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A B S T R A C T

This study proposes a predictive equivalent consumption minimization strategy (P-ECMS) that utilizes velocity
prediction and considers various dynamic constraints to mitigate fuel cell degradation assessed using a
dedicated sub-model. The objective is to reduce fuel consumption in real-world conditions without prior
knowledge of the driving mission. The P-ECMS incorporates a velocity prediction layer into the Energy
Management System. Comparative evaluations with a conventional adaptive-ECMS (A-ECMS), a standard ECMS
with a well-tuned constant equivalence factor, and a rule-based strategy (RBS) are conducted across two driving
cycles and three fuel cell dynamic restrictions (|𝑑𝑖∕𝑑𝑡|𝑚𝑎𝑥 ≤ 0.1, 0.01, and 0.001 A∕cm2𝑠). The proposed
strategy achieves H2 consumption reductions ranging from 1.4% to 3.0% compared to A-ECMS, and fuel
consumption reductions of up to 6.1% when compared to RBS. Increasing dynamic limitations lead to increased
H2 consumption and durability by up to 200% for all tested strategies.
1. Introduction

Fuel cell vehicles (FCVs) powered with H2 have emerged as a
promising solution to the need for reducing greenhouse gas emis-
sions and addressing climate change, as they offer an alternative to
traditional gasoline and diesel-powered vehicles [1]. Recognizing the
importance of FCVs in the transition to a sustainable and low-carbon
energy future, the European Union has developed the European Hydro-
gen Roadmap, a comprehensive plan that outlines strategies to promote
their widespread adoption and drive growth in the hydrogen sector [2].
Heavy-duty vehicles are a significant contributor to greenhouse gas
emissions and air pollution [3], and the deployment of hydrogen fuel
cell technology has the potential to significantly reduce these emissions.
However, extensive research is required to improve the design, perfor-
mance, and maintenance of FCVs. In fact, the widespread adoption of
FCVs is limited by their reduced durability, especially when compared
to that of internal combustion engine vehicles. Accurate prediction
of fuel cell degradation throughout its lifecycle is a critical aspect
for enhancing its durability. By foreseeing degradation, it enables the
implementation of alternative control strategies that effectively extend
the fuel cell’s longevity. Moreover, fuel cell degradation results in a
decrease in the FC maximum power output capacity caused by various
factors, such as increased activation, ohmic, and concentration losses.
Accurately capturing these phenomena is particularly important during
dynamic operation when degradation mechanisms are heightened due
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to load cycling. Based on the aforementioned points, focusing on trans-
port applications, the energy management strategy (EMS), responsible
for regulating energy flows and power distribution when both an FC
and battery are powering the vehicle, must be aware of the FC degra-
dation rate and state to ensure optimal energy consumption. Different
fuel cell states of health (SOH) conscious EMSs have been investigated
in the literature [4–6]. However, it is worth noting that a majority of
these studies relied on semi-empirical degradation model with constant
degradation rates, as proposed by Pei et al. [7]. Despite its simplicity,
this model has been widely used to foresee fuel cell stack durability
and energy optimization for fuel cell vehicles, either alone [8] or
alongside battery degradation models [9]. Its main advantage lies in
its quick calculation of performance degradation, enabling advanced
techno-economic studies that account for fuel cell degradation effects.
However, a limitation of this model is its inability to account for
changes in operating conditions and dynamics, quantifying load-change
degradation through a linear dependence on the load-change events.
This disregards the impact of oscillation frequency on stack temper-
ature and cathode/anode relative humidity, which can significantly
influence the degradation mechanisms of the membrane and catalysts.

Considering the typical approach to mitigate fuel cell degradation,
which revolves around constraining the dynamics of the FC system
to minimize load-change degradation, a previous study conducted by
the authors [10] evaluated the potential of a fuel cell range extender
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vehicle considering an advanced semi-empirical degradation model
developed in [11]. The aim was to enhance FC stack durability and
performance through a dynamic control strategy and operational space
limitations. However, the study was restricted to the application of
a single EMS, which is typically not suitable for real-world driving
conditions without proper real-time or iterative adaptation.

Several approaches have been proposed in the literature for opti-
mizing energy management strategies for a realistic implementation,
such as fuzzy adaptive EMS [12–14], feedback-based A-EMS [15,16],
and forecasting enhanced control strategies [8,17,18]. In particular,
this latter approach is being extensively explored in current research.
Various methods to predict vehicle speed, including exponentially vary-
ing, stochastic Markov chain, and neural network-based velocity pre-
diction are available for integration into the EMS [19]. In a study
conducted by Zhou et al. [20], a multi-criteria power allocation strategy
was proposed for an FCHEV, aiming to improve its operational effi-
ciency. The strategy comprised an adaptive online-learning enhanced
Markov velocity-forecast approach. The findings indicated a reduc-
tion in hydrogen consumption by approximately 12%, though certain
limitations exist within this methodology. Specifically, the velocity
predictor’s training dataset was composed of a sequence of driving
cycles having different driving patterns (highway/suburban/urban).
The use of standard driving cycles might not be fully representative of
real-world driving, since those cycles might lack of highly impulsive
accelerations/decelerations and transient maneuvers. Moreover, the
variations observed in real-world driving patterns due to factors like
traffic, weather, and driver behavior are not completely considered in
standardized driving cycles. Therefore, developing and testing vehicle
predictive control strategies based on standard driving cycles might
not fully reflect the diverse range of driving conditions that vehicles
encounter in real-world usage. Sun et al. [21] introduced a real-time
optimal EMS for a bus application that utilizes driving characteristics
recognition and density-based spatial clustering of applications with a
noise algorithm to forecast the co-state variable. The results showed
a reduction in hydrogen consumption by 6.6% and a SOC fluctuation
range of less than 2% compared to a rule-based strategy. However, this
EMS was only tested on selected and fixed bus routes.

In the literature, some studies have addressed these limitations by
incorporating a velocity predictor trained and validated under real-
world driving conditions, as exemplified in [22]. However, in this
particular case, the EMS is only verified on two standard driving cycles,
the WLTC and the NEDC. Especially the latter does not serve as a
suitable test case for evaluating the effects of dynamic limitations
on the fuel cell in an FCHEV since it is a highly simplified driving
cycle. Some studies have thus attempted to integrate these prediction
techniques for investigations on fuel cell vehicles, also analyzing their
impact on degradation. The approach presented in [17] introduces a
reinforcement learning-based EMS for a fuel cell/lithium battery hybrid
system. The proposed method demonstrates significant advantages,
achieving a reduction in fuel cell life decay rate and an improvement
in fuel economy of up to 6% compared to conventional methods. The
paper [8] introduces an EMS based on MPC integrated with a vehicle
speed predictor for fuel cell electric vehicles, where the future vehicle
total power demand is forecasted using a Markov speed predictor and
incorporated into the energy management system response prediction
model. The proposed approach achieves a 3.74% reduction in total op-
eration cost compared to a normal MPC strategy and a 1.39% reduction
compared to the speed prediction dynamic programming strategy. In
both the aforementioned cases, however, the velocity predictor is con-
structed based on standard driving cycles, and the fuel cell degradation
is evaluated using a low-fidelity model that does not allow for a detailed
investigation of the contribution of different degradation sources.

This reveals a knowledge gap in terms of both the analysis and
comparison of different EMSs enhanced by velocity prediction and the
2

evaluation of the trade-off between hydrogen consumption and fuel cell
durability, using a reliable degradation model, all under realistic driv-
ing conditions. In this perspective, this work investigates the impact of
different dynamic restrictions for a predictive ECMS (P-ECMS) on fuel
consumption and FC stack durability, in comparison to a conventional
proportional controller-based adaptive-ECMS (A-ECMS), the standard
ECMS (S-ECMS) with a properly tuned constant equivalence factor, and
a rule-based strategy (RBS) over two different driving cycles and three
restrictions on the fuel cell (FC) dynamics (|di/dt|𝑚𝑎𝑥 ≤ 0.1, 0.01, and
0.001 A∕cm2 s). The primary challenge encountered in this study was to
effectively integrate the vehicle model, the semi-empirical degradation
model, and the velocity predictor-enhanced EMS in a parallel manner
to simulate real-world driving conditions.

1.1. Knowledge gaps

Grounding on the above literature review, some considerations can
be drawn, collecting the knowledge gaps to be faced in the field
of neural network-based predictive energy management strategy for
FC-powered vehicles that estimates and favors FC durability:

1. Studies assessing fuel cell degradation during real-world driving
cycles often employ empirical models that may not capture the
full thermodynamic effects and/or the individual contributions
of degradation sources [8,17,23,24].

2. In the existing literature, the investigation of adaptive/predictive
EMSs’ impact on FC degradation for realistic heavy-duty applica-
tions does not extensively focus on a detailed examination of fuel
cell durability while comparing the effects of different dynamic
restrictions across various control strategies [20,25].

3. In general, for studies on FCVs, predictive control strategies with
a predictor module often depend on driving cycle predictors
that are trained and/or evaluated using standardized driving cy-
cles [26–28]. Nevertheless, these standardized cycles frequently
fail to mirror the driving patterns observed in transient, real-
world scenarios. Consequently, the EMS lacks verification in
simulations under realistic situations.

4. Studies focusing on realistic driving conditions frequently con-
centrate on bus transportation or fixed route scenarios, failing
to validate the findings in realistic driving situations involving
diverse road types [21,29–32].

1.2. Contribution and objectives

Based on the considerations in the previous section, it is evident
that the effect of a predictive EMS on the durability and performance
of FC systems (FCS) when imposing restrictions over the dynamics
has not been fully explored yet for heavy-duty FCVs. For this reason,
the novelty of this paper lies in evaluating the influence of various
dynamic restrictions on fuel consumption and FC stack durability using
an advanced degradation model under real-world driving conditions for
a P-ECMS while comparing this with three different EMSs. This study
aims to accomplish its objectives by employing a validated FCS model
that includes a fully optimized balance of plant and that is validated
across different operating conditions. Additionally, a velocity predictor
module has been integrated into the P-ECMS, which was trained using
realistic driving data. To achieve this, the study aims to fulfill the
following partial objectives:

• Integrate the P-ECMS in a full heavy-duty FCV.
• Identify the sensitivity of the P-ECMS to the initial equivalence

factor and its update gain value depending on the dynamic re-
striction.

• Compare the proposed P-ECMS to a traditional A-ECMS, a real-

time implementable rule-based strategy, and the standard off-line
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Table 1
Main characteristics of the tested FCHEV, based on the Hyundai XCIENT FCV [33].

Fuel cell hybrid electric vehicle features

Vehicle

Mass (vehicle+cargo), kg 18 000
Car aero drag, m2 9.38
Wheel diameter, m 0.513
Axle ratio, – 4.875

Fuel cell stacks

Cells number, – 480
Max power, kW 120
Max efficiency, – 0.62
DC–DC efficiency, – 0.95

Electric machine

Max power, kW 350
Max torque, N m 3400
DC-AC efficiency, – 0.95

Battery

Rated capacity, Ah 110.55
DC–DC efficiency, – 0.95
Rated maximum power, kW 400

Gearbox

Gear 1 ratio, – 4.484
Gear 2 ratio, – 2.872
Gear 3 ratio, – 1.842
Gear 4 ratio, – 1.414
Gear 5 ratio, – 1.000
Gear 6 ratio, – 0.742

tuned ECMS (S-ECMS), in terms of battery charge sustenance, H2
consumption, and membrane electrode assembly (MEA) degrada-
tion.

• Identify the contribution of each degradation source in realistic
driving conditions due to the different EMSs and analyze the
change of the weight of each source when changing the dynamic
restriction.

. Modeling framework

In this section, the models used for the simulation of the HDDT
nd the realistic driving cycles are explained. The modeling framework
onsists of a heavy-duty vehicle model (Section 2.1), in which the pow-
rtrain is a validated FCS integrating both the FC stack and the balance
f plant or BoP (Section 2.2) complemented by a semi-empirical FC
egradation model designed to estimate the FC degradation rate by
ource in driving conditions (Section 2.3).

.1. Vehicle model

The architecture under study is multi-FC system heavy-duty vehicle,
hose main features are collected in Table 1. This vehicle is simulated
T-Suite 2020 software by a dynamic model. The powertrain is com-
osed of two fuel cell systems, a battery pack, DC–DC converters, an
lectric motor, a gearbox, and a differential, as depicted in Fig. 1. To
revent electrical oscillations from the DC bus hence causing damage to
he FC system, an indirect electronic configuration was selected, which
acilitates the downsizing of the FC system, consistently with con-
emporary FCVs. The battery pack was modeled using the equivalent
ircuit method, which accounts for SOC-dependent internal resistance
nd open-circuit voltage. The efficiency of the electric machine was
etermined based on a torque–speed map. Further information about
he fuel cell stack model is discussed in the subsequent section. The
ear shifting is regulated by a speed-accelerator pedal position lookup
able.
3

.2. Fuel cell system model

The FCS was modeled according to [34,35]. The FC is character-
zed by its polarization curve, where the relationship between current
ensity and voltage is modeled the following set of equations:

𝐹𝐶 = 𝑉𝑂𝐶 − 𝑉𝑎𝑐𝑡 − 𝑉𝑜ℎ𝑚 − 𝑉𝑚𝑡 (1)

𝑉𝑂𝐶 =
−𝛥𝑔𝑓
2𝐹

(2)

𝑉𝑎𝑐𝑡 =

{ 𝑅𝑔𝑎𝑠𝑇
2𝐹

(

𝑖
𝑖0

)

𝑅𝑔𝑎𝑠𝑇
2𝛼𝐹 𝑙𝑛

(

𝑖
𝑖0

) (3)

𝑉𝑜ℎ𝑚 = 𝑅𝐼 (4)

𝑉𝑚𝑡 = −𝐶 𝑙𝑛
(

1 − 𝑖
𝑖𝑙

)

(5)

where 𝑉𝑂𝐶 is the open voltage circuit and 𝑉𝑎𝑐𝑡, 𝑉𝑜ℎ𝑚 and 𝑉𝑚𝑡 are the
activation, ohmic, and mass transport losses. Incorporating the change
in the ionic conductivity of the membrane in relation to its water
content, temperature, and properties, the ohmic resistance (𝑅𝑜ℎ𝑚) was
modeled using the approach outlined in [36]. The exchange current
density is determined by the FC temperature, oxygen partial pressure,
electrochemical activation energy, electrode roughness, and reference
exchange current density 𝑖0,𝑟𝑒𝑓 , as discussed in [37]. To validate the
model under different conditions of pressure and temperature, the
reference exchange current density, reference ohmic resistance, charge
transfer coefficient (𝛼), mass transport loss coefficient (C), limiting cur-
rent density (𝑖𝑙), and voltage open circuit losses values were calibrated
using the GT-Suite genetic algorithms toolbox, based on experimental
data from [38,39]. Unlike other studies, this FC model was validated
by simultaneously matching various numerical polarization curves to
experimental data under different levels of pressure and temperature.
This validation process is essential for driving cycle conditions, where
the FC stack is subject to various operating conditions depending
on external environmental factors and the operation of the auxiliary
components. The synthetic validation results showed an overall RMS
deviation below 2%.

The FC model was then integrated with individual models for
each one of the auxiliary components that are required to supply and
condition the flows required by the stack in a powertrain, i.e., the
BoP, thus constituting the FCS (Fig. 2). This set of models includes
the entire anode and cathode circuits, their conditioning, and a cooling
system. The anode circuit is composed of the H2 tank with a pressure-
regulating valve connecting it to the stack and an active recirculation
circuit in which the anode stoichiometry is controlled by means of a H2
pump. The cathode namely consists of an electric compressor, a heat
exchanger placed downstream of the compressor, a humidifier at the
stack inlet and an exhaust valve to control the cathode pressure. The
operation of these components was optimized in previous studies to
ensure that the FCS net efficiency (FC stack minus BoP consumption)
is maximized at each current density [34]. To speed up the compu-
tational time, some simplifications of the FC model were introduced,
leading to the mean value model actually adopted in this research
work. Notwithstanding some minor misalignments, the reduced model
accurately replicates the actual FC system operation with simplified
dynamics, offering higher fidelity results than other approaches that
oversimplify the entire FC system to a single polarization curve, which
neglect BoP power demand and inefficiencies associated with driving
cycle conditions. The mean values model yields slightly lower hydrogen
consumption by operating in pseudo-steady conditions because it does
not consider inefficiencies linked to transient operation, such as slow
thermal dynamics. Additionally, the energy usage distribution in both
models showed a notable deviation only in FC system losses due to
model simplification. For other purposes such as generating brake
power or charging the battery with the FC stack, the energy usage
is almost identical. Despite the relatively low deviation, it is deemed
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Fig. 1. Heavy-duty fuel cell hybrid electric vehicle powertrain scheme.
Fig. 2. Fuel cell system outline.

acceptable to reduce computational costs from 4 h to 50 s per case. For
a more in-depth examination of the BoP, the reader can refer to [34].

2.3. FC degradation model

Fuel cell degradation is influenced by how it is operated (EMS) and
the conditions of temperature, pressure and relative humidity under
which it operates. The degradation sources could arise from different
electrochemical mechanisms that are active at low-load, medium-load
(natural), high-load or load-change conditions. These mechanisms de-
pend on the voltage at which each cell operates and the flow of
protons through the membrane, which determines the rate of the
primary electrochemical processes within the FC stack and which is
4

Table 2
Reference degradation rates (1st layer) to be scaled.

Condition 𝛿 [fraction V loss]

Low power [/h]
(

𝑑𝛿
𝑑𝑡
|𝑙𝑝,𝑟𝑒𝑓

)

1.26 ⋅ 10-5

Load change [/cycle]
(

𝑑𝛿
𝑑𝑛𝑙𝑐

|𝑟𝑒𝑓

)

4.94 ⋅ 10-7

High power [/h]
(

𝑑𝛿
𝑑𝑡
|ℎ𝑝,𝑟𝑒𝑓

)

1.03 ⋅ 10-5

Start-stop [/cycle]
(

𝑑𝛿
𝑑𝑛𝑠𝑠

|𝑟𝑒𝑓

)

1.96 ⋅ 10-5

proportional to the current density. The degradation rate exerted from
these phenomena is affected by water presence (𝑅𝐻) and the operating
temperature (𝑇 ) in both the cathode and the anode.

This degradation model is formulated as scaling functions to predict
the underlying changes in the degradation mechanisms when the FC
stack is subjected to different operating conditions. These functions are
applied over degradation rate coefficients estimated under reference
levels of 𝑖, 𝑇 , and 𝑅𝐻 , according to the experiments in [7]. The
coefficients are here adjusted to calibrate the degradation model (see
Table 2). For more details about the adopted degradation model, the
reader can refer to [11].

The model expresses degradation as a voltage degraded ratio 𝛿 =
1 − 𝑉𝑑𝑒𝑔∕𝑉𝐹𝐶 , where 𝑉𝐹𝐶 and 𝑉𝑑𝑒𝑔 are the non-degraded and degraded
FC stack voltage, respectively. It modifies the reference degradation
rates in Table 2 to predict the evolution of 𝛿 with time, depending on
the operating conditions and the electrochemical phenomena:

𝛿 = ∫

𝑡

0

[

𝑑𝛿
𝑑𝑡

|

|

|

|𝑙𝑝
+ 𝑑𝛿

𝑑𝑡
|

|

|

|𝑙𝑐
+ 𝑑𝛿

𝑑𝑡
|

|

|

|ℎ𝑝
+ 𝑑𝛿

𝑑𝑡
|

|

|

|𝑛𝑡

]

𝑑𝑡 +
𝑑𝛿𝑠𝑠
𝑑𝑛𝑠𝑠

𝑛𝑠𝑠 (6)

𝑑𝛿
𝑑𝑡

|

|

|

|𝑙𝑝
= 𝑑𝛿

𝑑𝑡
|

|

|

|𝑙𝑝,𝑟𝑒𝑓
⋅ 𝜉𝑙𝑝(𝑖) ⋅ 𝜏(𝑇 ) ⋅ 𝜂(𝑅𝐻) (7)

𝑑𝛿
𝑑𝑡

|

|

|

|𝑙𝑐
= 𝑑𝛿

𝑑𝑛𝑙𝑐

|

|

|

|𝑟𝑒𝑓
⋅ 𝜉𝑙𝑐

(𝑑𝑖
𝑑𝑡

)

⋅ 𝜏(𝑇 ) ⋅ 𝜂(𝑅𝐻) (8)

𝑑𝛿
𝑑𝑡

|

|

|

|ℎ𝑝
= 𝑑𝛿

𝑑𝑡
|

|

|

|ℎ𝑝,𝑟𝑒𝑓
⋅ 𝜉ℎ𝑝(𝑖) ⋅ 𝜏(𝑇 ) ⋅ 𝜂(𝑅𝐻) (9)

𝑑𝛿
𝑑𝑡

|

|

|

|𝑛𝑡
=

𝑑𝛿
𝑑𝑡
|

|

|ℎ𝑝,𝑟𝑒𝑓
𝜉ℎ𝑝(𝑖ℎ𝑝) −

𝑑𝛿
𝑑𝑡
|

|

|𝑙𝑝,𝑟𝑒𝑓
𝜉𝑙𝑝(𝑖𝑙𝑝)

𝑖ℎ𝑝 − 𝑖𝑙𝑝
(𝑖 − 𝑖𝑙𝑝)

+ 𝑑𝛿
𝑑𝑡

|

|

|

|𝑙𝑝,𝑟𝑒𝑓
𝜉𝑙𝑝(𝑖𝑙𝑝)

(10)

𝑑𝛿𝑠𝑠
𝑑𝑛𝑠𝑠

= 𝑑𝛿
𝑑𝑛𝑠𝑠

|

|

|

|𝑟𝑒𝑓
(11)

where 𝜉, 𝜏 and 𝜂 are scaling functions modulating the degradation
rates according to the current density (electrochemical mechanism),
temperature, and relative humidity, respectively. 𝑖 denotes the current



Applied Energy 358 (2024) 122559M. Piras et al.

t
t

𝜉

𝜉

𝜏

𝜂

𝑠
e
c
r
a

𝜆

m
t
b
n
d

3

s
a
k
a
w
f
i
f
e
b
f
e
v
t

𝑠

w
a
E
c
t
A
E
t

3

i
d
L
n
c
h
a
r
p
e
n
p
t
t
s
f
e
p
v
l
p

𝑑

w
t
1
s
r
t
i
t
t
t

density, 𝑖ℎ𝑝 and 𝑖𝑙𝑝 are the high-power and low-power current den-
sities, respectively, and 𝑛𝑠𝑠 is the number of start-stop cycles. These
parameters and functions are used in the degradation model to compute
the change in the voltage degraded ratio (𝛿) when the FC is subjected
to low-power conditions ( 𝑑𝛿𝑑𝑡 |𝑙𝑝), where the high cell potential implies
he activation of degradation mechanisms affecting the catalyst layer,
o load-change operation ( 𝑑𝛿𝑑𝑡 |𝑙𝑐), in which the water and flow man-

agement may cause certain deterioration to the MEA, to high-power
condition ( 𝑑𝛿𝑑𝑡 |ℎ𝑝), in which the FC operates at high temperature and
the intensity of the degradation mechanisms increase, to natural decay
( 𝑑𝛿𝑑𝑡 |𝑛𝑡) and to start-stop conditions ( 𝑑𝛿

𝑛𝑠𝑠
).

The scaling functions are expressed as:

𝑙𝑝(𝑖) =

{

𝜉𝑙𝑝(𝑖) = −0.176 ⋅ ln 𝑖 + 0.169 𝑖 ≤ 𝑖𝑙𝑝
1 𝑖 > 𝑖𝑙𝑝

(12)

𝑙𝑐

(𝑑𝑖
𝑑𝑡

)

=
|𝛥𝑖|𝑑𝑡

2 |𝛥𝑖|𝑟𝑒𝑓
(13)

𝜉ℎ𝑝(𝑖) =

⎧

⎪

⎨

⎪

⎩

𝑖
𝑖ℎ𝑝

𝑖 > 𝑖ℎ𝑝

1 𝑖 ≤ 𝑖ℎ𝑝
(14)

(𝑇 ) = 𝜏(𝑇 ) = −5.390 ⋅ 10−4𝑇 2 + 0.399 ⋅ 𝑇 − 71.576 (15)

(𝑅𝐻) = 0.10646𝑒0.028⋅𝑅𝐻 [%] (16)

where 𝜏 is valid in the range 𝑇 ∈ [310, 373.15] K following the change
in the fluoride release rate and the electrical surface area according
to [40,41] respectively. 𝜂 was obtained from the experimental results
of [42] that served to identify the FC degradation during voltage
cycling under different levels of 𝑅𝐻 .

This model was validated with data from a bus operating on a real
daily route retrieved from [7] in previous studies [11] and has been
applied successfully to predict the change in the degradation rate and
the relevance of each FC degradation source in other studies [10].

3. Energy management strategy

3.1. Equivalent consumption minimization strategy

The EMS has integrated the ECMS algorithm as its core framework.
It is an optimization algorithm commonly used in EMS for hybrid
electric powertrains. Its main goal is to minimize the equivalent fuel
consumption of a vehicle by dynamically controlling the power split
between the battery and the FCS in real time while ensuring that
the battery SOC remains within a desired range. This is accomplished
by converting electricity consumption into a corresponding amount
of fuel and then distributing power to minimize the equivalent fuel
consumption according to:

𝐽 = �̇�𝑓 + 𝑠
𝑃𝑏𝑎𝑡𝑡
𝐿𝐻𝑉

+ 𝜆 (17)

where 𝑃𝑏𝑎𝑡𝑡 and �̇�𝑓 respectively are the net electrical power as mea-
sured at the battery terminals and the current fuel rate. 𝐿𝐻𝑉 and

denote respectively the lower heating value of the fuel and the
quivalence factor, representing the cost of the electrical power ex-
hanged with the battery. Lastly, 𝜆 represents a cost term that imposes
estrictions on the FC dynamic behavior discarding solutions that imply
dynamic higher than desired. It can be expressed as:

=
{

0 |𝑑𝑖∕𝑑𝑡|(𝑡 + 𝑑𝑡) ≤ |𝑑𝑖∕𝑑𝑡|𝑚𝑎𝑥
𝑖𝑛𝑓 |𝑑𝑖∕𝑑𝑡|(𝑡 + 𝑑𝑡) > |𝑑𝑖∕𝑑𝑡|𝑚𝑎𝑥

(18)

The objective of this study is to minimize H2 consumption while
aintaining the battery SOC in a charge-sustaining mode. This implies

hat the amount of energy used from the battery during the cycle must
e equal to the amount of energy replenished into it, resulting in a
et zero change in SOC. The implications of applying different stack
ynamics are discussed in detail in Section 5.
5

d

.1.1. Role of the equivalent factor and A-ECMS
The ECMS is strongly influenced by the equivalence factor to en-

ure adequate battery charge-sustaining capability. Determining its
ppropriate value is greatly influenced by the driving conditions, and
nowledge of the driving mission beforehand is necessary to establish
constant equivalence factor for achieving optimal control. However,
hen the driving cycle is unknown beforehand, a fixed equivalence

actor may not be sufficient to guarantee battery charge sustainability
n practical applications. To address this issue, an adaptive equivalence
actor that can vary according to the driving conditions may be more
ffective in maintaining the battery SOC. The A-ECMS approach is
ased on the iterative updating of the equivalence factor using a
eedback-oriented law that adjusts the equivalence factor based on the
rror between the reference SOC value and the real-time feedback SOC
alue. The adaptation law proposed in [43] is used as a benchmark in
his study.

𝑛+1 = 𝑠𝑛 + 𝑘𝑝(𝑆𝑂𝐶𝑟𝑒𝑓 − 𝑆𝑂𝐶𝑛) (19)

here 𝑆𝑂𝐶𝑟𝑒𝑓 is the reference SOC value, 𝑆𝑂𝐶𝑛 and 𝑠𝑛 are the SOC
nd the EF at time 𝑡 = 𝑛, 𝑘𝑝 is a fixed control gain and 𝑠𝑛+1 is the
F at the following time step 𝑛 + 1. It should be noted that during
harge-sustaining operations, the reference SOC remains constant. For
his study, the equivalence factor is updated at a rate of 1 s per sample.
s demonstrated in the results section, the effectiveness of the adaptive
CMS approach is heavily reliant on both the initial value of the EF and
he update rate parameter (𝑘𝑝).

.2. Velocity forecasting layer

To implement the P-ECMS, the integration of a velocity predictor
s essential. To this aim, an LSTM neural network velocity predictor,
eveloped in a previous work [44], is employed. It presents three
STM layers with 128 neurons and one dense layer. LSTM neural
etworks are a type of recurrent neural network that utilizes a memory
omponent to address the vanishing gradient problem. These networks
ave proven to be effective in dealing with sequential data, such as
udio, text, and video [45], and have been widely used in research
elated to multivariate and multi-input predictions [46]. The velocity
redictor is implemented in Matlab, utilizing the adaptive moment
stimation (ADAM) optimizer with a learning rate of 0.00611 for neural
etwork training. Extensive sensitivity analysis on the neural network
arameters, conducted with real-world driving data, validates that
he proposed neural network achieves prediction accuracy comparable
o previous literature [30,47–49]. According to previous results and
tudies in the literature [50] the historical sequence length (𝐻𝑠) is
ixed as 10 s and the forecasting horizon (𝐻𝑓 ) is fixed as 20 s. Further
laboration on these aspects is provided in the previous work [44]. The
redictor takes a series of three historical features as input: the vehicle’s
elocity, acceleration, and distance to the next intersection or traffic
ight. The distance is calculated by utilizing data from the map service
rovider:

𝑗𝑡 =
𝐷𝑗 − ∫ 𝑡−𝑡𝑗

𝑡𝑗
𝑣𝑑𝑡

𝐷𝑗
, 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1] (20)

here 𝑑𝑗𝑡 is the distance feature from the intersection 𝑗 to the intersec-
ion 𝑗+1, 𝐷𝑗 is the distance from the intersection 𝑗 to the intersection 𝑗+
, and 𝑡𝑗 is the FCV arrival time at the intersection 𝑗. Real driving data
imulated by GT-Real Drive, which generated routes based on TEN-T
outes where heavy-duty FCVs are expected to move, was utilized to
rain and test the neural network. GT-Real Drive is a powerful tool that
ncorporates various factors such as live or historical traffic conditions,
ime of day and week, traffic signals, driver preferences, and via points
o create realistic driving scenarios. Starting and destination points are
he only inputs required. The dataset was generated by selecting six
ifferent routes (Table 3) that link nodes of the TEN-T, considering
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Fig. 3. Framework of the Predictive-EMS.
Table 3
TENT-T routes for the dataset generation.

Route Country Distance, km Mean speed,
km/h

Mean acceleration,
m/s2

Max acceleration,
m/s2

Max deceleration,
m/s2

Mean deceleration,
m/s2

Budapest Tatabánya Hungary 60 62.3 0.18 2.24 −3.81 −0.19
Fiumicino Civitavecchia Italy 71 67.4 0.49 2.32 −3.19 −0.56
Hamburg Ahrensburg Germany 34 27.9 0.76 2.33 −3.23 −0.95
Paris Rouen France 143 61.5 0.32 2.32 −3.27 −0.34
Sevillia Algeciras Spain 184 59.1 0.86 2.32 −3.23 −1.14
Ventspils Riga Latvia 184 36.7 0.94 2.32 −3.25 −1.25
Table 4
Test cases definition.

Route Country Distance, km Mean speed, km/h

HDDT – 37.2 64.2
Bucarest Giurgiu Romania 62 39

different speed profiles to verify the algorithm’s suitability for a broad
range of driving conditions. Combining GT-Real Drive with the TEN-
T provides accurate driving information for key roadways throughout
Europe, leading to a reliable EMS for actual heavy-duty vehicle usage.
Before training, the dataset is standardized, and 90% of the data is used
for training while the remaining 10% is utilized for testing.

3.3. Predictive ECMS

Chen et al. [51] suggested the subsequent EF adaptation law to
enhance the performance of the A-ECMS [43]:

𝑠𝑛+1 = 𝑠𝑛 + 𝑘𝑝(𝑆𝑂𝐶𝑟𝑒𝑓 − 𝑆�̂�𝐶𝑛(𝑛 +𝐻𝑝)) (21)

In contrast to Eqs. (19), (21) updates the EF with feedback on the
short-horizon predicted future SOC (𝑆�̂�𝐶𝑛(𝑛+𝐻𝑝)). In [51], the impact
of a realistic velocity prediction is not studied, and the future velocity is
considered as an external input. Furthermore, the authors applied their
EMS to a hybrid electric vehicle equipped with an internal combustion
engine, which does not have the same dynamic limitations as an FCS
due to membrane degradation. This study addresses this knowledge gap
6

by integrating the adaptation law of Eq. (21) into the multi-level control
strategy depicted in Fig. 3. The EMS works as follows:

1. The velocity forecasting layer predicts the vehicle velocity 𝐻𝑓
seconds ahead.

2. The predicted velocity is transmitted to the powertrain model,
which uses instantaneous Hamiltonian minimization to forecast
a SOC trajectory for 𝐻𝑓 seconds in the future considering the EF
value of the previous iteration.

3. The EF is then updated according to Eq. (21), based on the
discrepancy between the reference SOC and the predicted SOC

4. The updated EF is sent to the bottom layer, which solves the
ECMS in the time window [𝑡, 𝑡 + 𝐻𝑓 ], and the process repeats
from step 1 using the updated EF as the value for the subsequent
iteration.

The procedure to select the initial EF for the first iteration is
described in the Results section. The EF update time step is equivalent
to 𝐻𝑓 . The advantages of this approach are discussed in the results
section.

4. Simulations

Table 4 lists the two driving cycles that were chosen to investigate
the capabilities of the proposed P-ECMS. In this perspective, the P-
ECMS is compared to the standard ECMS (S-ECMS) with a constant
and optimal equivalence factor, the A-ECMS (which follows the adap-
tation law provided by Eq. (19)), and a rule-based EMS (abbreviated
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Fig. 4. Speed forecasting in the driving cycle HDDT.

Fig. 5. Corrected hydrogen consumption distribution for P-ECMS and A-ECMS.

as RBS) [52], where the control is determined according to the FCS
efficiency map. It is worth noting that these test cases were not included
in the neural network’s training dataset, so the P-ECMS was tested on
unfamiliar driving conditions. To adhere to range-extender designs, the
simulations’ starting SOC was set to 30%. To calibrate both the A-
ECMS and P-ECMS optimally, the initial value of EF (𝐸𝐹0) and 𝑘𝑝 (see
Eqs. (19) and (21)) needed to be identified. In the following section,
a sensitivity analysis is performed for the HDDT cycle to determine
the optimal calibration by analyzing the impact of varying 𝑘𝑝 (in the
range [2,20]) and 𝐸𝐹0 (in the interval [2,2.5]) on the terminal SOC and
hydrogen fuel consumption. The EF was updated using Eqs. (19) and
(21) in the range [1.5,3]. The RBS, on the other hand, did not require
any initialization parameter. The performance of each EMS has been
evaluated using three different stack current dynamic restrictions: 0.1,
0.01, and 0.001 A∕cm2 s (𝜆 in Eq. (17)). The first restriction of 0.1
A∕cm2 s represents a highly dynamic case, while the second restriction
of 0.01 A∕cm2 s was implemented to prevent cathode/anode starva-
tion. This restriction was found to preserve highly dynamic operation
while promoting stability and maintaining stoichiometry close to target
values. The last restriction of 0.001 A∕cm2 s represents a high level
of dynamic restriction where minimum degradation of the fuel cell is
expected.
7

5. Results and discussion

Initially, a comprehensive examination of the results obtained from
the HDDT driving cycle is conducted in this section, followed by an
assessment of the case concerning the realistic driving cycle. The H2
consumption represents a corrected fuel mass taking into account the
energy variations in the battery. This choice is necessary to have
consistent comparisons between cases with different final battery SOC.
The battery energy is converted into an equivalent H2 mass according
to:

𝐻2,𝑒𝑞 = H2 −
𝛥𝐸𝑏

𝜂𝑏𝜂𝐹𝐶𝑆𝐿𝐻𝑉H2

(22)

where (𝛥𝐸𝑏) is the battery energy imbalance, 𝜂𝑏, 𝜂𝐹𝐶𝑆 respectively
represent the battery and FCS efficiencies, and (𝐿𝐻𝑉H2

) is the H2 lower
heating value.

It is critical to highlight that preliminary analyses in the lowest dy-
namic case (|di/dt|𝑚𝑎𝑥 = 0.001 A/cm2 s) have revealed that the battery
SOC may fall below or exceed the acceptable thresholds due to the
strong dynamic restrictions. Consequently, in this case, to enable the
fuel cell system to respond with high dynamics in adverse conditions
that may damage the battery or hinder the completion of the driving
mission, the maximum current derivative is corrected as:

|𝑑𝑖∕𝑑𝑡|𝑚𝑎𝑥 =
{

0.001 0.25 < 𝑆𝑂𝐶 < 0.35
0.1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(23)

5.1. HDDT driving cycle

Fig. 4 portrays the outcomes of the velocity predictor. The neural
network’s performance is superior in circumstances where there are
variations in speed, but it displays more significant inaccuracies dur-
ing the acceleration and deceleration phases. The velocity RMSE of
6.08 km/h confirms the accuracy of the speed forecasting algorithm.

As previously explained, the A-ECMS and P-ECMS require the defi-
nition of 𝑘𝑝 and 𝐸𝐹0. For this reason, the HDDT cycle was considered
as a reference case for defining these parameters for the three different
|di/dt|𝑚𝑎𝑥. The same 𝑘𝑝 and 𝐸𝐹0 were then used for the Bucharest-
Giurgiu cycle. This selection is intended to assess the EMS’s robustness
under various driving conditions. The HDDT cycle was adopted as
the benchmark for optimization. As demonstrated in this section, this
choice obviates the need to define different 𝐸𝐹0 for different driving
missions. For the sake of simplicity, only the sensitivity analysis results
for the |di/dt|𝑚𝑎𝑥 = 0.1 A/cm2 s case are described below. The same
considerations apply to the other two cases with slower FC dynamics.
The P-ECMS leads to lower corrected hydrogen consumption compared
to the A-ECMS for every pair of 𝐸𝐹0 and 𝑘𝑝 parameters, owing to its
ability to access future information in the short forecasting horizon
(as depicted in Fig. 5). Additionally, H2 consumption is primarily
influenced by the value of 𝑘𝑝 for both adaptive strategies, while the
effect of 𝐸𝐹0 is comparatively minor. The final SOC tracking error, as
shown in Fig. 6, is also subject to the same considerations. Notably,
for low values of 𝑘𝑝, the P-ECMS incurs a significantly higher error
than the A-ECMS. This disparity arises from the distinct update times
of the EF: while the A-ECMS adapts the EF every second, the P-ECMS
updates it every 𝐻𝑓 seconds. The latter update frequency was chosen to
simplify the strategy and reduce computation times, without increasing
the error on the final SOC tracking for higher 𝑘𝑝 values, where H2
consumption is generally lower in the relevant region of the maps. The
distribution of the percentage increase in corrected H2 consumption of
the A-ECMS relative to the P-ECMS is presented in Fig. 7. It is evident
that, for equivalent values of 𝑘𝑝 and 𝐸𝐹0, the P-ECMS delivers a lower
fuel consumption for each parameter pair, with the greatest reduction
being approximately 3%, namely due to the additional information
provided by the speed forecast. Then, the values of 𝑘𝑝 and 𝐸𝐹0 that
minimize H2 consumption, while keeping the terminal SOC tracking

error below 1% (when possible), for both the P-ECMS and the A-ECMS
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Fig. 6. Terminal SOC tracking error distribution for P-ECMS and A-ECMS.

Fig. 7. Hydrogen consumption percent difference between P-ECMS and A-ECMS. A pos-
itive percentage number indicates that A-ECMS leads to greater hydrogen consumption
than P-ECMS.

have been selected. Hence, a comprehensive analysis and comparison
of the simulation results obtained for the four tested strategies with
the corresponding optimum values of 𝑘𝑝 and 𝐸𝐹0, when applicable, are
provided.

Figs. 8 and 9 depict the comparison of time evolution SOC, FC
current density, and EF for different FC dynamic limitations. For the
sake of clarity, the RBS results are not included in the figure, while
its general results are depicted in Figs. 11, 12, 13 and discussed in the
following. Fig. 8d and f clearly demonstrate that severe limitations in
the FC dynamics to values of 0.01 A/cm2 s and 0.001 A/cm2 s result
in significant changes to the evolution of current density along the
cycle. As a consequence, significant impacts both on H2 consumption
and FC stack durability are expected. The FC stack reaches its maxi-
mum current density less frequently. This may result in an increase in
medium-power or natural degradation to compensate for the decrease
in the SOC when high power is demanded by the electric motor.
Additionally, the intensity of load-change is evidently affected (rate
of change and amplitude of the load-change oscillations), implying an
overall reduction in the total degradation rate since the primary source
8

of degradation, which is load-change, is directly targeted. The effect
over durability should be determined by taking into account the FC
stack physical conditions, not only the current density evolution, but
the decrease in the load-change degradation of such significance has
positive effects over FC durability. Fig. 8e and f highlight a drop in
the current density around the 1700 s because of the excessively high
SOC and a sudden increase in the current density around 300 s in
the A-ECMS since the SOC reaches the lower limit 0.25. This justifies
the adaptive change in the dynamic limits to improve SOC sustenance
(Eq. (23)). The different time evolution of current density between
P-ECMS and A-ECMS is justified by the different evolution of the
equivalence factor because of the forecasting ability of the P-ECMS and
the different updating frequencies (Fig. 9). This also has an impact on
the power distribution between the fuel cell and the battery (Fig. 10).
Fig. 10 also highlights that as the limit on the current derivative
decreases, the fuel cell tends to operate at nearly constant power, while
the battery handles the dynamic power demand.

Except the S-ECMS, the P-ACMS, A-ECMS, and RBS sustain the
battery SOC around the target value of 30%. The charge sustenance
deteriorated in the case of low dynamics (Fig. 11). Thanks to the
velocity prediction and the enhanced EF adaptation, the P-ECMS re-
duces H2 consumption compared to the A-ECMS and the RBS (Fig. 12)
with only an increase of 1.7% with respect to the S-ECMS. Note that
in Fig. 12 the value above the bars represents the increase in the
H2 consumption compared to the S-ECMS working with high current
dynamics. For any EMS, increasing the dynamic limitation to 0.01 and
0.001 A/cm2 s rises H2 consumption by 1%–3% compared to applying
the same EMS with high FC dynamics. On the other hand, the FC
stack durability is increased by up to 2.24 times with respect to the
S-ECMS case with high dynamics, which proves that the P-ECMS can
be used effectively with low dynamics to improve the FC durability. In
general, all the EMS offer high durability when the dynamic restriction
is high (see Fig. 13), and the differences are mainly motivated by the
current density evolution and its impact on the physical conditions.
For instance, using the S-ECMS implies lower levels of current density
when the electric motor power demand is high, thus making the FC
stack operate under lower temperatures and decreasing its degradation
rate. Lifetime was calculated following the end-of-life (EOL) criteria
established by the Department of Energy through which an FC stack is
considered to have reached the EOL when the voltage decreases by 10%
with respect to nominal conditions at a current density of 1 A/cm2 [53].

The FC durability enhancement is primarily attributed to the reduc-
tion in load-change degradation which accounts for most of the overall
degradation, lowering from 55% to 10% when restricting the dynamics
to 0.001 A/cm2 s in the case of P-ECMS illustrated in Fig. 14. Conse-
quently, this decline in load-change degradation implies a significant
boost in the relevance of other degradation mechanisms, such as start-
stop degradation, which could potentially become the most prevalent
source of degradation, followed by natural degradation before load-
change degradation. This indeed has an impact on how the degradation
mechanisms in the FC work, and could potentially help the FC manu-
facturers design the MEA according to the most expected mechanisms
of degradation depending on the stack usage (low or high dynamics).
The simulations were conducted on an Intel(R) Xeon(R) CPU E31270
@ 3.40 GHz computer with 16 GB RAM. However, a detailed study of
the computational cost of the strategy goes beyond the scope of this
paper. Future work will include HiL simulations to test P-ECMS on a
dedicated microcontroller.

5.2. Bucarest-Giurgiu driving cycle

The velocity predictor accuracy is also confirmed in the
Bucarest-Giurgiu test case, achieving a velocity RMSE of 11.89 km/h
(Fig. 15). The second test case for both P-ECMS and A-ECMS utilized the
optimal calibrations of 𝑘𝑝 and 𝐸𝐹0 obtained for the HDDT cycle. This
choice was made to evaluate the robustness of these EMS when exposed
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Fig. 8. Comparison of time evolution SOC (a–c–e) and fuel cell current density (b,d,f) for different fuel cell dynamic limitations in the HDDT cycle.
Fig. 9. Comparison of time evolution equivalence factor for different fuel cell dynamic
limitations in the HDDT cycle.

to diverse driving circumstances. The HDDT cycle was adopted as the
benchmark driving cycle for optimization since it is a standardized
cycle that embodies a representative average cycle including a range
of driving conditions that could arise in real-life.

From Fig. 16, it is evident that the S-ECMS fails to ensure optimal
battery charge sustenance in the Bucarest-Giurgiu test case. The max-
imum SOC achieved by the S-ECMS is almost 50% for each dynamic
limitation case (Fig. 16-a–c–e), which leads to a lower load on the FCS
in the latter part of the driving mission (Fig. 16-b–d–f), resulting in a
reduced hydrogen consumption (Fig. 17). This consumption is nearly
6% lower than that of the P-ECMS in the high dynamic case but the
difference increases when the dynamic limit is reduced (Fig. 17). The
behavior from the S-ECMS can only be obtained by knowing the cycle
beforehand since the battery is charged preventively when the e-motor
power demand is low to increase the overall powertrain efficiency when
the power demand is high (at high load the FCS efficiency falls and
using it together with the battery lowers the H2 consumption). This
operation, albeit optimal performance-wise, is not realistic and hardly
compatible with charge-sustaining modes without a priori knowledge of
the driving cycle. Both the P-ECMS and A-ECMS exhibit similar perfor-
mance characteristics because of a similar power distribution (Fig. 18).
Nonetheless, the P-ECMS outperforms the A-ECMS as it can estimate
the future velocity profile, thus reducing H2 consumption by ∼0.7–
3.2% depending on the |di/dt|𝑚𝑎𝑥. The impact in H2 consumption when
comparing the P-ECMS and the A-ECMS is higher at high dynamics
(3.2%) since the FC control is less constrained, thus allowing the vehicle
to make full use of the speed forecast. As the dynamic limitation on the
FCS increases, this benefit decreases since the evolution of the current
density cannot follow the optimal evolution predicted by the P-ECMS,
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thus implying a penalty in performance. Unlike the HDDT cycle, in this
test case, all EMSs exhibit a reduced final SOC tracking error, with the
worst case represented by a battery discharge of 2% by the P-ECMS for
the |di/dt|𝑚𝑎𝑥 = 0.001 A/cm2 s ( Fig. 19). To achieve these values of
SOC at the end of the cycle, both the P-ECMS and the A-ECMS need to
bypass the constraint in the dynamics several times to maintain the SOC
within the set limits. This implies that having the option to occasionally
ignore this limit in both the P-ECMS and the A-ECMS is even more
critical in realistic driving conditions and that without this function the
charge-sustaining operation would not be possible.

Figs. 20 and 21 confirm that imposing dynamic limitations increases
the durability of the FC stack more than twice for each EMS, mainly due
to the reduction of load-change degradation. Contrary to the results
obtained in the HDDT cycle (Fig. 14), high-power degradation is not
negligible, although it is the least relevant. This is mainly due to the fact
that during real driving, it may be possible to reach high power demand
conditions, thus making the FC stack operate at current densities higher
than 1 A/cm2 (Fig. 16). For brevity, the relative contribution of each
degradation source is only illustrated for the P-ECMS in Fig. 21, which
highlights the reduction of the weight of load-change degradation
from 63% to 23%. When comparing predicted FC durability for the
|di/dt|𝑚𝑎𝑥 = 0.01 A/cm2 s and |di/dt|𝑚𝑎𝑥 = 0.001 A/cm2 s cases, it can
be seen how durability only increases by 6.2%–22% (excluding the S-
ECMS case since it is not realistic). This effect is particularly small in the
case of the P-ECMS in which the durability only increases by 6.2% and
implies a penalty in H2 consumption of 2.1%. This indicates that for
realistic driving with the P-ECMS or the A-ECMS, constraining the FC
dynamics to very low levels does not bring significant benefits in terms
of durability. Therefore, it may be interesting in terms of the trade-off
between performance and durability to consider moderate dynamics
(|di/dt|𝑚𝑎𝑥 = 0.01 A/cm2 s) for real-world driving. Nonetheless, this
needs to be complemented by a life cycle assessment or total cost of
ownership calculation depending on the cost function to be optimized.

6. Conclusion

This work proposes a P-ECMS suitable for real driving conditions
of a heavy-duty FCV and analyzes the impact of imposing FC dynamic
limitations both on the FC stack durability and hydrogen consumption.
For this purpose, a comprehensive vehicle model has been developed,
which includes a validated and optimized FCS model capable of as-
sessing the MEA degradation under various operating conditions. The
P-ECMS has been enhanced by integrating an LSTM prediction layer
that improves battery SOC sustenance by adapting the equivalence
factor according to the difference between the predicted and target
SOC. To train the velocity predictor, a realistic driving dataset has
been generated with GT-Real Drive using information from the TEN-T
routes. Furthermore, a sensitivity analysis of the P-ECMS to the initial
equivalence factor and its update gain value has been performed. The
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Fig. 10. Comparison of time evolution FCS power (a–c–e) and battery (b,d,f) for different fuel cell dynamic limitations in the HDDT cycle.
Fig. 11. Terminal SOC evolution as a function of the EMS and the dynamic limitations
in the HDDT cycle.

Fig. 12. H2 consumption evolution as a function of the EMS and the dynamic
limitations in the HDDT cycle.

Fig. 13. Normalized FC stack durability (life) evolution as a function of the EMS and
the dynamic limitations in the HDDT cycle.
10
Fig. 14. Degradation source relative effect on FC stack durability for the P-ECMS with
different dynamic limitations. |di/dt| is in A/cm2 s.

Fig. 15. Speed forecasting in the driving cycle Bucarest-Giurgiu.

P-ECMS has been compared with a conventional A-ECMS, the reference
S-ECMS, and an RBS for two different driving cycles and three dynamic
restrictions (0.1, 0.01, and 0.001 A/cm2 s), in terms of battery SOC
sustenance, equivalence factor evolution, hydrogen consumption, and
FC degradation. The velocity forecasting accuracy has been confirmed
by a velocity RMSE of 6.08 km/h and 11.80 km/h for the HDDT and
Bucarest-Giurgiu cycles, respectively. Both the P-ECMS and A-ECMS
are capable of improving battery SOC sustenance compared to the S-
ECMS. However, the P-ECMS achieves a reduction in H2 consumption
ranging from 1.4 to 2% for the HDDT cycle and up to 3% for the
realistic driving cycle depending on the dynamic limitation compared
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Fig. 16. Comparison of time evolution SOC (a–c–e) and fuel cell current density (b,d,f) for different fuel cell dynamic limitations in the Bucarest-Giurgiu cycle.
Fig. 17. H2 consumption evolution as a function of the EMS and the dynamic
limitations in the Bucarest-Giurgiu cycle.

to the A-ECMS. When compared to an RBS, fuel consumption is re-
duced up to 6.1%. Results also showed that increasing the dynamic
limitations raised H2 consumption and FC durability for all the tested
strategies. In conclusion, the application of high dynamic limitations
results in a shift in the relevance of degradation rate sources. Load-
change degradation, which represents a major source of degradation
with a low dynamic restriction, becomes a minor factor, with start-stop
and low-power degradation becoming more significant. This finding
could potentially impact the design process of FC stack manufacturers
for FCREx vehicles. Instead of focusing on designing the FC stack
inner channels to decrease water management issues in highly-dynamic
operations, they may need to prioritize the design of low-degradation
start-stop sequences or consider materials that have low degradation
under high-voltage conditions.
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Fig. 19. Terminal SOC evolution as a function of the EMS and the dynamic limitations
in the Bucarest-Giurgiu cycle.

Fig. 20. Normalized FC stack durability (life) evolution as a function of the EMS and
the dynamic limitations in the Bucarest-Giurgiu cycle.

Fig. 21. Degradation source relative effect on FC stack durability for the P-ECMS with
different dynamic limitations in the Bucarest-Giurgiu cycle. |di/dt| is in A/cm2 s.
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Appendix A. Models’ validation

The physical model of the vehicle under study, the Hyundai X-
CIENT [33], is implemented in the widely utilized GT-Suite platform.
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Table A.5
Cathode temperature and pressure conditions.

Tcath, K pcath, bar

305 1.3
346 1.3
346 2.5

Fig. A.22. Model/experiment comparison of cell voltage against current density for
different cathode pressures and temperatures.

Preliminary simulations were performed to evaluate the global model
behavior, highlighting a vehicle range consistent with the manufac-
turer’s declared value. This assessment was specifically derived from
the HDDT driving cycle and estimated at around 400 km. The valida-
tion of the sub-models of fuel cell and its degradation has been carried
out and extensively discussed in previous publications [10,11,54]. The
main assumptions and results for those sub-models are briefly sum-
marized in this section, while for further details, reference is made
to [10,11,54].

A.1. Fuel cell model

The fuel cell model, as described by Eqs. (1)–(5) in the manuscript,
was validated involving the simultaneous fitting of three distinct nu-
merical polarization curves to experimental data from [38,39]. This
validation encompassed a total of 34 experimental points, conducted
under varying pressure and temperature conditions at the cathode
(Table A.5):

Calibration of critical parameters, including the reference exchange
current density (𝑖0,𝑟𝑒𝑓 ), reference ohmic resistance (𝑅𝑜ℎ𝑚), charge trans-
fer coefficient (𝛼), mass transport loss coefficient (𝐶), limiting current
density (𝑖𝑙), and voltage open circuit losses values (𝑉𝑂𝐶 ), was car-
ried out using the GT-Suite genetic algorithms toolbox. The NSGA-III
evolutionary global search genetic algorithm was specifically chosen
as the optimization technique, aiming to minimize the overall error
between experimental and simulated polarization curve voltages under
diverse temperature and pressure conditions. To ensure convergence,
a total of 15 solution generations were employed. Beyond the 10–12th
generation, the evolution of error between experimental and simulation
results reached an asymptotic state. The validation of the model under
a wide range of states at the cathode is particularly crucial to simulate
the fuel cell under driving cycle conditions, where this is subjected
to diverse operational scenarios influenced by external factors and
the operation of BoP components. The synthetic validation results,
illustrated in Fig. A.22, demonstrate an overall good model accuracy,
highlighted by a root mean square deviation of less than 2%. The
validated fuel cell stack was incorporated into a comprehensive BoP
model that had been previously optimized in a study to which the
reader is referred for further discussion [34].
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Fig. A.23. Validation results: comparison of experimental [7] degradation rate sources
at the end of a real driving cycle with model degradation rate sources. Steady-state
degradation comprises low-power, high-power, and natural degradation. Load-change
and steady-state voltage loss ratio (𝛿) evolution were divided by 10.

A.2. Degradation model

The degradation model validation was conducted using the data
from [7], involving the simulation of a fuel cell bus under real driving
cycle conditions. To perform the validation of the model, the previ-
ously described fuel cell model was used. However, the FC model was
modified to align its characteristics with the fuel cell stack in [7],
featuring 280 cm2 of active surface area and a comparable power
output. Subsequently, this stack was integrated into a balance of plant
to ensure that the flow conditions of the FC stack accurately reflected
those in a fuel cell vehicle. Following the simulation of a real driving
cycle and obtaining the evolution of current density, temperature, as
well as cathode and anode relative humidity, the degradation rates of
the various sources were evaluated along the driving mission, depicted
in Fig. 2, and the final values are compared to the ones advised in [7]
(see Fig. A.23).

The validation methodology involved matching the degradation re-
sulting from load-changing cycling, encompassing the contributions of
low-power, high-power, and natural degradations, and steady-state op-
eration with the corresponding experimental data. To align the model
with experimental results, the model parameters 𝑖𝑙𝑝 and 𝑖ℎ𝑝. of Eqs. (12)
and (15), which delineates the transition between degradation con-
ditions. More specifically, 𝑖𝑙𝑝 signifies the maximum current density
for which the low-power/idle degradation mechanism is considered,
while 𝑖ℎ𝑝 represents the minimum current density at which high-power
degradation is taken into account. Consequently, they establish the
range of current densities within which the scaling functions 𝜉𝑙𝑝(𝑖)
and 𝜉ℎ𝑝(𝑖) are non-zero, defining the variation of natural degradation
with current density. They were calibrated to ensure that the error
in the degradation rate for load-changing cycling and at steady-state
operation remained below 0.1%, leading to the values of 0.33 A/cm2

and 1 A/cm2 for 𝑖𝑙𝑝 and 𝑖ℎ𝑝, respectively. In the end, to assess the
adequacy of modeling natural degradation, the total life of the PEMFC
stack due to natural degradation was calculated, assuming end-of-life
at 𝛿 = 0.1 at 1 A/cm2. In the validation scenario, the degradation
rate attributed to natural degradation was 2.57 ∗ 10−4% V/h, resulting
in a lifespan of approximately 39’600 h, consistent with DOE 2020
targets [53]. For further details reader is referred to [11].
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