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ABSTRACT
Extraordinary events are rarely observable in a single rainfall gauge, and this make extremely challenging the correct prediction 
of their arrivals. However, it may be possible to develop a more robust approach by employing a space–time modelling scheme 
that is able to capture the spatial dynamics of such phenomena. Therefore, a space–time Poisson model of rainfall cells with 
circular shape and random depth has been exploited for the first time to interpret the behaviour of this family of extraordinary 
events. This category of events that may be connected to larger meteorological phenomena not necessarily connected with local 
heterogeneity of the landscape. Following the identification of the observed extraordinary event across southern Italy, six zones 
with significantly different dynamics in terms of the frequency of such extremes were identified. Subsequently, a simple mathe-
matical representation was adopted to calibrate the model parameters, leading to an estimate of regional probability distributions 
defined on the space–time occurrences of extraordinary events over homogeneous zones. The approach allows to overcome the 
limitations posed by point observations allowed the definition of a probability distribution that pertains to an entire area rather 
than just a point. The obtained quantiles of rainfall estimated seems to align well with the upper bound of the probability distri-
bution of the annual maxima observed over the areas of interests.

1   |   Introduction

Understanding and interpreting rainfall extremes poses a for-
midable challenge in hydrology, primarily due to the complexity 
of the atmospheric processes, but also for the limited obser-
vations available (Thompson et  al.  2013; Fowler et  al.  2021). 
Rainfall events constitute intricate phenomena evolving across 
different scales (e.g., Emmanouil et al. 2022), which require a 
significant monitoring effort that is not properly addressed by 
a sparse rainfall network. Current monitoring networks often 
underestimate rainfall events. Interpolation schemes typically 
show lower variance in the interpolated field compared to the 
original point data. Moreover, for high precipitation events, the 
maximum precipitation in the interpolated field usually aligns 

with an observation location, which is unrealistic (e.g., Bárdossy 
and Anwar 2023).

The introduction of radar networks offers significant advantages 
in terms of temporal and spatial coverage compared to most rain 
gauge networks (e.g., Overeem, Buishand, and Holleman 2009). 
While radar data has shown great potential for rainfall analysis, 
it also has limitations, particularly in interpreting rainfall quan-
tiles. In fact, radar data tends to overestimate high extremes 
and requires bias correction (Goudenhoofdt, Delobbe, and 
Willems 2017). Additionally, weather radar averages precipita-
tion over areas typically of one km2 smoothing the within pixel 
variability. Studies have found that the mean areal extreme rain-
fall derived from radar underestimates extreme values at point 
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locations within the radar pixel by about 70% on average (Peleg 
et al. 2018).

An alternative for a refinement of rainfall measurements is rep-
resented by the use of innovative sensors and network of private 
users. Crowd-sourced data from private sensors, smartphones, 
surveillance cameras, and other devices provide an unprece-
dented density of measurements. This enhanced accuracy helps 
to better describe the spatial structure of rainfall events, with 
measurements that can be easily filtered and validated, cre-
ating a dense observation network (Yang and Ng 2017; de Vos 
et al. 2019; Manfreda et al. 2024). However, there is still a lack of 
long-term series capable of describing and interpreting the dy-
namics of rare rainfall events.

In this context, there is a specific class of hydrological events 
that deserve more attention and dedication, which is represented 
by the extraordinary events (or outliers). These events are rarely 
observed especially at a point scale and for this reason, several 
approaches have been developed to overcome the limited obser-
vations available. For instance, regional methods tend to tackle 
this issue clustering group of stations based on local statistics in 
order to build a regional probability distribution (e.g., Hosking 
and Wallis 1988; Schaefer 1990; Hanson and Vogel 2008; Lima 
et  al.  2021). Within this context, the well-known Generalized 
Extreme Value (GEV) model (Jenkinson  1955) and Two-
Component Extreme Value (TCEV) distribution (Rossi, 
Fiorentino, and Versace 1984) has been widely applied exploit-
ing regional methods.

The TCEV distribution is obtained as a mixture of two 
processes exponentially distributed and with Poisson oc-
currences. These two populations consist of an ordinary 
component, more frequent and less severe in intensity, and 
an extraordinary component, responsible for generating the 
rarer but more extreme values. The strength of the TCEV 
model lies in its capability to predict the frequency of rain-
fall events with diverse meteorological characteristics without 
the need for prior classification based on meteorological crite-
ria. TCEV has been widely used in several studies around the 
world (e.g., Connell and Pearson  2001; Caporali, Chiarello, 
and Petrucci 2018; Benito et al. 2020; Campos-Aranda 2022) 
and also for at-site studies on time series longer than 50 years 
(Totaro et al. 2024). In addition, it is worth mentioning that 
a user-friendly tool was recently introduced by De Luca and 
Napolitano (2023) for the use of the TCEV distribution along 
with others such as the EV1 and GEV.

In this context, an interesting contribution was given by Pelosi 
et al. (2020) that attempted to describe the behaviour of extraor-
dinary events by measuring the proportion of such events within 
the annual maxima and exploiting the conditional distribution of 
annual maxima when extraordinary events occur. This method 
was strongly motivated by the perception that a certain class of 
extreme events is induced by a specific category of meteorologi-
cal events, which may have dynamics completely different from 
other ordinary events. An example of this is represented by the 
Medicanes (e.g., Romero and Emanuel 2013; Romera et al. 2017).

The conceptual foundation of the present manuscript stems 
from the idea of utilizing a space–time Poisson representation 

of rainfall cells to characterize extraordinary events. Although 
constrained by the limited number of observations in our time-
series, the adoption of a space–time model offers potential in 
augmenting observations in space, thereby enhancing our pre-
dictive capabilities for extraordinary events.

This work's conceptualization is deeply rooted in earlier re-
search collaborations with Ignacio Rodriguez-Iturbe from 2004 
to 2006, as evidenced by studies such as Isham et  al.  (2005), 
Rodríguez-Iturbe et  al.  (2006), and Manfreda and Rodrìguez-
Iturbe  (2006). Building upon this foundation, Fabio Rossi's 
exploration of extraordinary events trading space versus time 
(Pelosi et al. 2020) inspired a new strategy. Leveraging the rain-
fall model developed by Cox and Isham (1988), we present a 
comprehensive approach to characterize extraordinary rainfall 
events using an extensive dataset from southern Italy.

2   |   Space–Time Rainfall Model

Spatio-temporal stochastic rainfall models offer the possibility 
of interpreting physical processes with a mathematical formal-
ism that summarizes rainfall characteristics in a few parame-
ters (Onof et al. 2000). Among others, Poisson-cluster processes 
represent a well-established schematization where storms 
arrive according to a Poisson process and are represented by 
clusters of rainfall cells with centres randomly located in space 
and time (e.g., Cox and Isham 1988; Kavvas and Delleur 1981; 
Waymire and Gupta  1981; Ramirez and Bras  1985; Istok and 
Boersma 1989). Rainfall cells can be characterized by random 
dimensions, lifetimes, velocities, and intensities.

This category of models is based on the work of Rodriguez-
Iturbe, Cox, and Isham (1987) and, over time, has been exploited 
in several hydrological applications (e.g., Cowpertwait  1994, 
1995, 1998; Cowpertwait and O'Connell  1997; Cowpertwait, 
1997; Cowpertwait, Kilsby, and O'Connell  2002; Chen et  al. 
2021; Diez-Sierra, Navas, and del Jesus 2023).

Within this context, it is particularly relevant the study by 
Cowpertwait (1994) that developed an at-site rainfall stochastic 
model, in which each storm is characterized by a cluster of rain 
cells, with each cell having a random exponential lifetime and 
a random intensity. The local Poisson-cluster processes model 
has been generalized to consider that generated cells could be 
of n types; in particular, “heavy” or “light” categories have been 
analysed, with heavy cells having a shorter expected duration 
than the light ones. Thereafter, the proposed model was im-
proved by Cowpertwait  (1995) in order to obtain the general-
ized spatial–temporal Neyman–Scott model, a two-dimensional 
(space and time) model based on a clustered point process. This 
model has been implemented and tested in storm sewer reha-
bilitation studies in the UK (Cowpertwait et al. 1996). In detail, 
the model was regionalised over the area by regressing esti-
mates (related to each time-series) of the model parameters on 
site variables. A related study was carried out by Cowpertwait 
and O'Connell  (1997) by analysing the spatial variation of the 
patterns of two rain cell categories, i.e., stratiform and convec-
tive. This model has also been used to describe rainfall extremes 
in regional studies (Cowpertwait, Kilsby, and O'Connell 2002). 
In a more operative context, these models have been further 
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explored for continuous hydrological modelling, obtaining good 
reconstructions of flow duration and flood frequency curves 
(Chen et al. 2021).

Following the formalism introduced by Cox and Isham (1988), 
the rainfall process is modelled as storms arriving in a Poisson 
process in space and time. The original model was characterized 
by storm events of circular shape with a random radius, dura-
tion, intensity and velocity.

In the present case, the model is similar but the storm (e.g., cells) 
has zero velocity and storm duration is assumed fixed, given 
that the variables of interest are the annual maxima of fixed du-
ration. The model is thus characterized by three parameters as-
sumed to be independent from storm to storm: the rate of rainy 
cells in space and time λR, the rain cell radius R and the rainfall 
depth X. The model although highly idealized allows the math-
ematical tractability of the resulting spatial statistics of the re-
sulting process.

In order to keep the number of parameters to a minimum we 
will assume that the random variables R and X are exponentially 
distributed. The mean of the rainfall intensity process Y(0,t) is 
given by:

where: λR is the rate of cells per unit time and area, E[DA] is the 
mean value of the rainfall cells and E[X] is the mean rainfall 
depth within each cell. For sake of simplicity and consistency 
with available data, the rainfall duration will be assumed fixed.

In addition, the mean rate of the process in time can be esti-
mated as:

This model has been used in several applications for the de-
scription of daily rainfall processes and for the construction 
of soil moisture models with the aim to explore the spatial dy-
namics of soil moisture (see Isham et al. 2005; Rodríguez-Iturbe 
et al. 2006; Manfreda and Rodrìguez-Iturbe 2006; Nordbotten, 
Rodriguez-Iturbe, and Celia 2006).

3   |   The Methodology

The proposed Space–time Maxima Model (STMM) utilizes 
the space–time rainfall scheme introduced by Cox and Isham 
(1988) with some simplifying assumptions. Surprisingly, this 
schematization appears suitable for describing hydrological ex-
tremes, especially extraordinary events. The STMM's parame-
ters were estimated using the available rainfall dataset, which 
has some limitations but serves as a valuable reference for the 
present study.

The first step of the procedure involves identifying the thresh-
old that distinguishes between ordinary and extraordinary 
observations. This task was carried out by applying the 
mathematical formulations of the TCEV, explicitly assum-
ing that the probability distribution of extremes arises from 

the mixture of two populations. Therefore, this section will 
briefly introduce the TCEV, the threshold estimation strategy, 
and subsequently, the methodology adopted to extrapolate the 
STMM parameters.

3.1   |   Identification of Extreme Events

Another crucial step of this approach is represented by the 
identification of extraordinary events. In this context, the well-
known Two Component Extreme Value (TCEV) probability dis-
tribution proposed by Rossi, Fiorentino, and Versace (1984) can 
be beneficial. This distribution is based on the concept that nat-
ural extremes may result from the combination of two families 
of values associated with different meteorological phenomena: 
ordinary and extraordinary or outliers.

Applying the analytical formulation of the TCEV model, it be-
comes possible to objectively determine the rainfall threshold 
that distinguishes the ordinary component from the extraordi-
nary one, as suggested by Beran, Hosking, and Arnell (1986).

Recalling the analytical expression of the TCEV:

where: Λ1 and Λ2 represents the annual expected number of 
rainfall events belonging, respectively, to the ordinary and the 
extra-ordinary component; θ1 and θ2 represents the expected 
value of the two populations. Therefore, the parameters of this 
distribution have a clear physical meaning.

The distribution can be rewritten adopting the so-called “shape” 
parameters:

The Cumulative Density Function (CDF) can be expressed as a 
function of the reduced variable X =

Y

θ1
− ln

(

Λ1

)

:

The TCEV distribution is characterized as the maximum of two 
independently distributed extreme value type 1 (EV1) variables. 
The proportion of data values distinguishing between the two 
populations (ordinary and extraordinary) can be derived using 
the theoretical formulation proposed by Beran, Hosking, and 
Arnell (1986). This proportion p is:

where θ∗ and Λ∗ are the TCEV shape parameters and Γ( ) is the 
gamma function. The above formulation has been also adopted 
by Boni, Parodi, and Rudari (2006) to explore the seasonality of 
extraordinary events.

(1)E[Y(0, t)] = λRE[DA]E[X]

(2)E[N(t)] = λRE[DA]

(3)
P(Y ≤ y) = e

(

−Λ1e

(

−
y
θ1

)

−Λ2e

(

−
y
θ2

)
)

(4)θ∗ =
θ2

θ1
and Λ∗ =

Λ2

Λ

1

θ∗

1

(5)
P(X ≤ x) = e

(

−e(−x)−Λ∗e

(

−
x
θ∗

)
)

(6)p = −
Λ∗

θ∗

∞
∑

j=0

(−1)j

j !
Λ∗

jΓ

(

j + 1

θ∗
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3.2   |   Probability Distribution of Rainfall Depth

The probability distribution of the variable (y-s) was observed 
to be exponentially distributed with a mean equal to E[Y] − s. 
Therefore, the probability distribution of rainfall intensities, y, 
assume the following form:

The phenomena of extraordinary rainfall events belonging to 
the family of extraordinary events can be described with the 
Poisson process described with a distribution of the rainfall 
depth distributed according to an exponential distribution. The 
CDP of the compound Poisson process with rate λ assumes the 
following form:

4   |   Results

4.1   |   The Study Area and the Dataset

The study area encompasses a significant portion (20%) of the 
Italian peninsula, covering the regions of Apulia (with a sur-
face area of 19,500 km2), Basilicata (10,000 km2), Calabria 
(15,000 km2), Campania (13,500 km2), and Molise (4437 km2). 
Situated within the Mediterranean basin, it is bordered by the 
Adriatic Sea to the east, the Ionian Sea to the southeast, and 
the Tyrrhenian Sea to the west. The region's topography is intri-
cately shaped by the north-to-south Apennine chain, contribut-
ing to a complex orography.

The rainfall database used was compiled by Avino, Cimorelli, 
et  al. (2024) and comprises approximately 910 rain gauges. 
These include all SIMN stations that have been operated over 
the territory throughout time and the newly installed rainfall 
stations managed by Civil Protection, as well as gauges from 
agrometeorological monitoring networks. The database encom-
passes annual rainfall maxima for sub-daily intervals (ranging 
from 1 to 24 h) covering the period from 1970 to 2020.

Given the strong discontinuity of time series, the dataset has 
been reconstructed by balancing the numerosity of the time se-
ries and reconstruction error using a procedure well-described 
in the work by Avino et al. (2021). The entire database is avail-
able online in the dataset published by Avino, Pianese, and 
Manfreda (2024).

Based on the recent study by Avino, Cimorelli, et al. (2024), there is 
a notable increase in annual rainfall maxima observed over shorter 
durations in various locations. However, these trends disappear for 
durations longer than 12 h. Therefore, it appears reasonable to con-
sider the time series of annual maxima at 24 h as stationary.

4.2   |   Selection of the Extraordinary Events

Given the speculative aim of the manuscript and the limited in-
formation available on the extraordinary component of rainfall 
events, the underlining assumption adopted is that the two rain-
fall processes are strongly independent, with the second compo-
nent more likely to be less affected by local factors. Therefore, 
all stations have been analysed as a single time series assuming 
that the second component can be estimated without any dis-
tinction between areas.

In this regard, Pelosi et  al.  (2020) adopted a similar approach 
identifying the threshold by visual inspection of the probability 
distribution of daily rainfall. In the present case, the TCEV is 
adopted, assuming that the extraordinary component may have 
the same characteristics at all sites.

Therefore, the discriminant between ordinary and extraordi-
nary events can be defined adopting the probability term intro-
duce in Equation  6 of Section  3.1. Specifically, the probability 
distribution of annual maxima across the entire study area has 
been utilized to identify a threshold “s”, as reported in the graph 
in Figure 1A. This graph represents the probability distribution 
of all time-series of the rainfall event at 24 h observed or recon-
structed over the entire southern Italy.

It is worthy to mention that only on 609 of the 911 stations avail-
able, the threshold s is of 112 mm was reached and passed. The 
total number of extraordinary events available in the database 

(7)
p(y) =

1

E[Y] − s
e

(

−
y−s

E[Y]−s

)

(8)
P(Y ≤ y) = e

(

−λ e(−
y−s

E[Y]−s )
)

FIGURE 1    |    Annual maxima identification of extraordinary events: A) Cumulative probability distribution of the annual maxima at 24 h measured 
over southern Italy. B) Number of extraordinary events observed in each station of the study area.
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is of about 2458 events distributed quite heterogeneously along 
the entire territory. Their distribution is depicted in Figure 1B, 
which allows to immediately discern the spatial pattern of such 
phenomena, which exhibits a clear gradient across the region.

The obtained threshold may certainly represent an approxima-
tion, but it is interesting to observe later in this manuscript that 
the results of the obtained probability distribution are consistent 
with the results from local estimates. Additionally, it is worth 
mentioning that Pelosi et al. (2020) adopted a similar approach, 
identifying the threshold through visual inspection of the prob-
ability distribution of daily rainfall over the entire Italian terri-
tory. They selected a threshold of 250 mm, which was identified 
as the parameter at which there was a significant departure of 
observed frequencies from the fitted probability model.

4.2.1   |   Probability Density Function of Rainfall Above 
the Thresholds

The threshold allows us to explore and characterize the prob-
ability distribution of the rainfall events above this threshold. 

Such a distribution can be described by Equation 6. The reliabil-
ity of this distribution is tested in Figure 2, where the probabil-
ity distribution of rainfall intensities above the threshold, s, is 
represented along with the mathematical function given above. 
The function refers to all the rainfall values recorded within the 
area of interest.

4.3   |   Rainfall Data Processing

The estimation of parameters for the space–time Poisson model 
involved a series of approximations, introducing necessary er-
rors for testing the overarching concept. It is crucial to acknowl-
edge that the rainfall dataset exclusively consists of annual 
maxima without specific dates, making the reconstruction of 
historical rainfall events unfeasible. However, the likelihood of 
extraordinary rainfall events from the same year and in close 
proximity belonging to different events is minimal. Therefore, 
the available annual maxima were utilized to extrapolate cells 
of extraordinary events that occurred over the considered time 
window. This was done by assuming that annual maxima above 
a threshold “s”, identifying extraordinary events, could be asso-
ciated with a single extraordinary event.

With this aim, a multi-step approach was adopted, and it is de-
picted in Figure 3.

•	 Firstly, annual rainfall time series were utilized to gener-
ate 2D rainfall fields using the Inverse Distance Weighting 
(IDW) method each year (using an exponent equal two for 
the distance and number of neighbours is set equal eight). 
An example of 2D reconstruction is given in Figure 3A.

•	 Subsequently, the rainfall map has been segmented in 
cells above a given threshold, which will be identified in 
Section  4.2. The rainfall cells surpassing a predefined 
threshold were isolated and characterized. An example of 
this second step is given in Figure 3B where nine cells with 
different intensities and sizes have been identified.

•	 The sequence of extraordinary cells observed in space has 
been employed to characterize the spatial frequency of ex-
ceptional events. This information has, in turn, been uti-
lized for identifying homogeneous areas. Figure 3C provides 

FIGURE 2    |    Probability density function of rainfall intensities above 
the threshold of 112 mm/day obtained using all 910 rain gauges of the 
area.

FIGURE 3    |    Example of extrapolation of the spatial characteristics of rainfall cell associated to extraordinary events: A) Example of interpolated 
rainfall field of annual maxima for a given year, 1980; B) Example of identified cells with rainfall above the threshold value s in the year 1980. C) 
Frequency of extraordinary events observed over the time-window considered (1970–2020).
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an illustrative example of the results obtained across the en-
tire temporal window under consideration.

•	 Then, the study area was classified into six regions employ-
ing k-means clustering based on the frequency of extraordi-
nary events (see Figure 4).

•	 Finally, within each homogeneous region, the intensity and 
size of rainfall cells associated with extraordinary events 
were quantified, facilitating the derivation of parameters for 
the Poisson process.

Based on the above procedure, six regions were identified based 
on the frequency of extraordinary events. Among these, an area 
along the Ionian coast stands out, exhibiting a significantly 
high number of occurrences of extraordinary events (Zone 4). 
Additionally, three other subregions also demonstrate a relatively 
high number of extraordinary events: the Park of Matese (Zone 1), 
the Sorrento Peninsula (Zone 2), and the Gulf of Policastro (Zone 
3). The remaining two zones (5 and 6) cover the remaining terri-
tory, with the zone 5 identifying the most internal areas where the 
number of extraordinary events is limited and finally the zone 6 
representative of coastal areas without significant relief.

These areas are depicted in Figure 4, where it is possible to ob-
serve the strong impact of the Apennine chain on the observed 

patterns. It is worthy to observe how the Calabria region is 
separated in two regions with a limit that goes along the relief 
line (Versace et  al.  1989). In addition, regional studies on the 
Basilicata region also highlighted also identified a hotspot lo-
calized next to the Tyrrhenian coast similar to the one identified 
herein as zone 3 (see Claps and Fiorentino 2001).

These six regions exhibit clear and significant differences, as 
evidenced by the model parameters obtained for each area. 
These parameters highlight a noticeable distinction not only 
in the frequency of extraordinary events, but also in the con-
figuration of rainfall cells. It is worth noting that, concerning 
the latter aspect, an ideal dataset for a comprehensive study like 
this would consist of an extended record of radar observations 
possibly calibrated with ground observations. Such a dataset 
could contribute to achieving a more robust reconstruction of 
the characteristics of extraordinary events. While maps for these 
observations are available, they cover only a short period, and in 
most cases, they require time-consuming calibration. Therefore, 
it is acknowledged that the analysis presented here could cer-
tainly be refined. Nevertheless, it serves as an interesting start-
ing point for a quantitative characterization of the right tail of 
the probability distribution of extreme events.

Building upon the six, it became feasible to undertake a sub-
regional characterization of the space–time rainfall process, 
resulting in the parameters presented in Table 1. The obtained 
parameters reveal a significantly large variability in the rain-
fall dynamics across various portions of southern Italy. The 
observed probability distributions of the rainfall cell areas are 
depicted in Figure  5, where the empirical probability density 
function (pdf) is fitted with an exponential distribution. It is 
worth noting that Regions 1 and 2 are relatively small, limiting 
the ability to achieve a robust characterization of this probability 
distribution.

The application of the model over southern Italy is shown in 
Figure 6, where the differences in the probability distributions 
obtained in the six different zones are clearly visible. Figure 6 
depicts, in a Gumbel plot, the cumulative probability distribu-
tions of the annual rainfall maxima recorded in each of the six 
zones of the present study. The STMM probability distribution 
is depicted with a dashed blue line, and it is compared with the 
regional TCEV probability distribution obtained following the 
procedure suggested by Fiorentino, Versace, and Rossi  (1985). 
Considering that the regional procedure is based on the 

FIGURE 4    |    The rainfall zones identified with a clustering approach 
based on the frequency of extraordinary rainfall events applied over the 
Southern Italy District. The spatial resolution adopted for the analysis 
was 5.5 km.

TABLE 1    |    Parameters of the rainfall Poisson process estimated on each of the six zones identified in the present study.

Zone Description of the zone �r (N/year/km) E[DA] (km2) � (N/year) E[Y] (mm)

1 The Park of Matese 0.0014 269.6 0.3774 143.7

2 The Sorrento Peninsula 0.0010 275.7 0.2757 140.8

3 The Gulf of Policastro 0.0008 431.8 0.3454 144.5

4 Ionian coast of Calabria 0.0002 2204.3 0.4409 168.2

5 Internal area 0.0001 227.3 0.0227 134.4

6 Coastal area without 
significant relief

0.0003 330.6 0.0992 140.0
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FIGURE 5    |    Probability density functions of the size of the rainfall cells derived for each of the six zones identified in southern Italy.

FIGURE 6    |    Comparison of the cumulative probability distributions of the rainfall above the threshold of 112 mm obtained with the STMM (blue 
dashed line) in the 6 Zones identified in the present manuscript. The distribution has been compared with the regional TCEV, which provide a range 
of solutions within the selected zones. The central line refers to the average distribution (green solid line) and the minimum and maximum of the 
area (red dashed line).

 19360592, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eco.2742 by U

ni Federico Ii D
i N

apoli, W
iley O

nline L
ibrary on [19/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 11 Ecohydrology, 2024

definition of a regional frequency curve of the normalized vari-
able represented by the rainfall depth divided by the local mean, 
the final result produces a range of possible functions that re-
flect the range of variability of the means. Therefore, the TCEV 
is represented as a reference mean and two bounds associated 
with the minimum and maximum of the zone. The proposed 
STMM is always between the average and the maximum of each 
zone. It is noteworthy that the rainfall quantiles on the Ionian 
coastline of the Calabria region (Zone 4) are significantly higher 
than those in other areas.

5   |   Discussion

The present manuscript offers an approach for the estimate of 
the probability distribution for extraordinary events based on 
a space–time modelling scheme. In certain applications, pre-
dicting extraordinary events holds greater significance and 
relevance for enhancing current hydrological estimation meth-
ods. This explorative study presented here provided interesting 

results that seems to be reliable in terms of prediction and charac-
terization of extraordinary events. The methodology introduced 
herein has significant potential if a good space–time representa-
tion of rainfall extremes becomes available over a long temporal 
window.

The concept of extrapolating the probability distribution of the 
second component of annual maxima directly from the space–
time characteristics of rainfall events overcomes the classical 
limitations of traditional approaches, such as point-scale es-
timations or even regional models. In fact, an extraordinary 
event has a relatively low probability of being recorded in a 
single rain gauge, expanding the study to include the spatial 
patterns of extraordinary rainfall events can enhance the ac-
curacy of parameter estimation and improve the reliability of 
predictions.

At-site statistical inference may be significantly distorted by the 
presence of one or a few extraordinary events, which may occur 
with the same probability in nearby locations. Therefore, the 

TABLE 2    |    Rainfall quantiles were estimated using the proposed methodology for the six regions of interest with three different methods: at-site, 
regional and STMM methods. It is worth noting that for on-site estimations, the values represent averages over the respective areas, with the range 
in parentheses indicating the minimum and maximum values obtained for each area.

Description of the zone At site estimations with GEV distribution

h (mm) at 
T = 100 years

h (mm) at 
T = 200 years h (mm) at T = 500 years

h (mm) at 
T = 1000 years

1 – The Park of Matese 185 (122–267) 192 (128–338) 200 (136–462) 206 (140–585)

2 – The Sorrento Peninsula 210 (135–304) 236 (143–368) 274 (153–476) 308 (159–580)

3 – The Gulf of Policastro 278 (249–308) 324 (289–359) 396 (352–440) 460 (409–511)

4 – Ionian coast of Calabria 300 (198–422) 335 (217–481) 385 (241–567) 426 (258–636)

5 – Internal area 126 (79–197) 139 (83–235) 158 (84–309) 173 (85–385)

6 – Coastal areas without 
significant relief

178 (122–267) 203 (128–338) 239 (136–462) 270 (140–585)

Description of the zone Regional estimations with the TCEV distribution

1 – The Park of Matese 240 (200–290) 261 (217–315) 290 (241–350) 312 (259–377)

2 – The Sorrento Peninsula 212 (156–269) 230 (169–292) 256 (188–324) 275 (202–349)

3 – The Gulf of Policastro 235 (188–268) 255 (204–291) 284 (227–323) 305 (244–348)

4 – Ionian coast of Calabria 246 (148–473) 267 (161–514) 297 (179–570) 320 (193–614)

5 – Internal area 128 (61–267) 140 (67–290) 155 (74–323) 167 (80–347)

6 – Coastal areas without 
significant relief

161 (85–248) 175 (92–269) 194 (102–299) 209 (110–322)

STMM—space–time maxima model

1 – The Park of Matese 226.9 249 278.1 300.1

2 – The Sorrento Peninsula 207.5 227.6 254.1 274.1

3 – The Gulf of Policastro 227.1 249.8 279.7 302.3

4 – Ionian coast of Calabria 324.8 364 415.6 454.7

5 – Internal area 130.3 146 166.6 182.2

6 – Coastal areas without significant relief 176.1 195.6 221.3 240.7
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resulting probability distributions may produce significant bias 
in the estimation of values at higher return periods. This dif-
ference has been highlighted in the analysis presented herein, 
where the STMM provides specific large-scale estimations, while 
other methods provide estimations that are always linked to the 
local observations. Such differences are highlighted in Figure 6 
and Table 2, where the comparison of the results of the STMM 
method with at-site estimations of rainfall maxima and regional 
estimations applied over the available stations within each of the 
six zones identified in the study are presented. It is important to 
note that the comparison was possible between the mean value 
of the estimations, along with a range of values (minimum and 
maximum), obtained with the at-site estimations using the GEV 
or TCEV probability distributions.

The two methods exhibit overall agreement, particularly con-
cerning the mean values of the rainfall quantiles estimated 
across each homogeneous area. However, both local and re-
gional estimates reveal significant variability in the extrapolated 
quantiles for the large return period utilized in the present study. 
The observed dispersion, especially in the upper bounds of the 
estimations, is attributed to the limited length of the time series 
considered, spanning from 35 to 50 years of observations. This 
variability is generally mitigated by regional estimates, which 
closely align with the values provided by the STMM method.

Even though the proposed method has a very simple schematiza-
tion, it has been able to correctly capture the order of magnitude of 
potential extreme events recorded over the area. The results cannot 
coincide because the two methods are based on significantly dif-
ferent methodological approaches, but it is interesting to note that 
the estimations of the quantiles obtained with the STMM are very 
close to the range of values obtained with the at-site and regional 
estimations. This implies that the estimation of extreme events for 
higher return periods may be obtained by focusing only on the ex-
traordinary values. Additionally, it is interesting to note that the 
largest differences between the two estimations are observed over 
the smallest zones, which may induce a sampling issue.

The hypothesis of clustering regions assumes that large areas 
have constant characteristics, leading to significant differences at 
regional boundaries, which may be somewhat unrealistic. In this 
context, the methodology introduced by Cowpertwait, Kilsby, and 
O'Connell (2002) offers an improvement on the Cox and Isham 
(1988) model by incorporating the spatial distribution of rainfall 
parameters. This approach addresses the impact of spatial varia-
tions on extremes and other rainfall statistics and may represent 
a viable strategy to improve the technical applicability of STMM.

6   |   Conclusion

This study addresses the challenge of characterizing extraor-
dinary rainfall events, which are often challenging to observe 
accurately with traditional point measurements. Through the 
application of a space–time Poisson model, the research suc-
cessfully overcomes the limitations posed by sparse rain gauge 
networks. The model, based on circular-shaped rainfall cells 
with random depth, focuses specifically on extraordinary events 
associated with larger meteorological phenomena, transcending 
local landscape heterogeneity.

The investigation conducted across southern Italy reveals sig-
nificant regional differences in the dynamics of extraordinary 
events, with six distinct zones identified based on their fre-
quency. The calibration of model parameters using a simple 
mathematical representation allows for the estimation of a 
regional probability distribution defined across homogeneous 
zones. This approach proves valuable in providing a more 
comprehensive understanding of extreme events, overcoming 
the constraints of point observations by offering a distribution 
that pertains to entire regions rather than individual points.

Acknowledging the inherent limitations of the rainfall data 
utilized for characterizing extraordinary events, one potential 
solution is to incorporate long-term radar observations. This 
approach aims to offer a more refined representation of extraor-
dinary phenomena. The undertaking of such a task as a future 
research activity necessitates time-consuming calibration pro-
cesses; nonetheless, it has the potential to signify a significant 
advancement in this field.

Despite the challenges, the proposed study stands as a promis-
ing starting point for quantitatively characterizing the probabil-
ity distribution of extraordinary rainfall events. The alignment 
of estimated quantiles of rainfall with the upper bounds of the 
probability distribution underscores the model's effectiveness in 
capturing and predicting extreme events.

In summary, the study introduces a novel approach to the anal-
ysis of extraordinary rainfall events, leveraging a space–time 
modelling scheme to enhance our understanding of their oc-
currence and characteristics across distinct regions. The iden-
tified zones and their associated dynamics contribute valuable 
insights, laying the groundwork for further refinement and ex-
ploration in the field of hydrological predictions.

Dedication

This small project has been on my mind for several years, and 
I finally found the energy and motivation to complete it during 
Christmas, considering the approaching deadline for the spe-
cial issue dedicated to Ignacio. Although I never had the chance 
to discuss it with my mentor, Ignacio, I am confident he will 
be curious to learn how his thoughts have evolved over time. I 
hope this work can serve as a useful reminder of his genius and 
ground-breaking way of thinking.
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