
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6651  | https://doi.org/10.1038/s41598-023-33687-x

www.nature.com/scientificreports

Exploring microstructure 
and petrophysical properties 
of microporous volcanic 
rocks through 3D multiscale 
and super‑resolution imaging
Gianmarco Buono 1*, Stefano Caliro 1, Giovanni Macedonio 1, Vincenzo Allocca 2, 
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Digital rock physics offers powerful perspectives to investigate Earth materials in 3D and non-
destructively. However, it has been poorly applied to microporous volcanic rocks due to their 
challenging microstructures, although they are studied for numerous volcanological, geothermal 
and engineering applications. Their rapid origin, in fact, leads to complex textures, where pores are 
dispersed in fine, heterogeneous and lithified matrices. We propose a framework to optimize their 
investigation and face innovative 3D/4D imaging challenges. A 3D multiscale study of a tuff was 
performed through X-ray microtomography and image-based simulations, finding that accurate 
characterizations of microstructure and petrophysical properties require high-resolution scans 
(≤ 4 μm/px). However, high-resolution imaging of large samples may need long times and hard X-rays, 
covering small rock volumes. To deal with these limitations, we implemented 2D/3D convolutional 
neural network and generative adversarial network-based super-resolution approaches. They can 
improve the quality of low-resolution scans, learning mapping functions from low-resolution to 
high-resolution images. This is one of the first efforts to apply deep learning-based super-resolution 
to unconventional non-sedimentary digital rocks and real scans. Our findings suggest that these 
approaches, and mainly 2D U-Net and pix2pix networks trained on paired data, can strongly facilitate 
high-resolution imaging of large microporous (volcanic) rocks.

The rapid deposition and lithification of volcanic products during large explosive eruptions originate significant 
volumes of microporous rocks, typically in the form of tuffs (i.e., consolidated pyroclasts). They are hence usually 
widespread in volcanic areas both as surface rocks and subsurface rocks, where aquifers develop and geother-
mal reservoirs can be emplaced, impacting volcano dynamics and the related signals detected by monitoring 
networks. The study of their microstructure and petrophysical properties is thus valuable for volcanological, 
geothermal energy, oil and gas, hydrogeological, and other engineering (e.g., building material, nuclear waste 
storage, CO2 adsorption/capture) applications1–8. The rapid origin of these rocks, however, leads to complex 
microstructures, where pores are dispersed in a very fine, heterogeneous and lithified matrix, making their 
exploration challenging. Particularly, tuffs are defined as the consolidated equivalent of volcanic (fallout or flow) 
ash, i.e., fragments of different size (< 2 mm), nature (volcanic glass, crystals and eroded subsurface/surface 
rocks) and shape9. The most common tuffs typically arise from the emplacement of hot (up to > 600 °C), fast 
(up to > 300 m/s) and voluminous (up to > 1000 km3, covering up to > 20,000 km2) pyroclastic density currents, 
consisting of a mixture of gas and volcanic particles. Post-depositional alteration of volcanic glass can promote 
the formation of new minerals (e.g., zeolites, clays), further lithifying and complicating their structures10.

Recent technological advances allow to characterize rock texture and properties in 3D and non-destructively 
in the digital rock physics framework. Rock samples are scanned by X-ray microtomography (micro-CT) to 
obtain 3D digital rocks, that are then segmented (i.e., different phases are identified and labeled) and used 
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to quantify microstructural parameters and estimate physical properties through several types of numerical 
simulations11–15. This permits to better investigate physical processes at different spatial (from sample/core-scale 
to pore-scale) and temporal (i.e., 4D imaging during in-situ or ex-situ experiments) scales, perform multiple 
simulations in different conditions, and preserve the samples for future analyses (particularly useful for drilling 
cores). However, as any imaging technology, micro-CT requires a trade-off between resolutions (or pixel size) 
able to properly resolve the pore space and fields of view (FoV; i.e., sample volume that can be imaged) able to 
guarantee the representativeness. Moreover, scanning smaller FoV at high resolution from a larger sample (e.g., 
rock cores), although does not involve relevant artefacts, may require excessively long scan times or hard X-rays15. 
Several works demonstrated the harmful effects that low resolutions can have on quantitative characterization 
of digital rocks, especially when fine textures are present (e.g., carbonate microporosity16–19).

In recent years, deep learning-based super-resolution approaches are rapidly expanding in the field of the 
computer vision, and super-resolution methods based on convolutional neural networks (CNNs) and genera-
tive adversarial networks (GANs) are proving to be particularly efficient. These approaches allow to improve the 
quality of a low resolution image, learning mapping functions from low resolution (LR) to high resolution (HR) 
images20. Testing the effectiveness of these methods on digital rocks with different features can be thus critical to 
improve digital rock physics workflows, such as to achieve large sample volume with high resolution or enhance 
fast low quality scans (e.g., for samples to be preserved and 4D imaging with large experimental apparatus and/or 
high temporal resolution). Some pioneering efforts have been done in this direction, leading to very promising 
results, although in most cases LR images were synthetically downsampled from HR scans and only conventional 
sedimentary digital rocks were employed18,20–25 (for details see20,25).

In this study we explore methods to optimize the 3D non-destructive characterization of microstructure and 
flow properties of microporous tuff rocks, which are “unconventional” digital rocks (i.e., largely unexplored in the 
digital rock physics framework). In fact, they have been poorly investigated with micro-CT so far despite their 
wide range of applications, possibly due to their challenging microstructures. We propose a multiscale imaging 
of a tuff core with progressively decreasing pixel sizes (from 16 to 1.75 μm) and fields of view, and increasing 
exposure time, to find a reasonable trade-off between resolution and FoV. Several 2D and 3D, CNNs- and 
GANs-based super-resolution approaches were then applied to real HR and LR images to further improve its 
imaging (avoiding synthetic downsampling to consider artefacts and problems that arise during true imaging and 
image registration). Particularly, networks which have shown robust results in several scientific and computer 
vision fields were implemented in order to effectively and quickly super-resolve these complex digital rocks. 
The obtained 3D images were then evaluated computing transport parameters. We investigated the Campanian 
Ignimbrite (CI) tuff, the dominant product of the largest Quaternary volcanic eruption in Europe, during which 
about 457–660 km3 of pyroclastic material were emitted26 (Fig. 1). The eruption occurred from the Campi Flegrei 
caldera (Naples, Italy), one of the most dangerous active volcanic area in Europe27–29, where surface tuffs are 
largely widespread and caldera-filling deposits are dominated by subsurface tuffs5.

Results and discussion
Digital rock studies are a powerful tool to quantitatively explore rock microstructure and physical properties in 
3D and non-destructively. Investigations mainly focused on sedimentary (especially sandstone and carbonate) 
rocks so far11–14 but they are rapidly expanding to other types of rocks, including volcanic ones3,29–33. Although 
several works are now available for unconsolidated volcanic pyroclasts and lavas with relatively simple textures, 
very few efforts have been done to examine consolidated microporous volcanic rocks6,7. Particularly, to our 
knowledge, their properties were never systemically and quantitatively explored in the digital rock physics 
framework despite their wide range of applications, possibly due to their challenging microstructures.

Multiscale imaging.  Microporous tuff rocks can show complex relationships between flow properties, 
which cannot be simply estimated obtaining classical empirical or semi-empirical (e.g., Kozeny-Carman) equa-
tions (Fig. 2a). Examining the samples of interest with specific investigations can be therefore crucial.

In order to optimize their characterization, we performed a multiscale imaging of the Campanian Ignimbrite 
tuff, the dominant product of the largest Quaternary volcanic eruption in Europe, widely spread in the Campi 
Flegrei caldera and investigated for several scientific and industrial applications3–5,26,29 (Fig. 1a,b). Three 3D scans 
(of about 10003 px) were acquired by micro-CT progressively improving the resolution: LR (low resolution), 
HR (high resolution) and VHR (very high resolution) scans with a pixel size of 16, 4 and 1.75 μm, respectively 
(Fig. 1c,d). The main limitation of this technology, as for any imaging technique, is that scans with higher reso-
lutions of a sample can be only obtained at the expense of smaller fields of view and longer scan times. Conse-
quently, a trade-off between resolutions able to properly resolve the pore space, fields of view able to guarantee 
the sample representativeness and acceptable scan times to achieve a good image quality is required. One of the 
most reliable approaches to evaluate the efficiency of different scans is to compare their petrophysical properties 
with equivalent laboratory data measured following international standards12,17,20.

We obtained a total porosity of 0.74, 0.49 and 0.48 (percolating porosity = 99%) and an intrinsic permeability 
of 518,021, 1649, 443 mD for our LR, HR and VHR scans, defining a simple image analysis workflow compris-
ing segmentation with Otsu algorithm and permeability simulations with lattice Boltzmann methods on central 
volumes of 6403 px (Fig. 2b). On the other hand, an average total porosity of 0.51 and intrinsic permeability of 
476 mD were obtained by laboratory measurements. Our data shows that the LR scan, although covers much of 
the core width, has a too high pixel size to appropriately segment the pores, leading to an overall overestimation 
of porosity and permeability (Fig. 2b). In detail, small pores and matrix grains are not properly discriminated due 
to the low resolution, resulting in portions of the segmented digital rock with overpredicted (due to prevailing 
pore fraction and/or very fine matrix) or underpredicted (due to prevailing solid fraction and/or very small pores) 
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pore space (Figs. 3, 4). It is consistent with several digital rock studies on sedimentary rocks16–19. Conversely, 
HR scan has a pixel size able to properly resolve pore spaces (Figs. 3, 4) and a field of view able to guarantee the 
representativeness, showing petrophysical properties almost consistent with laboratory data (Fig. 2b). Finally, 
VHR scan allows to achieve values even closer to laboratory data despite its small field of view (Fig. 2b). We 
highlight that it is just a qualitative comparison between digital and laboratory measurements. Our digital results 
were, in fact, obtained adopting a very direct workflow to minimize the influence of different filtering, segmenta-
tion and simulation approaches. Moreover, laboratory data was measured on different plugs, and with diverse 
size, from those used for micro-CT analysis, even though drilled from the same tuff block. However, it can be 
useful to quickly discuss the threshold sensitivity34 for the segmentation of the acquired scans. In fact, image 
segmentation is a crucial step for digital rock physics, but it is widely affected by the user/algorithm-selected 
threshold values. We explored how the porosity changes with thresholding variations from the Otsu value. Otsu 
thresholding, in fact, proved to be among the best possible approaches to capture textural features of our rocks 
without further geological verifications (for details on geological driven workflows for rock segmentation please 
refer to Balcewicz et al.35). Our data shows that HR and VHR scans provide porosity values little affected by user/
algorithm-selected parameters, while LR scan is very sensitive to threshold variations (Fig. 2b).

In summary, the multiscale study of our tuff core shows that the investigation of small portions of tuff rocks 
with high resolution can allow more accurate estimates of their petrophysical properties. However, great atten-
tion must be paid to the risk of non-representativeness when very small rock volumes are explored due to the 
high heterogeneity that usually characterize volcanic rocks3,36. Moreover, high resolutions scans may require 
excessively long scan times or hard X-rays, especially when only large rock samples are available15. In order to 
deal with these limitations, we examined the effectiveness of deep learning-based super-resolution approaches 
on this type of digital rocks.

Super‑resolution imaging.  Deep learning-based super-resolution methods can allow to improve the 
quality of an image learning mapping functions from low resolution to high resolution images. Evaluating their 
efficacy on 3D images of rocks can critically improve digital rock physics workflows (e.g., to achieve large fields 
of view with high resolution or enhance fast 4D low quality scans). Although pioneering efforts have been made 

Figure 1.   Location, distribution, aspect and 3D imaging of Campanian Ignimbrite tuff. (a) Area covered by 
Campanian Ignimbrite pyroclastic density currents on land (drawn in yellow following the constrains of Silleni 
et al.26 on map from Google Earth Pro 7.3.6: https://​www.​google.​com/​earth/​about/​versi​ons/). (b) Cross-section 
of a core (diameter: 54 mm, height: 103 mm) from the Campanian Ignimbrite tuff employed for laboratory 
measurement. (c) 3D multiscale X-ray imaging. Left: Tuff core (diameter ~ 20 mm, height ~ 40 mm) acquired 
by X-ray microtomography. Right: 3D scans obtained progressively decreasing pixel sizes and fields of view, 
and increasing exposure time: low resolution (LR; 16 μm/px), high resolution (HR; 4 μm/px) and very high 
resolution (VHR; 1.75 μm/px) scans (XZ planes). (d) Low resolution (LR) image (input) and its corresponding 
high resolution (HR) counterpart (ground truth) used to train and validate paired super-resolutions models.

https://www.google.com/earth/about/versions/
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to apply these methods to digital rocks, they mainly focused on sedimentary rocks and employed LR images 
synthetically downsampled from HR images20,25. Janssens et al.18 recently showed that synthetically downsam-
pled LR images are often able to retain microstructure complexities, largely compromised in real LR scans by 
imaging artefacts.

We tested six different robust convolutional neural network (CNN) and generative adversarial network 
(GAN)-based super-resolution approaches (U-Net; SR-ResNet; EDSR; WDSR-a; WDSR-b, pix2pix; see “Mate-
rials and methods” section for details on the networks and their training) using corresponding paired volumes 
of our real LR scan (input data) and HR scan (ground truth data) of microporous volcanic tuff (Fig. 1d), aimed 
at finding effective and quick methods to optimize the investigation of these rocks. HR scan, in fact, proved to 
adequately capture transport properties with a more sustainable scaling factor (4× vs. 10×) and scan time (3.2 
vs. 14 s per projection) than VHR scan. It is worth noting that LR crop synthetically downsampled (with cubic 
interpolation) from our HR image shows porosity values closer (0.55) to the HR crop (0.49) than those of the 
real LR crop (0.74), consistently with the findings of Janssens et al.18.

We first employed 2D CNN architectures distinguishable in two groups: U-Net and ResNet-based (SR-ResNet, 
EDSR, WDSR-a, WDSR-b) networks. U-Net network leads to significant enhancement of the image quality 
(Figs. 3, 4), corroborated by excellent pixelwise accuracy of the validation data. In fact, super-resolved validation 
images, when compared to their ground truth (corresponding HR images), show PSNR (peak signal to noise 
ratio) of 28.6 dB, MSE (mean squared error) of 0.0014 and SSIM (structure similarity index) of 0.80 (Table 1). 
Consequently, the total porosity calculated from their segmentation (Fig. 4) is consistent with laboratory data 
and weakly sensitive to threshold variations, in contrast with their equivalent LR images (both LR scan and 
LR scan upsampled to HR size with cubic interpolation) which provide an overpredicted total porosity (Fig. 2, 
Table 1). Conversely, all the employed ResNet-based networks seem inadequate to improve the quality of the 
images and to simplify their processing. Indeed, the application of these trained models to the validation images 
mainly results in too smoothed/blurred images, unable to resolve the small pores and the fine matrix (Fig. 3). 

Figure 2.   Petrophysical properties of Campi Flegrei tuffs and investigated Campanian Ignimbrite tuff. (a) 
Literature data on Campi Flegrei caldera (CFc) tuffs using conventional laboratory approaches57–60. Data on 
Campanian Ignimbrite (CI) tuff are shown in grey. CI tuff can be classified as a highly porous and moderately 
permeable material, whose hydraulic properties are strongly depending on composition, high pumice content 
and degree of welding of ignimbritic deposit. The other tuffs mainly originated during Neapolitan Yellow Tuff, 
Gauro, La Pietra, Nisida and Baia eruptions. (b) Porosity (top) and permeability (bottom) estimated through 
digital rock physics analyses of LR, HR and VHR images (central 6403 px) as well as of super-resolved images 
(all 25603 px: 6403 px × scaling factor of 4, for total porosity; central 9003 px for intrinsic permeability, the 
maximum volume exploitable for our computational system, see also Fig. 6), obtained applying the best trained 
models (2D U-Net and pix2pix) to the LR image. The effect of threshold variations (i.e., threshold sensitivity) is 
also shown, estimating the total porosity as the threshold value diverges from an optimal value (i.e., Otsu value; 
0 in x axis and circle symbol). Laboratory data are provided for comparison.
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This is supported by low image quality metrics: PSNR of 27.2 dB, MSE of 0.0019 and SSIM of 0.70–0.71 (Table 1). 
Accordingly, their segmentation is still hindered by the same difficulties described above for the LR images (see 
“Multiscale imaging” section) and leads to porosity values even more divergent from laboratory data than the 
equivalent original LR input images (Table 1). These findings are possibly due to the less complex architectures 
than U-Net, attested by the lower number of trainable parameters (one order of magnitude less than U-Net) 
and shorter training times for the same number of epochs (Table 1). Moreover, unlike U-Net, LR images are 
directly upsampled within these network. Thus, U-Net requires a preliminary LR image upsampling to HR size 
that augment data, while ResNet-based networks need to discard some HR images (depending on the scaling 
factor) in order to work with corresponding pairs of input and ground truth images (Table 1).

Figure 3.   Super-resolved validation images: 2D networks trained on paired data. Validation slices for 2D CNNs 
(U-Net, SR-ResNet, EDSR, WDSR-a, WDSR-b) and GANs (pix2pix) employed for super-resolution imaging. 
LR (input) and HR (ground truth) images are also shown for comparison. Correspondent training details and 
image quality metrics are reported in Table 1.

Figure 4.   Super-resolved validation images: 2D vs. 3D networks trained on paired data. The resulting best 2D 
models, pix2pix and U-Net, were trained both in 2D and 3D. LR (input) and HR (ground truth) images are 
also shown for comparison. Correspondent training details and image quality metrics are reported in Table 1. 
For LR, HR and validation data from 2D networks, which outperformed the corresponding 3D models, also 
segmented (binary) images are provided.
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The resulting best 2D CNN, U-Net, was then tested as GAN generator implementing a pix2pix network; these 
two models were explored both in 2D and 3D. The trained 2D pix2pix network provides substantial improve-
ments of the image quality and pixelwise accuracy of validation data, even slightly better than 2D U-Net, although 
longer training times are required for the same number of epochs: PSNR of 28.8 dB, MSE of 0.0013 and SSIM 
of 0.82 (Table 1, Figs. 3, 4). Their segmentation is efficient (Fig. 4), resulting in porosity values consistent with 
laboratory data (Table 1). Particularly, 2D pix2pix is able to better detect high-frequency structures than 2D 
U-Net as expected (see “Materials and methods” section). It allows to segment small-scale textural features (such 
as microcracks in crystals), however the slight blurring/smoothing effects of 2D U-Net (acting as denoising) 
is sometimes useful as well. 3D U-Net and pix2pix networks, instead, produce worse results, resulting in bad 
images (Fig. 4), image quality metrics (PSNR of 26.9–27.3 dB, MSE of 0.0019–0.0020 and SSIM of 0.68–0.70; 
Table 1) and porosity values (due to the consequent difficulty in properly resolving and segmenting small pores 
and matrix grains) for validation data (Table 1). It is possibly due to the resulting lower number of training 
patches than their 2D counterpart (Table 1).

In order to test the overall effectiveness of our best trained models, 2D U-Net and pix2pix, we applied them 
to a large unseen (i.e., dominantly external to the training/validation dataset) LR image volume and estimated 
their transport properties using the described image analysis workflow. Applying the models on the central 6403 
px of the LR image we obtained a super-resolved 3D image of 25603 px with a substantial quality enhancement 
(Fig. 5), that allow to image a large field of view with high resolution. The estimated petrophysical properties 
are almost consistent with laboratory data and weakly sensitive to threshold variations (Fig. 2b). Particularly, 
while the original LR image shows an apparent highly porous, permeable and heterogeneous microstructure, 
super-resolved images have porosity, permeability and structural uniformity coherent with laboratory data and 
macroscopic features (Figs. 2b, 6).

Finally, we also explored CycleGAN, a cycle‐consistent adversarial network specifically developed to learn 
the mapping between unpaired (non-corresponding) training images (e.g., from LR to HR data), trained both in 
2D and 3D for this challenging task (see “Materials and methods” section for details on network and training). 
Here we show data obtained with the relatively limited trainings attainable in reasonable times by our dedicated 
GPUs (25 epochs: 455,625 and 5750 training steps in 2D and 3D; Table 1), in order to explore the feasibility of 
super-resolving our low resolution scan in the absence of paired LR-HR data, not always readily available. Our 
results appear promising (especially in 2D), although moderately affected by inconstancy throughout the train-
ing, stitching artefacts and limitations in recovering edges and matrix/crystal uniformity (Fig. 7). This makes 
them still not recommendable for estimating transport properties because of difficulties in segmenting images 
with full geological validity. This is possibly due to limited trainings (aggravated in 3D by the fewer training 
data) when compared to the complex microstructure of these rocks, containing small (not easily resolvable) 
and heterogeneous pores and matrix grains. In fact, pioneering efforts made using similar networks on real 
sedimentary digital rocks led to suitable results22,24.

Table 1.   Training details and image quality metrics for the trained 2D and 3D CNNs and GANs. Image 
quality metrics (respect to HR images), together with porosity values, were obtained from validations slices. 
Network parameters for GANs (pix2pix and CycleGAN) are reported for generators (G) discriminators (D). 
Training time refers to two different GPUs: NVIDIA GeForce RTX 3070 (a) and NVIDIA GeForce RTX 3090 
Ti (b). CycleGAN was trained on unpaired images, which do not allow to estimate image quality metrics; 
validation data looks promising from a visual inspection, but still not recommendable for estimating transport 
properties (see text for details).

Model
Network 
parameters

Patches 
(training + validation)

Training 
epochs

Training time 
(h:m:s) MSE PSNR (dB) SSIM

Porosity 
(Otsu)

LR cubic – – – – 0.0073 21.36 0.64 0.68

U-Net 2D 3.10 × 107 24,300 100 03:32:35a 0.0014 28.58 0.80 0.47

SR-ResNet 2D 1.53 × 106 3888 100 00:28:00a 0.0019 27.21 0.71 0.73

EDSR 2D 1.52 × 106 3888 100 00:16:28a 0.0019 27.23 0.71 0.73

WDSR-A 2D 1.19 × 106 3888 100 00:14:46a 0.0019 27.22 0.70 0.73

WDSR-B 2D 1.29 × 106 3888 100 00:27:01a 0.0019 27.22 0.70 0.73

pix2pix 2D G: 4.18 × 107, 
D: 6.96 × 106 24,300 100 44:07:44a 0.0013 28.82 0.82 0.48

U-Net 3D 9.03 × 107 1400 100 17:55:12a 0.0019 27.31 0.70 0.65

pix2pix 3D G: 1.67 × 108, 
D: 2.78 × 107 288 100 04:08:33a 0.0020 26.91 0.68 0.52

CycleGAN 2D G: 1.84 × 107, 
D: 6.96 × 106 24,300 (unpaired) 25 37:05:08b – – – –

CycleGAN 3D G: 5.54 × 107, 
D: 2.78 × 107 288 (unpaired) 25 12:04:35b – – – –
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Figure 5.   Super-resolved large tuff core: best models. Super-resolved images (25603 px) obtained applying 
the best trained networks, 2D pix2pix and U-Net trained on paired data, to a large unseen LR image (central 
6403 px; i.e., dominantly external to the training/validation dataset). LR images (input) are also shown for 
comparison. Slices from top, middle and bottom of the whole 3D images are presented, together with a zoom in 
their central portion in order to better detect the reconstructed microstructures.

Figure 6.   Petrophysical features of the super-resolved large tuff core. Petrophysical measurements performed 
on the super-resolved images (25603 px) obtained applying the best trained networks, 2D pix2pix and U-Net 
trained on paired data, to a large LR image (central 6403 px; see Fig. 5). (a) Porosity values estimated using the 
box-counting method to calculate the minimum Representative Elementary Volume, REV (top), as well as 
dividing the super-resolved images in adjacent representative (i.e., larger than the minimum REV) subvolumes 
to detect potential heterogeneities (bottom). (b) Example of 3D super-resolved (2D U-Net) and segmented 
image employed for intrinsic permeability simulations (central 9003 px, the maximum volume exploitable for 
our computational system).
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Conclusions
Digital rock physics workflows are powerful tools to explore rock microstructure and physical properties. How-
ever, very few efforts have been done so far to investigate microporous volcanic rocks despite their wide range 
of applications, possibly due to their challenging microstructures. Here we explored methods to optimize the 
3D non-destructive characterization of these rocks, focusing on the Campanian Ignimbrite tuff, the dominant 
product of the largest Quaternary eruption in Europe.

A multiscale imaging of a core with progressively decreasing pixel sizes (from 16 to 1.75 μm) and fields of 
view, and increasing exposure time, was performed. We found that more accurate estimates of the petrophysical 
properties can be achieved examining small volumes of tuffs with high (≤ 4 μm/px) resolution, rather than large 
fields of view with smaller resolutions. The main limitations are that representative volumes must be guaranteed 
and high resolutions scans may require excessively long scan times or hard X-rays (unless small samples are used). 
Therefore, we explored the effectiveness of deep learning-based super-resolution approaches, implementing and 
comparing many robust 2D and 3D, convolutional neural networks and generative adversarial networks trained 
on paired LR-HR data, to artificially image large fields of view of our microporous volcanic rock with high resolu-
tions. 2D U-Net and pi2pix networks guaranteed excellent image quality enhancements (compared to ground 
truth: PSNR of 28.6–28.8 dB, MSE of 0.0013–0.0014 and SSIM of 0.80–0.82) and petrophysical properties almost 
consistent with laboratory measurement, in contrast with ResNet-based (SR-ResNet, EDSR, WDSR-a, WDSR-
b) and 3D networks. Finally, 2D/3D CycleGAN, a cycle‐consistent adversarial network, was also employed to 
test the feasibility of super-resolving our scan using unpaired LR-HR training data. It led to promising results, 
although limited by high computational costs, offering positive prospective to achieve this demanding task on 
complex volcanic rocks.

It is, to our knowledge, the first time that deep learning-based super-resolution methods are tested on non-
sedimentary rock images and one of the few studies that apply these approaches to real LR and HR images (i.e., 
not synthetically downsampled but truly acquired and registered).

Although attention must be paid to extend our results to all the types of microporous volcanic rocks, this 
study represents the first effort to systematically explore these “unconventional” digital rocks through digital 
rock physics, as well as offers a framework to deal with similar microporous structures and innovative imaging 
challenges (e.g., high-resolution imaging of large samples or materials to be preserved, 4D imaging with large 
experimental apparatus and/or high temporal resolution). Moreover, Campanian Ignimbrite tuff is thought to 
be one the most widespread subsurface rock at the Campi Flegrei caldera37,38, currently in a state of unrest since 
200528,29. Our findings will be employed in future studies to optimize the 3D investigation of core samples from 
geothermal drills in this area and time-resolved (4D) imaging during in-situ and/or ex-situ experiments to better 
constrain the ongoing dynamics at this large active caldera.

Figure 7.   Super-resolved validation images: 2D and 3D networks trained on unpaired data. CycleGAN was 
trained both in 2D and 3D on unpaired data (i.e., using non-corresponding LR and HR images). LR (input) 
images are also shown for comparison. Correspondent training details are reported in Table 1. A relatively 
limited training of 25 epochs (455,625 and 5750 training steps in 2D and 3D) was possible in reasonable times 
due to the high computational costs (see also Table 1).
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Materials and methods
Materials and laboratory estimation of hydraulic properties.  We investigated the Campanian Ign-
imbrite (CI) tuff, the main product of the homonymous volcanic eruption occurred from the Campi Flegrei cal-
dera (Italy) 39 ka ago39, considered the largest Quaternary eruption in Europe. This eruption produced a minor 
basal fallout, dispersed to the E–NE, overlain by a dominant, sub-radial, stratified pyroclastic density current 
(PDC) deposit. The Welded Gray Ignimbrite (WGI) is the most widely distributed unit and constitutes most of 
the CI thickness26. The CI tuff originated from the rapid deposition and lithification of hot PDCs with a volume 
of about 453–606 km3, covering an area of more than 6000 km226 (Fig. 1a). This tuff is the most widespread 
among the caldera-filling deposits37,38 extended up to a depth of ~ 4 km5. It was thus investigated for numerous 
(mainly volcanological, geothermal, civil and material engineering) applications3–5,26,29.

We studied a WGI tuff block collected from an open quarry for building materials close to the city of Caserta 
(Fig. 1a), consisting of black scoriae embedded in an ashy matrix with subordinate lithics and crystals (mainly 
feldspars and pyroxene). It shows a complex microstructure in which the pores are distributed in a very fine, 
lithified, heterogeneous matrix (Fig. 1b). We estimated some its hydraulic properties, i.e., hydraulic conductivity, 
intrinsic permeability and total porosity, by using laboratory tests and empirical formulas. Particularly, hydraulic 
conductivity measurements were obtained by testing 2 rock samples at the Laboratory of Geological and Geo-
technical Engineering of the Department of Earth, Environmental and Resources Sciences of the University of 
Naples Federico II. An irregular block of CI tuff was shaped using a coring machine (MATEST, Italy, A140-01 
model), an electric saw (Husqvarna, Italy, TS 230 F model) and a polisher machine (Buehler, Germany, AutoMet 
Grinder-Polishers model) to obtain 54 mm diameter and 103 mm height two polished cylindrical specimens. The 
cylindrical rock specimens were prepared according to the standard (ASTM D4525–90). Hydraulic conductivity 
measurements were performed on saturated rock samples, after immersing the specimens in distilled water for 
4 days. For two rock specimens, 12 and 18 hydraulic tests of hydraulic conductivity were performed. Hydraulic 
conductivity tests were carried out according to the ASTM standards (ASTM D2434-68, ASTM D5084-16a) by 
a triaxial apparatus with Hoek cell (MATEST, Italy, A137 model). In Allocca et al.1 further details of laboratory 
instruments and procedure used for measurements of hydraulic conductivity are reported. Hydraulic conductiv-
ity, K (m/s), was estimated by using Darcy’s law in the steady-state flow condition, and subsequently converted 
in intrinsic permeability, ki (mD), by following equations:

where q is the volumetric flow-rate of water (m3/s), A is the cross-sectional area of the cylindrical specimen (m2), 
i is the hydraulic gradient (dimensionless), μw and ρw are water viscosity (N × s/m2) and density (kg/m3) at ambi-
ent conditions respectively, and g (m/s2) is the gravitational constant. Finally, total porosity, φ (dimensionless) 
was empirically estimated using dry bulk density, ρ (kg/m3) previously determined in laboratory, and dense rock 
equivalent density (ρDRE = 2.607 ± 31 kg/m326) by following empirical formula40:

Multiscale X‑ray imaging.  X-ray microtomography investigations were performed on a cylindrical core 
with diameter of about 20 mm and a height of 40 mm from the same tuff block (Fig. 1c). We examined the 
sample at multiple scales, progressively decreasing pixel sizes and fields of view, and increasing exposure time. 
We acquired three 3D images (of about 10003 px): a low resolution (LR) scan with a pixel size of about 16 μm, 
a high resolution (HR) scan with a pixel size of 4 μm and a very high resolution (VHR) scan with a pixel size of 
1.75 μm (Fig. 1c). The scans were acquired at the micro-CT laboratory of the Istituto Nazionale di Geofisica e 
Vulcanologia—Osservatorio Vesuviano, equipped with a ZEISS Xradia Versa 410 micro-CT. X-ray imaging was 
performed in absorption mode acquiring 2D radiographs (projections) over a total angular scan of 360°, recon-
structed with a filtered back-projection algorithm using the XRM Reconstructor software. LR scan was scanned 
at 80 kV and 7 W, using an optical magnification of 0.4× and collecting 4001 projections with a scan time of 3 s 
per projection. HR scan was scanned at 100 kV and 9 W, using an optical magnification of 4× and collecting 4001 
projections with a scan time of 3.2 s per projection. VHR scan was scanned at 100 kV and 9 W, using an optical 
magnification of 10× and collecting 3201 projections with a scan time of 14 s per projection. For HR and VHR 
scans, a low-energy (LE6) filter was used to minimize beam hardening.

Super‑resolution.  Super-resolution methods based on convolutional neural networks and generative 
adversarial networks are proving to be particularly efficient to enhance the quality of low resolution images in 
numerous applications. Here, we tested the effectiveness of these approaches on images of tuff rock with chal-
lenging microstructures. We used real LR and HR scans (see “Multiscale X-ray imaging” section), with a scaling 
factor of 4×, opportunely preprocessed, and several 2D-3D, CNNs and GANs-based networks.

CNNs and GANs‑based super‑resolution.  We trained seven different networks which have shown very effective 
and quick results in numerous scientific and computer vision fields and challenges (U-Net, SR-ResNet, EDSR, 
WDSR-a, WDSR-b, pix2pix, CycleGAN; Fig. 8). We mainly used corresponding pairs of LR (input data) and HR 

(1)K =

q
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(2)ki =
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,
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(ground truth data) images, progressively focusing on the networks raveled more efficient for the microstructure 
of our tuff after apposite parametric studies. 2D CNNs (U-Net and ResNet-based CNNs: SR-ResNet, EDSR, 
WDSR) were initially employed. The resulting best model (U-Net) was then used both in 2D and 3D, and as 
generator of a GAN (pix2pix). Finally, we tested a cycle‐consistent adversarial network (CycleGAN) specifically 
developed to learn the mapping between unpaired (non-corresponding) training images (e.g., from LR to HR 
data) both in 2D and 3D.

Deep convolutional neural networks, CNNs, are a class of neural networks that have convolutional layers as 
building blocks. They convolve an input (a tensor with shape: number of inputs, input height, input width, input 
channels, in 2D; initially batches of input images) with a set of convolutional filters (with shape: number of filters, 
kernel height, kernel width, in 2D) giving a feature map as output; thus number and shape of convolutional filters 
crucially impact on the total resulting trainable parameters. CNNs typically combine convolutional layers with 
activation, batch normalization, downsampling and upsampling layers, and minimize specific loss functions by an 
optimizer to solve regression (e.g., super-resolution) or classification (e.g., semantic segmentation) tasks20,41. For 
super-resolution tasks, CNNs learn the LR to HR scan mapping. In this study, we first adopted different kinds of 
CNN architectures, distinguishable in two groups: U-Net and ResNet-based networks. The effectiveness of both is 
enhanced by the use of skip connections that, adding together outputs from shallow and deep layers, allow to pre-
serve shallow features and optimize the training (avoiding vanishing gradient and degradation problems). U-Net 
architecture, originally developed for semantic segmentation, has been used for numerous tasks42. It works with 
input and output images with the same shape, it is thus required a preliminary upsampling of the LR scans (to 
HR size) for super-resolution. U-Net uses a contracting path to capture the context through downsampling steps 
(i.e., convolution plus max pooling layers) and a symmetric expanding path (hence U-shape; Fig. 8) for a precise 
localization through upsampling (up-convolution) and concatenation with corresponding feature maps from the 
contracting path (skip connection). On the other hand, SR-ResNet is a super-resolution network, directly built 
on ResNet backbone43 (Fig. 8). ResNet was originally developed to solve image recognition tasks using residual 
blocks with skip connections to train very deep networks44. EDSR optimizes the SR-ResNet architecture, mainly 
removing batch normalization and changing activation layers (from PReLU, Parametric Rectified Linear Unit, to 
ReLU) to increase the performance45 (Fig. 8). Finally, WDSR, starting from EDSR architecture, tests the use of 
wider features before the activation function with same parameters and computational budgets, and introduce 
weight normalization (rather than batch normalization or no normalization). Based on their width two different 
types are proposed: WDSR-a for wide 2×–4× channels, WDSR-b for even wider 6×–9× channels46 (Fig. 8). These 
ResNet-based CNNs works directly on LR images and data are upsampled within the network through pixel 
shuffling (sub-pixel convolution). Further information for digital rocks are provided by Wang et al.47.

In contrast to CNNs, generative adversarial networks, GANs, are composed of two networks: a generator 
model learns to generate fake images, a discriminator model learns to classify images as real (training images) or 
fake (generated images). They are simultaneously trained in an adversarial process, during which the generator 
tries to create progressively more realistic images to fool the discriminator, which in turn tries to better identify 
fake images. The discriminator is directly updated, the generator is updated through the discriminator48. GANs 
usually learn a mapping from random noise vectors to output data (in this case images) but can be conditioned on 
some extra information, such as input LR images; in that case they are called conditional GANs (c-GANs49). Thus, 
using an efficient CNN network as generator and an appropriate image classification network as discriminator, 
c-GANs can be efficient for image-to-image mappings. Here, we employed pix2pix50, a c-GAN with a generator 
based on a U-Net architecture (revealed the best CNN for our rock). It was developed to be a general-purpose 
solution to many image-to-image translation tasks50 and has been recently employed also for multimodal imag-
ing of digital rocks51,52. The discriminator network, called PatchGAN, is a multi-layer CNN classifier mainly 
restricted to model high-frequency structures in local image (70 × 70 px) subpatches, on which it classifies an 
image as real or fake (Fig. 8). In fact, CNNs (commonly based on mean absolute error or mean squared error loss) 
can blur/smooth high-frequency structures43,50, resulting in advantages for segmentation (thus acting as denois-
ing) or in the loss of important small-scale textural information depending on the investigated microstructures 
and images20. pix2pix loss combines a c-GAN loss with a L1 (mean absolute error) loss between generated and 
expected images, that encourages the generation of image similar to the ground truth.

Finally, CycleGAN53 is an adversarial network specifically developed to learn mapping functions between two 
domains (X and Y) in the absence of paired images. To address this under-constrained problem, it uses two gener-
ators (G: X → Y and F: Y → X), based on a modified ResNet backbone, and two associated adversarial discrimina-
tors (Dy and Dx), two 70 × 70 PatchGANs, adopting instance normalization (Fig. 8). In addition to the adversarial 
losses, two cycle consistency losses are introduced to regularize these mappings so that: x → G(x) → F(G(x)) ≈ x 
and y → F(y) → G(F(x)) ≈ y (Fig. 8). Identity mapping losses are also employed to regularize the generator to be 
near an identity mapping when images from the target domain are provided as inputs. CycleGAN was built to be 
a general solution for image-to-image translation53 and has been recently applied to super-resolve digital rocks22.

Data preparation and training.  We applied super-resolution methods to our LR scan (input data) and HR 
scan (ground truth data), which adequately captures transport properties (see “Multiscale imaging” section) 
with a more sustainable scaling factor (4× vs. 10×) and scan time (3.2 vs. 14 s per projection) than VHR scan. 
Particularly, we used LR and HR crops opportunely registered and cropped. 3D registration was refined with 
Thermo Scientific PerGeos Software (based on Avizo Software; Thermo Fisher Scientific, Waltham, MA, USA 
- www.​therm​ofish​er.​com/​perge​os) maximizing the normalized mutual information between the two scans54, 
thus resulting in a slight translation, rotation and scaling of LR scan with a final pixel size of 16 μm. A crop of 
640 × 640 × 972 px (i.e., the largest inscribable parallelepiped in our cylindrical reconstructed digital rock com-
patible with our networks) was extracted from the HR scan, and a corresponding volume of 160 × 160 × 243 px 

http://www.thermofisher.com/pergeos
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from the LR scan (Fig. 1d), to obtain training and validation paired data. For U-Net and pix2pix, LR crop was 
upsampled to HR size with cubic interpolation. A larger crop of 6403 px was extracted from the LR scan to test 
the best models.

LR and HR crops were preprocessed to optimize the training of the networks after parametric tests. For 2D 
networks, 25% of the slices were randomly selected for validation; the images were subdivided in patches of 1282 
px for 2D U-Net and pix2pix, and of 402 and 1602 px (for LR and corresponding HR images, respectively) for 
ResNet-based networks (revealed adequate sizes to capture tuff microstructures). 2D best models, U-Net and 
pix2pix, were also trained in 3D preparing subvolumes of 803 and 1283 px respectively (also constrained by our 
computational availability) with an overlap of 25% to augment data; 20% of the subvolumes was used for valida-
tion and the last 80/128 slices were reserved to evaluate the general result of the models.

For 2D and 3D CNNs (U-Net and ResNet-based networks), grayscale values were scaled from 0 to 1 and 
a sigmoid activation layer was used at the end of the networks. They were trained for 100 epochs using mean 
squared error loss (which provided better results than mean absolute error loss) and Adam optimizer with an 
initial learning rate of 10–3 and an exponential decay (decay rate of 0.0625). In detail, for U-Net, batches of 32 and 
1 images were used for 2D and 3D models respectively, shuffling the training data before each epoch; the effect 

Figure 8.   Super-resolution networks. Convolutional neural networks (CNNs: U-Net, SR-ResNet, EDSR, 
WDSR-a, WDSR-b) and generative adversarial networks (GANs: pix2pix, CycleGAN) employed for super-
resolution imaging. Blocks of the same color represent the same type of layer(s); if they are repeated for several 
times, it is reported above the blocks (e.g., 2×). For (2D or 3D) convolutional layers, the number of filters is 
provided at the bottom and the kernel size (together with the strides, in the bracket, when different from 1) 
at the top. Bottom light-gray arrows show skip connections (concatenation for U-Net, pix2pix, CycleGAN, 
addition for SR-ResNet, EDSR, WDSR-a, WDSR-b), whereas top dark-gray arrows indicate residual blocks for 
ResNet-based networks (SR-ResNet, EDSR, WDSR-a, WDSR-b) and CycleGAN.
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of BatchNormalization and Dropout was also investigated without enhancements. For ResNet-based networks, 
results for 16 residual blocks using shuffled batches of 16 images, and for filter expansion factors of 4× and 6× for 
WDSR-a and WDSR-b respectively, are shown; however changing these parameters no significant improvements 
were achieved. For pix2pix, we followed the suggestions proposed by its authors as it was developed as a general-
purpose solution to many different image-to-image translation tasks50. Grayscale values were scaled from − 1 to 
1 and a tanh activation layer was used at the end of the generator. The model was trained for 100 epochs using a 
batch size of 1, randomly selecting the images. The number of epochs to train CNNs and GANs was selected in 
order to broadly stabilize the metrics for training and validation datasets. The trainings were performed using 
Tensorflow/Keras (Tensorflow 2.5.0, Python 3) on a NVIDIA GeForce RTX 3070 GPU.

The results were then evaluated in term of image quality metrics and transport properties (see “Image analysis 
and flow simulations” section), and visual checks as well. Image quality (respect to HR images) was assessed 
estimating mean squared error (MSE), peak signal to noise ratio (PSNR) and structure similarity index (SSIM55).

Finally, we also used unpaired data to train 2D and 3D CycleGANs. HR data was combined with a stack of 
2D images from different FoVs, and a 3D subvolume, independently extracted from the central 6403 px of the 
LR image and upsampled with cubic interpolation. These datasets were preprocessed similarly to (2D and 3D) 
pix2pix. We trained CycleGAN following the suggestions proposed by its authors, who developed a general solu-
tion for image-to-image translation tasks53, and randomly selecting the images. A relatively limited training of 
25 epochs (455,625 and 5750 training steps in 2D and 3D) was possible in reasonable times (Table 1) due to the 
high computational costs, although a better performing GPU (NVIDIA GeForce RTX 3090 Ti) was employed 
for this network. The absence of paired images, did not allow the use of traditional image quality metrics to 
evaluate the results.

Image analysis and flow simulations.  The obtained digital rocks were segmented and used to estimate 
transport properties. We defined a very simple and traditional workflow in order to evaluate the efficiency of 
our imaging of tuff microstructures without further complications due to filtering, segmentation and simula-
tion approaches. Therefore, we fist segmented the images using Otsu’s method56, which automatically estimate 
a grayscale threshold for a binary segmentation (i.e., each voxel is labeled as pore or matrix), with scikit-image 
library in Python. The results were visually checked and the effect of threshold value on segmentation (i.e., 
threshold sensitivity34) is also discussed. The segmented images we then used to estimate porosity and perform 
permeability simulations. Particularly, single-phase fluid flow was directly simulated on the segmented images. 
This approach allows to estimate permeability (compatible with our laboratory measurements) and velocity field 
distribution, solving Stokes equations and using Darcy’s law. We employed a parallel lattice Boltzmann solver 
available in the PerGeos software.

Data availability
Supporting data and codes are available at: https://​figsh​are.​com/​artic​les/​online_​resou​rce/​3dSRCT/​20449​188.
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