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Multiorder Sequential Joint Inversion of Gravity
Data With Inhomogeneous Depth Weighting: From

Near Surface to Basin Modeling Applications
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Abstract— We have established a workflow for a multiorder

sequential joint inversion (MOSJI) of gravity and gravity gradi-

ents, that aims at modeling vertically stacked sources in various

geological scenarios. We consider the joint inversion of the gravity

data and one of the hth-order derivatives of the gravity data. The

first step involves separate inversions, which are fundamental to

fully exploit the different wavelength-content of the two quantities

to invert. The joint inversion is warranted by using the scheme

of a sequential joint inversion with a cross-gradient constraint.

The algorithm is able to exploit different types of a priori

information, such as compactness and inhomogeneous model-

weighting function. First, we test this approach on a realistic

synthetic model from the SEg Advanced Modeling (SEAM)

Phase I model, involving salt and mother salt structures. Then,

we consider a synthetic model containing either shallower or

deeper karst cavities. These tests produced a better modeling

of both shallower and deeper sources, when compared to the

separate unconstrained inversions. Thanks to these good results,

we apply our method to a real case for cavity detection in

Southern Spain. The method shows an accurate modeling of the

expected sources. In all the aforementioned tests, we obtain a

strong decrease of the cross-gradient values and a meaningful

linearization in the scatter plots of physical parameters, both

indicating the good performance of the joint inversion.

Index Terms— Cross-gradient, gravity, gravity gradients, joint

inversion, near-surface, salt modeling, workflow.

I. INTRODUCTION

G
RAVITY field has been widely used in geophysics in
different scenarios, from exploration to natural hazards.

The interpretation of these data may benefit from additional
information brought from the gravity gradient tensor (GGT)
measurements. In a Cartesian system, GGT is expressed as
the second-order derivatives of the Earth’s gravitational poten-
tial components in x-, y-, and z- directions. Since the late
1700s, gradients of gravity field have been acquired [1] and
the vertical gradient [2] has been geologically interpreted to
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estimate the density-contrasts of underground bodies such as
salt domes, ores, cavities, and others.

With modern technology derived from military applications
[3], the opportunity to measure the GGT components has
represented a significant improvement compared to the gravity
survey, where only the vertical component of the field (Gz)

is acquired. Gravity and gravity gradient decay in a different
way and therefore are characterized by different wavelength
content, thus being more sensitive to deep or shallow sources,
respectively.

These datasets are interpreted by forward modeling or inver-
sion. However, we must deal with the inherent non-uniqueness
of the solution. Geophysicists face this type of problem intro-
ducing a priori information such as a geological knowledge
of the area or interpretation of the subsurface coming from
other methodologies. Another way to decrease ambiguity is to
invert different datasets at the same time. In this framework,
we could invert single components of the GGT (i.e.: Gzz)

or combinations of them [4], [5], [6]. Different authors have
explored these opportunities. Biegert et al. [7] found that Gz
and GGT inversion could be used to define the thickness
of the salt and its top, respectively. Capriotti and Li [8]
developed an algorithm to jointly invert Gz and GGT adopting
a unique data misfit. They achieved improved solutions at
depth when compared to inverting only the gravity gradient
data for a simple block and a basin-like test. Paoletti et
al. [9] performed a joint inversion on the Vredefort Crater
and analyzed its performance through a singular value anal-
ysis. They found that GGT does not improve the resolution
of inverted models, these last not depending on the used
components.

These results agree with the findings by Ialongo et al. [10],
who analyzed separate inversion of a target source and found
an invariant behavior of the models retrieved from different h-
order derivatives of the potential field. However, some loss of
resolution occurred in deeper layers suggesting that we should
prefer a low-order differentiation to retrieve better information
at depth. Capriotti and Li [11] jointly inverted gravity and
gravity gradient fitting each dataset at its own noise level.
They adopted a weighting parameter among the different parts
of an enlarged data misfit and obtained improved models in
basin-like tests.

Although the actual improvement brought by jointly invert-
ing gravity and gravity gradients data is still debated, we can
address this topic by looking at both the positive and negative
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findings mentioned before. In fact, we can consider the results
of Capriotti and Li [11] as an opportunity to get different
information from different orders of vertical derivatives.

In order to fully exploit the different wavelength contents
of these datasets, we have to find an appropriate strategy to
not combine all the data in a unique data misfit. This leads
to the strategy of treating them as two separate datasets and
combining resulting models via a structural constraint called
cross-gradient constraint. The cross-gradient constraint was
first introduced by Gallardo and Meju [12] and has been
applied to jointly invert different geophysical datasets to the
end of enforcing the structural similarity of the different
physical properties. Fregoso and Gallardo [13] were the first
to develop a cross-gradient joint inversion of magnetic and
gravity data. Later, Um et al. [14] introduced a coupled
inversion of large-scale seismic and electromagnetic data for
subsalt imaging. It can be seen as a sequential approach
including the cross-gradient constraint term. They split the
joint inversion into separate EM, seismic, and cross-gradient
inversions. This latter allows to constrain the resistivity model
based on a reference velocity model. The resulting resistivity
model will serve as an initial model for a new EM separate
inversion in an EM refinement process. The approach aimed
at an easy minimization of the cross-gradient term. However,
the cross-gradient minimization could worsen the data fitting.
In the subsequent iteration, the data misfit will be minimized
in separate inversions, which could indeed produce a lower
structural similarity. Gao and Zhang [15] proposed a strategy
to avoid this behavior using the model perturbations resulting
from stand-alone inversions to constrain the cross-gradient
minimization at each iteration.

Gross [16] introduced an algorithm for a weighted joint
inversion of gravity and magnetic data using a cross-gradient
constraint. He achieved an improved structural similarity
of the models thanks to a local weighting of the cross-
gradient. Zhang and Wang [17] introduced a joint inversion
based on structural coupling. They adopted a fast gradient
algorithm to solve the objective function, which was composed
of three terms: the data misfit, the cross-gradient, and the
total-variation regularization constraint. This latter led to a
more focused and sharp solution. Tavakoli et al. [18] intro-
duced a sequential workflow for the joint inversion of gravity
and magnetic data and obtained a successful modeling of
evaporite structures. Fang et al. [19] extended the sequential
approach to a 3-D joint inversion of gravity and magnetic
data. Meng et al. [20], Vatankhah et al. [21], and Zhang et al.
[22] proposed different approaches to perform a cross-gradient
joint inversion of gravity and magnetic data. Joint inversion of
gravity and gravity gradients with cross-gradients were tested
on simple synthetic sources for environmental applications
[23] and for satellite data in spherical coordinates [24]. Wang
et al. [24] obtained improved results with synthetic models of
adjacent sources similar to lunar gravity data.

Thanks to the lessons from these works, we adopt a
sequential procedure to jointly invert Gz and one of its
higher-order vertical derivatives. Note that this is different
from previous works on sequential inversion, as we are now
searching for the same physical property (density contrasts).

We aim to exploit the different wavelength content of Gz
and its higher-order vertical derivatives in order to retrieve
different and complementary information on both surface and
deep sources. We also introduce different types of constraints,
either hard or soft. Hard constraints are the reference model
and, where available, boundaries on the physical properties
from seismic interpretation. Soft constraints are mainly built
by introducing the inhomogeneous version of the model
weighting function [25]. We seek a compact solution [26],
as we aim to recover geological bodies instead of surfaces
that would require smoother solutions.

We demonstrate the effectiveness of this strategy, by apply-
ing it to a simple synthetic model and to the SEg Advanced
Modeling (SEAM) Phase I model. Then, we perform our joint
inversion on a real case from Southern Spain, to investigate
layered karst systems.

II. METHODOLOGY

A. Joint Inversion Algorithm
Gallardo and Meju [12] defined the cross-gradient constraint

between two physical properties at a given point (x, y, z) with
positive z-axis pointing downward as follows:

ω (ω, q) = →ω(x, y, z) ↑ →q(x, y, z) (1)

where ω and q are two physical properties. In a 2-D case,
we have only the εy of the cross-gradient as the x- and z-
components vanish.

We add the cross-gradient constraint as a penalty term to the
objective function [27]. In this case, the combined objective
function for the joint inversion of two datasets is

ϑ(ω, q) = ϖ1(ω) + ϖ2(q) + ϱ(ω, q) (2)

where ϖ1(ω) and ϖ2(q) contains the data-misfit and the model-
norm terms for each dataset; ϱ(ω, q) is the norm of the
cross-gradient; subscripts 1 and 2 refer, respectively, to the two
different datasets; and ω and q are the two different physical
parameter vectors.

Following the purpose of this work, we now rewrite (1) as
follows:

ω (ω1, ω2) = →ω1(x, y, z) ↑ →ω2(x, y, z) (3)

where ω1 and ω2 refer to density models recovered from the
gravity and the gravity gradient, respectively.

Equation (2) becomes

ϑ(ω1, ω2) = ϖ1(ω1) + ϖ2(ω2) + ϱ(ω1, ω2) (4)

where ϖ1(ω1) and ϖ2(ω2) are the gravity and gravity gradient
data objective functions and ϱ(ω1, ω2) is the 2-D cross-
gradient.

At each j th iteration, the model perturbations
ςε1 j and ςε2 j are determined via separate inversions
and used to constrain the cross-gradient term minimization.
The system for the joint inversion of two datasets through
the minimization of the cross-gradient term ϱ(ω1, ω2) is after
[15]
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where I is the identity matrix; t1 and t2 are the partial
derivative matrices (ϕε /ϕω1 and ϕε /ϕω2, respectively) of the
2-D cross-gradient. The solutions of (5) are the cross-gradient
constrained model perturbations ςε̂1 j and ςε̂2 j . In this
way, we constrain the cross-gradient minimization with
the model perturbations retrieved from separate inversions.
Tavakoli et al. [18] used this strategy as the key step for their
sequential joint inversion algorithm.

B. Separate Inversions
The statement of any inverse problem is the relationship

between model parameters and data. If N samples have been
measured in an experiment, we can represent them as the data
vector d of length N . In the same way, model parameters are
represented as the elements of the vector m of length M . Both
the gravity and its hth derivative forward problems arise in the
linear form

d = Am (6)

where the matrix A is referred to as the kernel and is sized
N ↑ M .

The most common formulation of the inverse problem is
that based on the Tikhonov et al. [28] regularization. The idea
is to retrieve a regularized solution mµ as the minimum of the
combination of a residual norm and the side constraint [29]

min
{
↔(Am ↓ d)↔2

2 + µ2
↔Lm↔

2
2
}

(7)

where ↔Am↓d↔2 is the L2 norm misfit between the values Am

and the observed data d, measuring how the retrieved model
fits observed data; ↔m↔2

2 is the side constraint, measuring
the properties of the model; and L is the model-weighting
matrix and µ is the regularization parameter, which weighs
the minimization of the side constraint with respect to that of
the residual norm. For the sake of simplicity, we assume that
data errors in (7) are uncorrelated and of the same variance. So,
we can omit the data weighting matrix, usually expressed by
the covariance matrix C

↓1 [30]. L could include several types
of a priori information on the model (i.e.: depth weighting
function, compactness, reference model, etc.).

In fact, in ambiguous problems, like the potential field
one, the density model strictly relates to the supplied a priori
information. For example, the minimum-length assumption is
the simplest solution for underdetermined inversion problems.
However, this type of formulation implies a priori information
in the form that the solution is the shortest, it is to say that
it must be shallow and characterized by low values of the
physical property.

Requiring compactness for the sources is another form of
a priori information, which is indeed a strong requirement [10].
In this framework, different authors proposed to adopt a com-
pactness constraint [26], [31], [32] based on the minimization
of the area or the volume. In the 2-D case, Last and Kubik
[26] assumed a discretization of the source section in M cells
and proposed the following definition of area:

area = sp lim
↼↗0

M∑

k=1

m2
k

m2
k + ↼2

(8)

where ↼ is a small positive number needed to avoid the
singularity when mk = 0; s and p are the dimensions of each
kth cell.

This leads to a model weighting function in the form of the
following equations:

Lk =
(
m2

k + ↼
)↓1

. (9)

Thus, by introducing (9) in (7), we obtain

m = arg min
m

{
↔Am ↓ d↔

2
2 + µ2

M∑

k=1

m2
k

m2
k + ↼2

}
. (10)

However, further requirements may be accounted for by
choosing a specific model weighting function. Portniaguine
and Zhdanov [32] proposed to insert a model weighting
function in the form of the square root of the sensitivity
matrix. This approach led to a diagonal matrix, meaning that a
constant weight is attributed to each layer in which the model
is subdivided [33]. For this reason, deeper levels are weighted
more than shallower ones as the function scales the model
parameters with the sensitivity of kernel A.

We note that this form of a priori information is close to
the one suggested by Li and Oldenburg [34], [35], with the
weighting function expressed as follows:

w(x, y, z) =
1
z↽

(11)

where z is the depth of each layer in the model and ↽ is
an exponent depending on the type of potential field: ↽ =

2 for gravity data and ↽ = 3 for magnetic data. The authors
proposed these values by analyzing the decay of the field
of a single cell, in which the source volume is subdivided.
However, the field decay of a single cell has nothing to do
with the source distribution, which is the only quantity that
determines the decay of the field. For example, the decay of the
field of a sphere is different from that of a fault, independently
of the way (e.g., number of blocks, types of blocks) the source
volume is parametrized.

To fix this issue, Cella and Fedi [36] introduced a model
depth weighting exponent ↽ with a physics-related value,
which effectively depends on the model. They started from
the homogeneity law [37], [38] and demonstrated that an
appropriate value of ↽ is ↽ = N , where N is the structural
index of the source, rather than the power-law decay of a
single cubic cell. N may be estimated by specific techniques
[39], [40], [41], [42], [43], [44], [45], [46] or it may be
assumed as a priori information on the type of source. In this
sense, note that previous formulation [34], [35] becomes a
particular case of this more general relationship, since ↽ =

N = 3 holds only for homogeneous, spherical-like, source
distributions. The good behavior of this approach in compact
inversions has been discussed and the role of an appropriate
model weighting function has been proved to be even more
important in joint inversions [47], [48]. More recently, Vitale
and Fedi [25] generalized the approach of Cella and Fedi [36],
for fields generated by complex source distributions. They
proposed to assign ↽ at every block of the source-domain and
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Fig. 1. Workflow.

defined the model depth weighting function as follows:

w(x, y, z) =
1

z
[

↽(x,y,z)
2

] (12)

where ↽(x, y, z) is the depth weighting exponent in the source-
domain. We highlight that the inhomogeneous approach brings
a different weight for each kth cell of the model instead
of a constant value for each layer. Equation (12) is based
on the work by Fedi et al. [42], who stated that in the
harmonic region, any real field could be well approximated by
a homogenous field in a local sense. This leads to generalizing
the homogeneity equation into a multihomogeneity law, with
any real fields being characterized by a fractional and spatially
inhomogeneous homogeneity degree. To compute ↽(x, y, z) for
potential fields, it is necessary to estimate the homogeneity
degree n(x, y, ↓z) of the field at different scales or altitudes.
This brings to the necessity to upward continue the measured
field. In order to estimate n, we evaluate the scaling function of
the field at many altitudes [43], [46]. ↽(x, y, z) is so evaluated
as follows:

↽(x, y, z) = N (x, y, z) = ↓n(x, y, ↓z) + h (13)

where h indicates the differentiation order of the magnetic
field or of the gravity gradient and the change of sign of z
indicates that every value of n estimated in the harmonic region
is attributed to the specular position in the source-region.

In conclusion, we may define the model weighting function
for the kth block as follows:

Lk = wk
(
m2

k + ↼
)↓1

. (14)

So, (7) becomes

m = arg min
m

{
↔Am ↓ d↔

2
2 + µ2

M∑

k=1

w2
k m2

k

m2
k + ↼2

}
. (15)

Finally, our algorithm can incorporate a reference model
(mref) as follows:

m = arg min
m

{
↔Am ↓ d↔

2
2 + µ2

M∑

k=1

w2
k (m ↓ mref)

2
k

(m ↓ mref)
2
k + ↼2

}
.

(16)

C. Joint Inversion Workflow

Unless simple cases involve a single source, potential field
anomalies are produced by the superposition of different
source contributions, which interfere with each other. Thus,
many methods address the inversion problem by first sepa-
rating the effects of sources seated at different depths, but
this is one of the trickiest tasks in potential field modeling.
In general, standard filters often do not accomplish satisfacto-
rily this task, mainly because they are merely mathematical
tools applied to physical signals. Instead, physically based
transformations, such as upward continuation or differentiation
may be more useful. In our joint inversion, we try to take
advantage from gravity and its hth-order vertical derivatives,
because they enhance different contents at medium-to-large
wavelengths and at medium-to-short wavelengths, respectively.
We now define our workflow (see Fig. 1) for vertically stacked
sources modeling of Gz and its second-order derivative Gzzz .
Other combinations may be exploited that could involve also
fractional-order derivatives [49]. Prior to jointly invert our
data, we proceed with the computation of the inhomogeneous
depth weighting function (12). We compute ↽(x, y, z) on Gz
because it has a most complete set of contributions from
deep to shallow sources. In addition, we can build a reference
model by finding an unconstrained compact solution for Gzzz .
It is to say we impose ↽ = 0. Letting the compactness
to guide the process, we obtain a preliminary model of
the shallow sources with only slight contributions from the
deep-seated ones. We can enhance this reference model with
hard constraints from interpretation of other geophysical data
or geological/direct knowledge of the area (i.e.: wells, field
geology, etc.). The computation of high-order derivatives could
result in a rather low signal-to-noise. However, sometimes,
the first-order vertical derivative Gzz is directly measured,
especially during GGT surveys. These measurements could be
very useful to obtain stable higher-order derivatives. Usually,
vertical derivatives of potential fields may be computed numer-
ically; here, we adopt the stable algorithm of the integrated
second vertical derivative (ISVD) procedure [50]. Once we
have formed the two datasets, we must define the a priori
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Fig. 2. (a) Gzzz . (b) Gz . (c) ↽(x, y, z). (d) Synthetic density model.

information that we want to express in the model weighting
matrix L as specified before and then move to the joint
inversion.

The workflow exploits the powerfulness of a joint inversion
thanks to decoupling the minimization of the combined objec-
tive function in (4), in which the cross-gradient minimization
is used as a constraint on the iterative updates of the model per-
turbations as in (5). Thus, we can expect that the cross-gradient
minimization could help to balance the gravity field inversion,
which regards deep and shallow source contributions, with that
of the second-order vertical derivative of gravity, which would
include especially the contributions related to the shallowest
sources. We want to stress this aspect, as it represents a new
point of view on the joint inversion of potential fields. Special
tools will be used to make an adequate diagnostic of the
validity of the model and of the joint inversion (see synthetic
tests and real case sections).

III. SYNTHETIC MODELING

A. SEAM-Phase I Model
To test our approach with a synthetic realistic model,

we chose the SEAM- Phase I model [51]. It is a 3-D synthetic
model based on a deep-water salt domain in the Gulf of
Mexico. It includes a complex salt intrusive and its mother-salt
in a folded Tertiary basin. The physical properties of the
model and the related geophysical simulations are designed
to provide key tools for testing algorithms and workflow
in a realistic scenario. In fact, the model includes common

Fig. 3. (a) Observed and predicted data. (b) Gzzz inversion with ↽(x, y, z) =

0. (c) Model in a with an imposed threshold of ↓0.17 g/cc.

challenges faced in geophysical exploration, while having a
defined target to compare obtained results. We illustrate the
result obtained on the 2-D profile extracted at y = 4000 m
[Fig. 2(d)]. The model consists of 135 ↑ 60 cubic cells with
side size of 250 m for a total length of 34 km and a 15 km
maximum depth. The salt dome extends from 3 to about
8 km, while the top autochthonous salt layer is deeper than
12 km. Together with Gz [Fig. 2(b)], we compute Gzzz [Fig,
2(a)] and the inhomogeneous depth weighting function on
Gz [Fig. 2(c)]. In [Fig. 3(b)], we show the result of a compact
inversion of Gzzz under the assumption of a homogeneous ↽

equal to 0. It is clear that we are modeling in a reasonable way
only the shallowest source. The contribution of the deep-seated
source is not forced to the deeper portions of the model, but
it is modeled as a diffuse source around the salt dome. Its
density-contrast is very low, which is geologically unreliable.
In Fig. 3(a), we can appreciate the low data misfit given by
the root mean square error (RMSE). However, applying a
threshold of ↓0.17 g/cc to the model, we may isolate better
the contribution of the salt dome [Fig. 3(c)] and use it as
reference model in the joint inversion. The results of the joint
inversion are shown in Fig. 5. We begin to describe the models
resulting from separate inversions. They are clearly not able
to produce an adequate modeling of the salt features. Gz
inversion [Fig. 4(a)] produces a model that correctly recover
an increasing density contrast with depth but joins the salt
dome to the mother salt. This behavior is lost in the inversion
of Gzzz [Fig. 4(b)], which produces a compact salt dome but
with a deep root connecting it to the mother salt. Nevertheless,
both models even if they have a low data misfit, they could
not fix the vertical separation of the salt dome from its
mother salt, which is significant in basin modeling. On the



4700311 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 4. Model resulting from (a) separate inversion of Gz . (b) Separate inversion of Gzzz . (c) Convergence plots for separate inversions. (d) MOSJI on Gz .
(e) MOSJI on of Gzzz . (f) convergence plots for joint inversion.

Fig. 5. (a) Cross-gradients value of separate inversions. (b) Scatter plot of density models of separate inversions. (c) Magnitude of cross-gradient value of
MOSJI joint inversion. (d) Scatter plot of density models of MOSJI joint inversion.

other hand, in the joint inversion, Gz [Fig. 4(d)] is more
able to retrieve a rather complete model of the investigated
subsurface volume while we can see that Gzzz [Fig. 4euro]
produces a model with only the shallower source modeled in
a proper way, while targeting comparable values of data misfit
to those of separate inversions. The convergence plots of joint
inversion [Fig. 4(f)] are comparable to those of the separate
inversions. These plots demonstrate a similar computation
efficiency while including more constraints which lead to more
reliable solutions. As obvious, one of the improvements is the
enhanced structural similarity in the joint inversion models.
In fact, looking at the magnitude of cross-gradient values
of the separately inverted models, jointly inverted models
[Fig. 5(a) and (b)], we can appreciate a strong decrease in the

absolute values. It is also useful to compare the arrangement
of these values. While the separate inversions show values
which distribute on the whole space from the position of the
shallow-seated source toward depth, in the joint inversion mod-
els, they are concentrated at the boundaries of the shallower
source, meaning that only details due the discretization of the
model-space can be reviewed. An insightful result is obtained
when looking at the scatter plots of the recovered physical
parameters. We can appreciate the linearization of the values in
the jointly inverted models [Fig. 5(d)] with respect to common
separate inversions [Fig. 5(c)]. We can describe a diagonal
linear cluster. This diagonal trend has a differentiated behavior
in its final portion. In fact, some values with lower values in the
Gz model assume a higher value in Gzzz . This is because the
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Fig. 6. (a) Gzzz . (b) Gz . (c) ↽(x, y, z). (d) Synthetic density model.

Fig. 7. Model resulting. (a) Separate inversion of Gz . (b) Separate inversion
of Gzzz . (c) MOSJI on Gz . (d) MOSJI on of Gzzz .

sensitivity of Gzzz is addressed toward the salt dome, which
cause less accuracy in modeling the mother salt. It is important

Fig. 8. (a) Magnitude of cross-gradient value of separate inversions.
(b) Scatter plot of density models of separate inversions. (c) Magnitude of
cross-gradients value of MOSJI. (d) Scatter plot of density models of MOSJI.

to note that the salt dome has an average density contrast of
↓0.2 g/cc. For layered models, this is justified as the retrieved
density distribution takes the meaning of an equivalent density
contrast. It is to say that we have an actual density contrast
varying with depth, but we recover from inversion a value
close to the weighted mean. This concept was introduced
to describe an equivalence between a stratified basin and a
basin having the same shape but filled homogeneously with an
average density [52]. The same equivalence was demonstrated
in salt dome modeling with different density contrasts at the
various layers [46].

B. Karst Model

The karst model [Fig. 6(d)] is a grid of 50 ↑ 50 cells
sized 2 ↑ 2 m. It contains two bodies at different depths.
This setting represents a very complex but common challenge
in karst cavities detection for hazard assessment. The density
contrast between the sources and the background is set at
↓2.7 g/cc. The synthetic Gz [Fig. 6(b)] was computed with
spacing of 2 m, while Gzzz [Fig. 6(a)] was obtained thanks
to the ISVD method. Following the procedure described in
Section II, we computed ↽(x, y, z) matrix based on the Gz data
Fig. 6(c). Separate inversions do not produce a clear separation
between the two sources. In the model retrieved from Gzzz
inversion [Fig. 7(b)], the deep-seated source appears as a
low-density diffuse source. At the same time, the density of
the shallowest source is clearly overestimated. Model resulting
from Gz [Fig. 7(a)], produce a similar model, still missing a
proper density contrast, lateral extension, and depth position.
We can note that in this latter model, we have a slightly
improved recover of the deep-seated cavity. This reflects the
fact that Gz brings more information on the deepest source.
In general, we can state that nor the Gz or Gzzz are able
to recover a correct density distribution with only separate
inversions.



4700311 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 9. (a) Observed and predicted Gz . (b) Observed and predicted Gzzz . (c) Model resulting from joint inversion of Gz . (d) Model resulting from joint
inversion of Gzzz .

Fig. 10. (a) Scatter plot of physical parameters. (b) Magnitude of cross-gra-
dient values.

We now adopt the described workflow for the multiorder
sequential joint inversion (MOSJI). So, we used the described
procedure to build a reference model and the inhomoge-
neous model weighting function for Gz . Both the Gz and

Gzzz models [Fig. 7(c) and (d)] are instead able to describe
the shallower and the deep-seated sources. We can see a rather
accurate positioning of the cavities with a proper density
contrast. The model resulting from Gz [Fig. 7(c)] recovers
slightly better the deeper source with an improved overall
positioning and extension of the cavity when compared to
that produced by Gzzz . Once again, this reflects the different
sensitivities brought by the dataset. We noticed that the same
considerations done before for the data misfit are valid also in
this case.

The analysis of the cross-gradient values [Fig. 8(a) and (b)]
confirms the results obtained in the synthetic test at a basin
scale. The most interesting result is that in this case, we obtain
a linearization of the physical parameters in the cross-plot of
the jointly inverted models [Fig. 8(d)] with respect to that of
separate inversions [Fig. 8(c)]. In this case, we can appreciate
that we lose the divergent behavior in the tail of the cluster
observed in the previous test [Fig. 5(d)]. This is due to the
fact that in this model, both the sources have the same density
contrast.

IV. REAL CASE

We now apply our method to a real case for cavity detection
in Southern Spain. We investigated the Gruta de las Maravillas
in Aracena. It was previously studied by Martínez-Moreno et
al. [53] and interpreted with forward modeling. The cave lies
within marbles and its genesis is due to the dissolution of
these rocks. It consists of three different levels with a water
table that is present at 650 m a.s.l [54]. We performed our
joint inversion on the central part of the Line 4 [53], that we
resampled at 2 m [Fig. 9(a)]. We computed the Gzzz [Fig. 9(b)]
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as already discussed. Further information on the gravity data
can be found on the aforementioned works. The zero-level of
our model coincides with the maximum of the topography of
the line. Our model consists of 50 ↑ 35 cubic cells with a side
dimension of 2 m. In this case, we used a reference model with
the solution of an unconstrained preliminary inversion of Gzzz ,
which was cut at a threshold of ↓2.5 g/cc. This is justified as
a known density contrast of void in marbles.

Results suggest the presence of three shallow cavities with
a density contrast of around 2.7 g/cc, which well represents a
typical density contrast of air-filled cavities within marbles
[Fig. 9(c) and (d)]. These three sources have been also
retrieved in the modeling of Martìnez-Moreno et al. [53]. The
horizontal position is consistent between the forward model
and our interpretation, locating the shallow-seated group of
cavities at a distance from 180 to 250 m on the original
line. The central cavity of the group is slightly deeper in our
modeling than in the forward model [53], which locates this
cavity at about 20 m depth.

Following our approach, once again we are able to model
the deepest sources [Fig. 9(c) and (d)], thanks to their different
wavelength-content. We found a deeper cavity with its center
at about 80 m depth and with a 50 m extension. The forward
modeling performed [53] proposed an elongated horizontal
source between 50- and 75-m depth. The positioning is
slightly different in the two interpretations, but their ranges
are comparable. In addition, forward model [53] suggested
an elongated appendix on the upper right corner of this
cavity. We have a confirmation of this possible features in
our modeling. Martìnez-Moreno et al. [53] provide also resis-
tivity, induced polarization, and seismic modeling on the same
profile. Seismic data modeling clearly shows the presence of
the two lateral sallower cavities as low velocity zones with
a low number of rays respectively in the velocity model
and ray tracing coverage model. The central cavity is not
clearly interpretable, but its presence is confirmed by gravity
modeling presented both here and in the aforementioned work
[53]. Resistivity and Induced Polarization model are more
informative on the elongated appendix of the deeper sources
which is recovered in our results and suggested by the forward
modeling [53]. Analysis of the cross-gradient [Fig. 10(a)] is
comparable in magnitude and distribution with those obtained
in synthetic tests, with the highest values located on the
edges of sources. In the end, we obtain a linearization in the
cross-plot of physical parameters [Fig. 10(b)].

V. CONCLUSION

We propose a new approach to joint inversion of gravity
data for vertically stacked source modeling. It is based on the
sequential strategy introduced by Tavakoli et al. [18] but it is
here applied to recover the same physical property (density)
from two different quantities: gravity field and its second-order
vertical derivative. To achieve our aim, we built an algorithm
for compact inversion which can incorporate several types of
constraints.

In particular, we adopted the inhomogeneous model weight-
ing function [25] and a reference model in which we
can introduce the available a priori information. Thanks to

this approach, we interpreted both shallow and deep-seated
sources. This is possible because we used a workflow designed
to exploit the different wavelength-content between vertical
derivatives of different order. Results on both simple synthetic,
realistic synthetic, and real case demonstrated the ability
to recover reliable density distributions. When compared to
results of common separate inversion, our algorithm improved
our ability to perform vertically stacked source modeling,
which is one of the trickiest tasks in applied geophysics.
An interesting analysis of the joint inversion results is yielded
by the cross-gradient values demonstrating an improved
structural similarity. This is also better substantiated in the
cross-plot of physical parameters, which show a meaningful
linearization and clusterization of the retrieved parameters.

These results open a new point of view on the joint inversion
of gravity and gravity vertical gradients. In fact, we have found
that to fully exploit the different information of each dataset,
decoupled minimization of the objective function could be
more useful than minimizing the whole function, as commonly
done. In this way, we retrieve different models with different
information and address the joint model toward a complete
description of the sources, either shallow or deep. We applied
our method on different scale scenarios (from near-surface
microgravity to basin-scale) and proved it to be effective in
all of them. Obviously, this approach could be applied to joint
inversion of different orders of vertical derivation of magnetic
anomalies as well. In addition, the concept we are proposing
is easily transportable from 2-D to 3-D Earth models, which
will be the most immediate step of our work.
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