties of H-10PVP, even during the application 
of a flame (see Sect. "Mechanical robustness and flam-
mability behavior of the multilayer material"). Finally, 
the ATR-FTIR spectra of CHAR 1 and CHAR 2 reveal 
the appearance of a strong band at 1577  cm−1 related 
to the C = C stretching vibration highlighting a sig-
nificant carbonization via dehydration of PVP matrix 
promoted by the acidic Si–OH and Ti–OH groups. All 
these results further confirm a strong flame retardant 
action in the condensed phase and shed some light on 
the features that enable this multilayer material to act 
as an effective smoke suppressant. It should be noted 
that these performances were achieved through the 
use of silica and titania nanoparticles, without any hal-
ogenated, epoxy, or aromatic components, i.e., poten-
tially toxic and endocrine-disrupting compounds con-
tained in many polymeric materials [67, 68]. Hence, 
in the disposal or recycling of the product at the end 
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of life, no harmful substances would be released into 
the environment. This multilayer material, obtained 
by a sustainable and simple route, represents a viable 
option to employ self-extinguishing nonwoven PVP 
fibers as fire protection component in combination 
with an easy flammable hemp-based product as rein-
forcement filler.

Tensile behavior of the multilayer material

To study the tensile response of hemp and to further 
support the mechanical robustness of the multilayer 
material (see Sect. "Mechanical robustness and flam-
mability behavior of the multilayer material"), their 
stress–strain curves were collected (Figures S3 and 
S4). In agreement with previous works [69], after an 
initial stage of structural readjustment of the fabric 
meshes, the specimen stiffens for strains beyond 5%. 
This results in a steeper stress increase up to a maxi-
mum value of about 55 MPa, followed by failure of 
the fabric due to its further elongation that causes 
progressive tearing. The slope of the steepest section 
of the stress–strain curve, essentially representative of 
the specimen’s stiffness, evaluated by a linear fitting, 
was approximately 600 MPa. Regarding the multilayer 
sample, the specimens appeared more delicate due to 
the presence of the electrospun PVP-silica nonwo-
ven coating. Thus, special care was paid during the 
clamping of the specimens to avoid their premature 
damage, and the mechanical response was quite differ-
ent. In particular, as clearly shown by the trend of the 
stress–strain curve presented in Figure S4, the tensile 
strength, again negligible for strains lower than 15%, 
shows a non-monotonic trend with a first increase up 
to about 2 MPa, followed by a partial yielding and a 
second increase until reaching a maximum stress of 
about 5.5 MPa. For further elongations, a noisy trend 
of the curve is observed, essentially due to a marked 
cleavage of the coating layers and tears in the inter-
nal fabric layer. In other words, the multilayer sam-
ple (H-10PVP) shows a mechanical response typical 
of materials that undergo delamination effects before 
catastrophic failure under load. Moreover, even in this 
case, it is possible to estimate the stiffness of layers of 
electrospun PVP and internal hemp fabric by evalu-
ating the slopes of the two increasing stress sections 
(see fitting lines drawn in Figure S4). The results pro-
vided stiffness values approximately equal to 30 MPa 
and 50 MPa, respectively, i.e., one order of magnitude 
lower than the hemp fabric alone. This adverse effect, 

combined with a significant reduction in the maxi-
mum bearable stress, can be ascribed to the structural 
modifications undergone by the hemp fibres during 
the preparation phase of the multilayer sample and it 
is partly predictable given the enhanced wetting state 
of the hemp fabric resulting from the tested samples. 
However, these results from the tensile tests well 
agree with the qualitative observations concerning the 
mechanical robustness of the multilayer material (see 
Sect. "Mechanical robustness and flammability behav-
ior of the multilayer material" and Video 1).

Prediction of time to ignition, total heat release 
and peak of heat release rate of the multilayer 
material

Application of the artificial neural network

Artificial neural networks (ANNs) are machine learn-
ing models largely employed for classification and 
regression in various application fields [31]. Like our 
brain, these networks are based on large collections of 
neurons linked by axons. In an artificial setup, neurons 
are replaced by neural units establishing connections 
to form a network. The strength of these connections 
can be either increased or decreased using a particular 
activation function, determining the neuron’s output 
[31]. In a few words, ANNs represent complex non-
linear mathematical models able to convert a set of 
independent variables x =  (x1, …,  xn), referred to as net-
work inputs into dependent variables y =  (y1, …,  yk), 
which are the network’s outputs. The outcomes pro-
duced by the network are influenced by a collection 
of parameters w =  (w1, …,  wn), also known as weights. 
Equation 2 describes the way the network’s outputs 
are derived from inputs:

where:  xj is the jth input,  wj is the jth weight, b is the 
bias, y is the output, and f is the activation function.

In the training stage of an ANN, neurons collect 
data and then store them in weights and biases to be 
used later in the prediction stage. The activation func-
tion, denoted as f, typically acts as a threshold func-
tion, triggering only the neurons matching the thresh-
old criteria, and responsible for moving the signal to 
subsequent neurons. Sigmoid, nonlinear stepped, or 
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logistic functions are examples of activation functions. 
The training process involves an iterative procedure 
(i.e., backpropagation), which allows to appropriately 
adjust weights based on the input data. The final objec-
tive of this phase relies on finding the weight values 
able to reduce a specific error function. A backpropa-
gation ANN algorithm may be optimized by different 
approaches, for example using the Bayesian regulari-
zation, which makes possible the development of a 
model with more efficient generalization capability 
[44]. An ANN is generally composed of three sections 
with varying numbers of neurons: one input layer, 
multiple hidden layers, and one output layer. Within 
these internal layers, the input signals are transmitted 
from the input to the output layer, as shown in Fig. 5A. 
One of the models developed in this research work is 
a fully connected feed-forward artificial neural net-
work based on a multilayer perceptron. Particularly, 
two different feed-forward ANNs were implemented, 
one for each parameter to be predicted. The model’s 

architecture and the layout of each layer are reported 
in Fig. 5B, showing both the ANNs. The structure 
mainly consists of one input layer with 15 variables, 
one hidden layer with 8 neurons (i.e., half plus one the 
neurons in the input layer), and one output layer with 
1 neuron, returning the predicted parameter value of 
a specific textile material.

To predict the values of TTI and pkHRR for 
H-10PVP material, the networks perform a locally 
weighted regression through a K-NN algorithm. This 
supervised machine learning technique is used to 
weigh the training data based on their proximity to the 
new data, as each training data point receives a weight 
that is inversely related to its distance from the new 
data point (as shown in Figure S5). Therefore, dur-
ing the regression process, the classifier prioritizes the 
local data (i.e., the training data within the K-regions 
closest to the new data), improving the accuracy of 
the predictions compared to the traditional regression 
methods [70].

Figure  5  a Generic representation of an Artificial Neural Net-
work (ANN) with three layers. b ANN models developed for the 
prediction of the TTI and pkHRR parameters. More in detail: 
weight per unit area was calculated as reported in Sect. "Experi-
mental characterization", pkHRR is the peak of the heat release 
rate, residue (CC) is the residue from cone calorimetry tests, 
 T5% and  T10% are the temperatures, at which 5 wt.% and 10 

wt.% losses in air (Air) and nitrogen  (N2) were recorded,  Tmax1 
and  Tmax2 are the temperatures, at which the weight loss rate 
reached maximum, TGA residues indicate the residual masses at 
T > 600 °C, Total Burning Time (VFST) and Total Burning Rate 
(VFST) and the Residue (VFST) were measured during and after 
the vertical flame spread test (VFST), TTI is the time to ignition, 
THR is the total heat release.
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In the training phase, MAPE was used as an indica-
tor for the process related to the tuning of hyperpa-
rameters, providing the model’s error for a particular 
combination. The minimization of this error involved 
the use of a “Parameter Optimization Loop (POL)” 
node. POL node was employed to find the best combi-
nation of hyperparameters (such as the “K” parameter 
of K-NN algorithm and the internal hyperparameters 
of the ANN), able to minimize the global error result-
ing from the application of locally weighted regression 
on each subset of the input dataset (extracted through 
the “X-Partitioner” node). We also used a hill-climbing 
search method to find the best combination of hyper-
parameters [71]. The following optimal values were 
found by this methodology:

• K = 3, learning rate equal to 0.001, momentum equal 
to 0.1 and number of epochs equal to 7300 for the 
prediction of TTI parameter;

• K = 2, learning rate equal to 0.005, momentum equal 
to 0.1 number of epochs equal to 8000 for the pre-
diction of pkHRR parameter.

Then, the validation of the hyperparameters (the 
ones found using the optimization loop) was carried 
out by splitting the input data (Table S3) into two sub-
sets: training set (Table S4, 70% of the input data) and 
validation set (Table S5, 30% of the input data). The 
validation dataset was used not only to perform the 
predictions but also to compare the predicted param-
eters with the actual values. The predicted values of 
TTI and pkHRR for H-10PVP sample from ANN mod-
els, applied on the whole input dataset (Table S3), are 
collected in Table 5, together with the MAPE values 
associated with the chosen hyperparameters. The 
predicted values were extracted through KNIME’s 
“Numeric Scorer” node. More specifically, based on 
the validation data, MAPE was evaluated around 0.468 
( ≅ 47%) for the TTI parameter and 0.404 ( ≅ 40%) for 
the pkHRR parameter (as shown in Table 5), proving 

that our algorithms are characterized by a “reason-
able” predictive capability (see Tables 1 and 5). The 
KNIME workflow employed in this research to imple-
ment the ANN models is presented in Figure S6.

APE values represent the errors measured on the 
test dataset and thus they are not comparable with 
the ones obtained from the validation dataset [54, 72]. 
This is especially true in cases where the test data-
set consists of only one example. Therefore, although 
the APE values associated with the test dataset show 
very low and promising values, it is still necessary to 
consider the MAPE values evaluated on the validation 
dataset to have an idea about the true capability of the 
ANN models.

Application of decision trees and gradient‑boosted trees

Among the machine learning tools, decision tree (DT) 
models represent a versatile and valuable methodol-
ogy to address classification and regression challenges 
[73]. The architecture of these models mimics the pro-
cess of human decision-making and thus decision 
trees break down a complex decision into a series of 
simple ones, facilitating the prediction of an output 
variable. A DT consists of nodes and branches form-
ing a tree-like structure, where each node represents 
a “decision” based on certain input features and the 
branches represent the outcomes of these decisions 
[74]. The final predictions are the leaves of the tree 
and the nodes at the lowest level. The root of the tree 
begins with the whole input dataset, which is then 
split into subsets based on the values assumed by the 
parameters. The goal of each step along the decision 
tree is finding the best split, that is the one providing 
the highest variance reduction for a specific node, as a 
lower variance within nodes results in more accurate 
predictions. The splitting of the input dataset contin-
ues and creates a hierarchy of nodes and branches 
until the model meets some stopping criteria, such as 

Table 5  Predicted values of TTI and PHHR for the multilayer 
material (H-10PVP) resulting from the application of ANN mod-
els on the input dataset. MAPE values are the model’s errors, 
estimated on the validation data, quantifying the effectiveness 

and the reliability of models. APE values represent the model’s 
errors, evaluated on the test data and associated with the chosen 
hyperparameters selected for the models

Parameter Actual value Predicted value MAPE APE

TTI (s) 22 19.12 0.468 (≅ 47%) 0.203 ( ≅19%)
pkHRR (kW/m2) 84 118.189 0.404 (≅ 40%) 0.299 ( ≅ 17%)
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a maximum depth of the tree or a minimum number 
of samples per leaf. In regression problems, decision 
trees (also called “regression trees”) predict numerical 
values by segmenting the “input space” into distinct 
regions, where the prediction for each leaf is typically 
determined by the average outcome of the training 
instances within that region [75]. Figure 6 shows the 
typical structure of a DT (Fig. 6A) and its capabil-
ity to separate the input space into different regions 
(Fig. 6B).

Moreover, the working process of DTs inherently 
makes this machine learning tool particularly indi-
cated for handling missing values, which is a com-
mon issue in real-world input datasets. This peculiar 
feature of DTs allows to manage missing data without 
requiring extensive preprocessing or replacing strate-
gies. This aspect is significantly advantageous, as the 
integrity and the statistical distribution of the original 
input dataset are preserved. Gradient Boosted Trees 
(GBTs) enhance the predictive performance of DTs by 
combining the results of multiple DTs models. More 
in detail, the application of GBTs on an input dataset 
leads to an ensemble, as each decision tree focuses 
on reducing the error made by its predecessor, hence 
improving the overall model’s performance. GBTs 
methodology has proven its effectiveness in machine 
learning challenges where the implementation of 
a single DT cannot provide a satisfactory level of 

predictiveness [76]. GBTs are based on an optimization 
algorithm, named “Gradient Descent”, involving the 
minimization of a loss function, which quantifies the 
difference between the predicted and actual outcomes 
at each iteration [77]. The residual values of several 
iteration steps represent the training dataset of a next 
tree. This latter tries to fix the error (i.e., the difference 
between the prediction of a current tree and the actual 
target value) made by the previous one through the 
prediction of its error. This iteration process allows 
for improving the model’s predictiveness, as the trees 
learn by doing (see Fig. 7).

The gradient descent process aims to get as close 
as possible to the minimum of the loss function and 
it repeats for a number of iterations until the error is 
no longer significantly reduced. The gradient refers 
to the direction where the next tree lowers the total 
prediction error based on the previous predictions and 
the gradient of the loss function. In other words, for 
a given loss function L(y, F(x)) , where x is the given 
input, y is the actual outcome value and F(x) is the 
predicted value given the input x, the loss function 
quantifies how far off our predictions are from the 
actual values. In regression tasks, common choices 
for the L function are represented by mean squared 
error and MAPE. The gradient of the loss function 
points toward the direction where the loss function 
increases more sharply. The gradient is considered 

Figure 6  a An example of decision tree and b the resulting input space subdivision.
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with a negative sign, as the minimization of the loss 
occurs in the opposite direction of the gradient. For a 
given set of predictions F(x), the gradient of the loss 
function with respect to these predictions at each point 
 xi is calculated as shown in Eq. 3:

The equation gives back how to adjust the predic-
tions F

(
x
i

)
 to decrease the loss for each instance i . The 

size of the steps taken in the gradient descent process 
is controlled by a parameter known as “learning rate”, 
which balances the speed of learning against the risk 
of overfitting (i.e., the model overly adapts to the 

(3)g
i
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i
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i

))
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training data and then fails on new data). The gradient 
descent algorithm is graphically shown in Figure S7.

As for the ANN models, we trained two separated 
GBTs models (one for each parameter to be predicted, 
i.e., TTI and pkHRR) and measured the error using 
MAPE as an indicator. To compare the outcomes 
resulting from the two types of models (ANN and 
GBTs), the tuning of the hyperparameters was per-
formed by employing the same procedure followed 
in the case of the ANNs (see Sect. "Application of the 
artificial neural network"). Also, the same training 
dataset and validation dataset (see Tables S4 and S5) 
were considered for the application of GBTs models. 
The hyperparameters of GBTs models are represented 
by the number of trees, related to the ensemble, and 

Figure 7  The building process of Gradient Boosted Trees (GBTs), starting from an input dataset.
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the learning rate. The optimal values found for the 
hyperparameters from the parameter optimization 
loop are (1) the number of trees equal to 400 and (2) 
the learning rate equal to 0.001, for the prediction of 
both parameters. By using the whole input dataset 
(see Table S3), the implementation of GBTs models on 
validation data gives the predicted values (extracted 
through KNIME’s “Numeric Scorer” node) of TTI 
and pkHRR for H-10PVP sample listed in Table 6. 
MAPE values, calculated on the validation data, are 
0.431 ( ≅ 43%) and 0.336 ( ≅ 34%), respectively for the 
TTI parameter and the pkHRR parameter. The lower 
MAPE values compared to those resulting from the 
application of ANNs prove that GBTs models are 
the best choice for the prediction of TTI and pkHRR 
belonging to the considered textile materials. Also, the 
lower MAPE values (see Tables 1, 5, and 6) addition-
ally confirm that decision trees generally perform bet-
ter and are more reliable than ANNs, when the input 
datasets contain missing values. The KNIME work-
flow employed in this research to implement the GBTs 
models is reported in Figure S8.

Overall, decisional trees significantly differ from 
ANNs. As above mentioned, ANNs are composed of 
different interconnected layers of neurons making the 
prediction, while decisional trees are tree-like struc-
tures with nodes representing the decisions. The main 
difference between the two models is the learning 
approach. Indeed, ANNs learn pattern through weight 
and biases adjusted by backpropagation, while the 
decision trees split the data on the basis feature con-
ditions to create branches. There are no possibilities to 
identify, from the very beginning, the best performing 
ML model. Indeed, as it shines through this research 
work, the only possible way relies on the development 
of the models and on the comparison of the predicted 
data with the experimentally measured values (actual 
values). Besides, there are other parameters that may 
impact on the quality of the ML model, namely the 
completeness of the database, its statistical significance 

and reliability, and the type of input parameters, 
among others. In the present work, based on the 
given boundary conditions (see Sect. "Machine learn-
ing modelling and design strategy"), decisional trees 
must be preferred to ANNs, as they provide the lowest 
values of model’s errors (MAPE and APE, Tables 5 and 
6) and computational expense.

Conclusions

To overcome the poor mechanical behavior of electro-
spun-based materials and to widen their application in 
advanced sectors, in this research work, we manufac-
tured a multilayer material (MM) based on thermally 
treated PVP-silica based electrospun fibers,  TiO2 nano-
particles, and hemp, exploiting surface charge interac-
tions. An intensive washing in water of MM did not 
affect its surface chemistry, morphology, and layer 
adhesion. Unlike electrospun PVP-silica blankets, MM 
showed high stretchability, satisfactory tensile behav-
ior, also carrying a load during the application of a 
direct flame and showing an acceptable mechanical 
behavior, as assessed through tensile tests. Compared 
to the easily flammable hemp, the designed multilayer 
material exhibited V0 class in the UL 94 vertical burn-
ing tests, as well as slightly higher ignition time, and 
85% lower total smoke release in forced-combustion 
tests. The combustion of the MM resulted in the for-
mation of a ceramic and coherent residual char, slow-
ing down the diffusion of smoke gases and exerting a 
hybrid flame retardant action in both condensed and 
gas phases. Besides, this char acted as an excellent fire 
shield, as it appeared impenetrable to the blowpipe 
flame applied during the burn-through test of MM.

Finally, an artificial neural network was tested to 
predict two important cone calorimetry parameters, 
i.e., the Time to Ignition and peak of Heat Release 
Rate, based on a dataset of physical, thermal, and 
fire parameters of treated textiles. We demonstrated 

Table 6  Predicted values of TTI and pkHHR for the multilayer 
material (H-10PVP) resulting from the application of GBTs mod-
els on the input dataset. MAPE values are the model’s errors, 
estimated on the validation data, quantifying the effectiveness 

and the reliability of models. APE values represent the model’s 
errors, evaluated on the test data and associated with the chosen 
hyperparameters selected for the models

Parameter Actual value Predicted value MAPE APE

TTI (s) 22 19.986 0.431 (≅ 43%) 0.277 ( ≅ 28%)
pkHRR (kW/m2) 84 78.307 0.336 (≅ 34%) 0.158 ( ≅ 16%)
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that the integration of ChatGPT to perform a data 
enhancement and the implementation of well-
designed machine learning models, featuring Gra-
dient Boosted Trees, allow for a prediction with 
satisfactory accuracy, evaluated by Absolute Per-
centage Errors, even in case of some missing input 
data. The results of this research may pave the way 
for the design of more sustainable flame retarded 
functional multilayer materials based on electrospun 
polymers and natural fibers, and the use of reliable 
AI-assisted models that allow for the prediction of 
materials parameters, hence saving time and experi-
mental efforts.
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